EEE235F EXAM SIGNALS AND SYSTEMS I

HINTS: June 2005

- 1. Fundamental. Part (e) is a bit tricky: τ is the variable and t a constant in this case, so the shift is to the right by t. Remember the two delta functions in (g).
- 2. In the first part we are looking for smallest value of T such that $\cos^2(t) = \cos^2(t + T)$. Beware: $T = 2\pi$ is obviously a solution, but double angle formulae show that $T = \pi$ also works (plot $\cos^2(t)$ to see why). The signal in the second part is not periodic (plot it).
- 3. Plotting h(t) is simple. The step response of the system is the output when the input is the unit step: g(t) = h(t) * u(t) (find directly using graphical convolution in the time domain). The system is causal because h(t) is zero for t < 0 (convince yourself why by examining the convolution formula under this condition).
- 4. The signal is symmetric and $x(t) = e^{-at}$ for t > 0, so $x(t) = x_1(t) + x_1(-t)$ with $x_1(t) = e^{-at}u(t)$. Finding $X_1(\omega)$ and noting that $X(\omega) = X_1(\omega) + X(-\omega)$ gives the result $X(\omega) = 2a/(\omega^2 + a^2)$.
- 5. Since $x(t) = \sin^2(t) = (1/(2j)(e^{jt} e^{-jt}))^2 = 1/4e^{j2t} 1/2 + 1/4e^{j2t}$, the Fourier series follows directly: $c_{-1} = c_1 = 1/4$ and $c_0 = 1/2$ with $\omega_0 = 2$. Also, since $x(t) = 1/2 1/2\cos(2t)$ the nonzero coefficients of the trigonometric Fourier series are $a_0 = 1/2$ and $a_1 = -1/2$, with the same fundamental frequency.
- 6. Taking the Fourier transform of the given expression and rearranging gives $H(\omega) = 1/(2 + j\omega)$. The response to the given x(t) can be found by multiplying with

 $X(\omega)$ in the frequency domain, doing a partial fraction expansion on the product, and inverse transforming to give $y(t) = e^{-t}u(t) - e^{-2t}u(t)$. The impulse response is the inverse transform of $H(\omega)$, namely $h(t) = e^{-2t}u(t)$.

7. Using the multiplication by $cosinecos(\omega_0 t)$ property on the pair.

8.