EEE2035F EXAM SIGNALS AND SYSTEMS I

HINTS: June 2013

- 1. (a) Flip around origin and scale range by 2
 - (b) Flip around origin and shift origin to t = 2
 - (c) Ordinary derivative is 1 for $1 \le t \le 2$ and zero elsewhere, but also need $-\delta(t-2)$ to account for discontinuity
 - (d) Parabolic and concave upwards from t = 1 to t = 2, attaining a value of 1/2 at t = 2. Constant value of 1/2 for t > 2, and zero for t < 1.
- 2. (a) $y_1(t) = x_1(t)u(t) = \delta(t-1)u(t) = \delta(t-1).$
 - (b) $y_2(t) = x_2(t)u(t) = \delta(t+1)u(t) = 0.$
 - (c) In above have $x_1(t) = x_2(t-2)$ but $y_1(t) \neq y_2(t-2)$, so the system not time invariant.
 - (d) Suppose $y_3(t)$ is the response to $x_3(t)$: then $y_3(t) = x_3(t)u(t)$. For any a the response to $x_4(t) = ax_3(t)$ is $y_4(t) = x_4(t)u(t) = ax_3(t)u(t) = ay_3(t)$, so the system is homogeneous.
- 3. Here $h(t) = p_2(t)$ is a pulse with height 1 for $-1 \le t \le 1$ and zero elsewhere. Using graphical or other methods the required output can be shown to be

$$y(t) = p_2(t) * p_1(t - 1/2) = \begin{cases} t + 1 & -1 \le t \le 0\\ 1 & 0 < t < 1\\ 2 - t & 1 \le t \le 2\\ 0 & otherwise. \end{cases}$$

- 4. Fundamental period T = 6 seconds so fundamental frequency is $\omega_0 = \frac{2\pi}{6} = \pi/3$ radians per second.
 - (a) Coefficient for the k = 0 term is the DC value:

$$c_0 = \frac{1}{3}$$

(b) In general x(t) = 2z(t) - z(t-3), so substituting and simplifying gives

$$x(t) = 2\sum_{k=-\infty}^{\infty} d_k e^{jk\frac{\pi}{3}t} - \sum_{k=-\infty}^{\infty} d_k e^{jk\frac{\pi}{3}(t-3)} = \sum_{k=-\infty}^{\infty} \left(2d_k - e^{jk\pi}d_k\right) e^{jk\frac{\pi}{3}t}.$$

This is in the form of a Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\frac{\pi}{3}t}$$

with $c_k = (2 - e^{jk\pi})d_k$. Thus

$$c_3 = (2 - e^{j3\pi})d_3 = (2 - e^{j3\pi})0 = 0.$$

- (c) Because x(t) is real we have $c_{-3} = c_3^* = 0$.
- 5. (a) Time reversal on pair $e^{-bt}u(t) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad 1/(j\omega+b)$ gives required transform $X(\omega) = \frac{1}{-j\omega+2}.$
 - (b) Starting with the pair for $3e^{-bt}u(t)$ and applying time shift followed by multiplication by power of t gives required signal is $x(t) = 3te^{-3(t+2)}u(t+2)$.
- 6. (a) Take Fourier transform of each side and manipulate for required expression.
 - (b) Output is

$$Y(\omega) = H(\omega)X(\omega) = \frac{2}{(j\omega+3)^2(j\omega+1)}$$

(c) Using partial fractions inverse transform gives the impulse response

$$h(t) = -e^{-3t}u(t) + e^{-t}u(t)$$

- 7.
- 8. (a) Using tables with $\tau = 2$ gives $X(\omega) = 2\pi(1 |\omega|)p_2(\omega)$ (triangular pulse centred on zero, total width 2, and height 2π .
 - (b) Highest frequency present is 1 radian/second so Nyquist requires that $\omega_s = \frac{2\pi}{T} > 2(1)$, or $T < \pi$ seconds.
 - (c) Here $\omega_s = \frac{2\pi}{T_s} = 3$ radians/second, so the spectrum $X_s(\omega)$ consists of replicas from part (a) occurring at integer multiples of $\omega_s = 3$, each with height 3.