EEE2035F EXAM SIGNALS AND SYSTEMS I

University of Cape Town Department of Electrical Engineering

June 2010 2 hours

Information

- The exam is closed-book.
- There are *eight* questions totalling 80 marks. You must answer all of them.
- The last page of this exam paper contains an information sheet with standard Fourier transforms, transform properties, and some trigonometric identities.
- You have 2 hours.

1. Let x(t) be the signal below:

Sketch the following:

(a) $x_1(t) = x(1-t)$ (b) $x_2(t) = -x(t-1)$ (c) $x_3(t) = \int_{-\infty}^t x(\tau) d\tau$ (d) $x_4(t) = \delta(t+1)x(t)$ (e) $x_5(t) = \frac{d}{dt}x(t)$.

(10 marks)

2. Consider the system

with input-output relationship

$$y(t) = \int_{t-1}^{t} x(\tau) d\tau$$

- (a) Assuming that the system is linear and time invariant, show that the impulse response is h(t) = u(t) u(t 1).
- (b) Is the system causal? Why?
- (c) Find and sketch the impulse response of the cascaded system below:

(10 marks)

- 3. A linear time-invariant system has an impulse response of $h(t) = e^{-2(t-1)}u(t-1)$.
 - (a) Use time-domain convolution to find and sketch the output y(t) when the input is x(t) = u(t).
 - (b) Is the system causal? Why?

(10 marks)

4. Consider a continuous-time LTI system described by

$$\frac{dy(t)}{dt} + 2y(t) = x(t),$$

where x(t) is the input and y(t) is the output. Using the Fourier transform and assuming initial rest conditions, find the output y(t) for each of the following input signals:

- (a) $x(t) = e^{-t}u(t)$,
- (b) x(t) = u(t).

(10 marks)

- 5. (a) Find the Fourier transform of the signal $g(t) = e^{-\pi |t-2|}$.
 - (b) Find the inverse Fourier transform of $F(\omega) = \frac{6j(\omega+1)}{2+j(\omega+1)}$.
 - (c) Find the Fourier transform of $m(t) = p_2(t) * \operatorname{sinc}(t)$.

(15 marks)

6. Find the Fourier series representation for the periodic signal below:

Use this result to find the Fourier series representation of

(10 marks)

7. Consider the system shown below

where H is an ideal lowpass filter with frequency response $H(\omega) = p_2(\omega)$.

- (a) What is the output y(t) of the system if the input is the constant DC signal x(t) = 1?
- (b) What is the output y(t) of the system if the input is the complex exponential $x(t) = e^{j5t}$?

(10 marks)

8. Let $X(\omega)$ be the signal

(a) If $P(\omega)$ is the impulse train $P(\omega) = \sum_{k=-\infty}^{\infty} \delta(\omega - 15k)$, shown below, $\underbrace{\begin{pmatrix} 1 & (1) & (1) & (1) & (1) \\ \bullet & \bullet & \bullet & \bullet \\ \hline -30 & -15 & 0 & 15 & 30 \end{pmatrix} P(\omega)}_{\omega}$

then sketch $Y(\omega) = X(\omega) * P(\omega)$.

(b) Can $X(\omega)$ be recovered from $Y(\omega)$? If so, how?

(5 marks)

INFORMATION SHEET

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \leftrightarrow X(\omega) e^{-j\omega c}$
Time scaling	$x(at) \leftrightarrow \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t)\leftrightarrow (j\omega)^n X(\omega) n=1,2,\ldots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{i\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$
Duality	$X(t) \leftrightarrow 2\pi x(-\omega)$

Fourier transform properties

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{j\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ $(b>0)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{ au}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2\pi}$
$\tau \operatorname{sinc} \frac{\tau t}{2\pi}$	$2\pi p_{\tau}(\omega)$
$\left(1-rac{2 t }{ au} ight)p_{ au}(t)$	$\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$
$\frac{\tau}{2}$ sinc ² $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{ au} ight) p_{ au}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$

Trigonometric identities

$$\begin{split} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) = \cos(\theta) & \tan(-\theta) = -\tan(\theta) \\ \sin^2(\theta) &+ \cos^2(\theta) = 1 & \sin(2\theta) = 2\sin(\theta)\cos(\theta) \\ \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{split}$$