EEE2035F EXAM SIGNALS AND SYSTEMS I

University of Cape Town Department of Electrical Engineering

June 2011 2 hours

Information

- The exam is closed-book.
- There are *eight* questions totalling 80 marks. You must answer all of them.
- The last page of this exam paper contains an information sheet with standard Fourier transforms, transform properties, and some trigonometric identities.
- You have 2 hours.

1. Suppose x(t) is the signal below:

Sketch the following: (a) $y_1(t) = -2x(t) + 1$ (b) $y_2(t) = x(-t+3)$ (c) $y_3(t) = \int_{-\infty}^{\infty} x(\lambda + 1)\delta(t - \lambda)d\lambda$ (d) $y_4(t) = \int_0^t x(\lambda)d\lambda$ (e) $y_5(t) = \frac{d}{dt}x(t-1)$ (f) $y_6(t) = x(2t-1)$.

(15 marks)

2. A linear system has the relationship

$$y(t) = \int_{-\infty}^{\infty} x(\lambda)g(t-2\lambda)d\lambda$$

between its input x(t) and its output y(t), where g(t) = u(t) - u(t - 4).

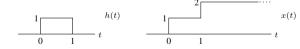
(a) Determine y(t) when $x(t) = \delta(t-1)$.

(b) Determine y(t) when $x(t) = \delta(t-2)$.

(c) Use your answers for (a) and (b) to determine whether the system is LTI.

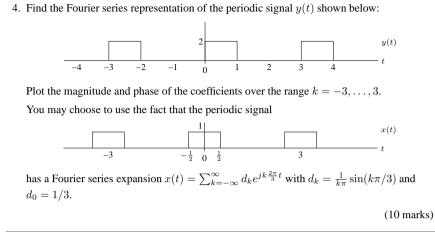
(10 marks)

3. A system with impulse response h(t) is driven by the input signal x(t), both of which are shown below:



Find and plot the output signal y(t).

(10 marks)



5. A system has the following impulse response:

$$h(t) = 3\operatorname{sinc}\left(\frac{3t}{2\pi}\right).$$

(a) Sketch the frequency response $H(\omega)$ of the system.

- (b) What is the response $y_1(t)$ to the input signal $x_1(t) = \cos(t)$?
- (c) What is the response $y_2(t)$ to the input signal $x_2(t) = \cos(2t)$?

(10 marks)

6. If the output of an LTI system is $y(t) = 3e^{-5t}u(t) - e^{-2t}u(t)$ when the input is $x(t) = e^{-5t}u(t)$, what is the impulse response h(t)?

(10 marks)

7. (a) Use tables of Fourier transforms and properties to show that the following is a valid Fourier pair:

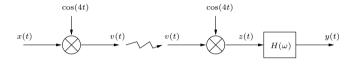
$$e^{-3t}u(t-1) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad e^{-3}e^{-j\omega}\frac{1}{3+j\omega}$$

(b) Use this result along with other Fourier transform properties to determine the spectrum of the signal

$$x(t) = \frac{d}{dt}(\sin(2t)e^{-3t}u(t-1)).$$

(10 marks)

8. A block diagram of a transmitter and receiver is shown below:



Transmitter

Receiver

The input signal is assumed to have the following spectrum:

$$-2$$
 0 2 $X(\omega)$ ω

- (a) Sketch the signals $V(\omega)$ and $Z(\omega)$.
- (b) Specify the frequency response $H(\omega)$ of the filter required for the output y(t) to be the same as the input x(t).

(5 marks)

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \leftrightarrow X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \leftrightarrow \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$
Duality	$X(t) \leftrightarrow 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
1 $(-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{j\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ (b > 0)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{\tau}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2\pi}$
$\tau \operatorname{sinc} \frac{\tau t}{2\pi}$	$2\pi p_{\tau}(\omega)$
$\left(1 - \frac{2 t }{\tau}\right) p_{\tau}(t)$	$\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$
$\frac{\tau}{2}$ sinc ² $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$

Trigonometric identities

```
\begin{split} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) = \cos(\theta) & \tan(-\theta) = -\tan(\theta) \\ \sin^2(\theta) + \cos^2(\theta) &= 1 & \sin(2\theta) = 2\sin(\theta)\cos(\theta) \\ \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{split}
```