EEE235F MOCK EXAM SIGNALS AND SYSTEMS I

University of Cape Town Department of Electrical Engineering

June 2005

2 hours

Information

- The exam is closed-book.
- There are *eight* questions totalling 80 marks. You must answer all of them.
- The last page of this exam paper contains an information sheet with standard Fourier transforms and transform properties.
- You have 2 hours.

1. The input x(t) and the impulse response h(t) of a continuous time LTI system are given by

$$\begin{aligned} x(t) &= u(t) \quad \text{ and } \quad h(t) = e^{-\alpha t} u(t), \ \alpha > 0. \end{aligned}$$
(a) Compute the output $y(t)$ using $y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau.$
(b) Compute the output $y(t)$ using $y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau.$

(10 marks)

2. Let x(t) and v(t) be the signals

$$x(t) = u(t)$$
 and $v(t) = e^{-\alpha t}u(t), \quad \alpha > 0.$

Sketch the following:

(a) $x(t-\lambda)v(\lambda)$ for $t=1, t=\frac{1}{2}$, and t=0. (b) Hence find w(0), $w(\frac{1}{2})$ and w(1) if w(t) = x(t) * v(t). (c) Also sketch $x(t - \lambda)\delta(\lambda)$ for $t = -\frac{1}{2}$ and $t = \frac{1}{2}$.

(10 marks)

3. Consider a LTI system with step response

 $q(t) = e^{-t}u(t).$

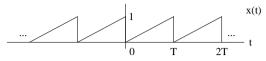
(a) Determine and sketch the response to

t

(b) Determine and sketch the response to

(10 marks)

4. Find the trigonometric form with real coefficients of the Fourier series for the following signal:



(10 marks)

5. (a) Show that the Fourier transform of $e^{-|t|}$ is $2/(1 + \omega^2)$, and find the Fourier transform of the following signals:

$$x_1(t) = e^{-2|t|}$$
 $x_2(t) = e^{-2|t|} \sin(t)$ $x_3(t) = te^{-2|t|}$.

(b) (4 marks) Use duality to find the Fourier transform of the signal

$$x(t) = \frac{1}{(1+t^2)}.$$

(10 marks)

6. Find the transfer function of the system determined by the input/output relationship

$$\frac{d^2y}{dt^2} + 7\frac{dy}{dt} + 12y = \frac{dx}{dt} + 2x,$$

and determine its impulse response.

(10 marks)

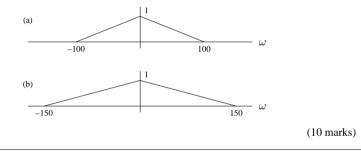
7. The signal g(t) has the Fourier transform

$$G(\omega) = \frac{j\omega}{-\omega^2 + 5j\omega + 6}.$$

Find the Fourier transform of (a) g(2t)(b) g(3t-6)(c) g(-t)(d) $\frac{dx(t)}{dt}$ (e) $e^{-j100t}g(t)$.

(10 marks)

8. The signals with the frequency spectra shown below in (a) and (b) are sampled using an ideal sampler with $\omega_s = 200 \text{rad}/s$. Sketch the frequency spectra of the sampled signals.



INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$
Time shift	$x(t-c)\leftrightarrow X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \leftrightarrow \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Multiplication by complex exponential	$x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \omega_0 \text{ real}$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) \ast v(t) \leftrightarrow X(\omega) V(\omega)$
Multiplication in time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)} V(\omega)dt$
Duality	$X(t) \leftrightarrow 2\pi x(-\omega)$

Common Fourier Transform Pairs

x(t)	$X(\omega)$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{j\omega}$
u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{j\omega+b} (b>0)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{\tau}(t)$	$ au \operatorname{sinc} \frac{ au \omega}{2\pi}$
$\left(1 - \frac{2 t }{\tau}\right) p_{\tau}(t)$	$\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$