EEE2035F EXAM SIGNALS AND SYSTEMS I

HINTS: June 2010

- 1. (a) Since $x_1(t) = x(-(t-1)) = x'_1(t-1)$ with $x'_1(t) = x_1(-t)$, so flip around origin and shift result to the right (delay) by 1 unit.
 - (b) Delay (shift right) by 1 and change sign of range values.
 - (c) Indefinite integral: zero for $t \le -2$, quadratic (concave upwards) over range -2 to 0 $(x_3(0) = 2)$, linear decrease to $x_3(1) = 1$, then constant $x_3(t) = 1$ for $t \ge 1$.
 - (d) Sifting property: $x_4(t) = \delta(t+1)x(-1) = \delta(t+1)$, so just sketch an impulse.
 - (e) Generalised derivative is ordinary derivative (only nonzero slope is 1 over range -2 to 0), with impulses of size -3 at t = 0 and 1 at t = 1 to handle discontinuities.
- 2. (a) Impulse response is output y(t) when input is $x(t) = \delta(t)$, so must have

$$h(t) = \int_{t-1}^{t} \delta(\tau) d\tau = u(t) - u(t-1).$$

- (b) Impulse response h(t) is zero for t < 0 so system is causal.
- (c) Overall impulse response is $h_o(t) = h(t) * h(t)$, so get result by convolution (using any method that is easy for the problem). Result is a triangular pulse centered on t = 1, total width 2, and height 1.
- 3. (a) Easiest to convolve $e^{-2t}u(t)$ with u(t) using derivative property, then delay the result by one time unit to get the answer.
 - (b) Since h(t) = 0 for t < 0 the system is causal.
- 4. (a) Take the Fourier transform of the differential equation and solve for the transfer

function to give

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{1}{2+j\omega}.$$

One approach is to find the impulse response h(t) and get the solution by convolution with given x(t). Alternatively find $X(\omega)$ from x(t) and use the inverse transform of $Y(\omega) = H(\omega)X(\omega)$ (which will require partial fractions) to get $y(t) = e^{-t}u(t) - e^{-2t}u(t)$.

- (b) Could proceed as with the previous case, but it's easier to find h(t) and then convolve with u(t) using the differentiation property to find output $y(t) = \frac{1}{2}(1 e^{-2t})u(t)$.
- 5. (a) First find the transform of $g_1(t) = e^{-\pi |t|} = e^{-\pi t}u(t) + e^{-\pi (-t)}u(-t)$, then use the time shift property to give the required result.
 - (b) The inverse transform of

$$F_b(\omega) = \frac{6j\omega}{2+j\omega} = 6 - \frac{12}{2+j\omega}$$

is $f_b(t) = 6\delta(t) - 12e^{-2t}u(t)$. Applying frequency shift yields the required inverse $f(t) = 6\delta(t) - 12e^{-(2+j)t}u(t)$.

- (c) Convolution in time is multiplication in frequency, so the result can be found as $M(\omega) = 2 \operatorname{sinc}(\omega/\pi) p_{2\pi}(\omega).$
- 6. The signal x(t) has period T = 4 and using the integration formula the coefficients of the Fourier series can be found to be $c_k = 2j \sin(k\omega_0)$ with $\omega_0 = 2\pi/4$. Since

$$x(t) = \frac{d}{dt}y(t) = \sum_{k=-\infty}^{\infty} d_k \frac{d}{dt} e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} (jk\omega_0 d_k) e^{jk\omega_0 t}$$

we have $c_k = jk\omega_0 d_k$, so $d_k = \frac{2}{k\omega_0} \sin(k\omega_0)$ for $k \neq 0$ and $d_0 = 1/2$.

- 7. (a) If x(t) = 1 then $V(\omega) = \pi(\delta(\omega + 5) + \delta(\omega 5))$, which doesn't lie in the passband of the filter. Thus w(t) = 0 and y(t) = 0.
 - (b) In this case $V(\omega) = \pi(\delta(\omega) + \delta(\omega 10))$ and $W(\omega) = \pi(\delta(\omega))$. Thus

$$Y(\omega) = \frac{\pi}{2}(\delta(\omega+5) + \delta(\omega-5)), \text{ so } y(t) = \cos(5t).$$

- 8. (a) The convolution yields a signal that contains replicas of $X(\omega)$ centered at integer multiples of 15.
 - (b) Use a lowpass filter (ideal) with a cutoff frequency between 5 and 10 radians/second.