EEE235F EXAM SIGNALS AND SYSTEMS I

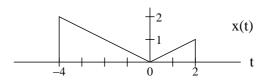
University of Cape Town Department of Electrical Engineering

June 2005 2 hours

Information

- The exam is closed-book.
- There are *eight* questions totalling 90 marks. You must answer all of them.
- The last two pages of this exam paper contain information sheets with standard Fourier transforms, transform properties, and some trigonometric identities.
- You have 2 hours.

1. Consider the signal x(t) below:



Sketch the following:

- (a) y(t) = 2 2x(t)
- (b) y(t) = x(-t+1)
- (c) y(t) = x(t+2)
- (d) y(t) = x(t/2)
- (e) $y(\tau) = x(\tau t)$
- (f) $y(t) = x^2(t)$
- (g) $y(t) = \frac{dx(t)}{dt}$ (the generalised derivative).

(15 marks)

2. Determine whether or not each of the following signals is periodic. If the signal is periodic, determine its fundamental period.

- (a) $x(t) = \cos^2(t)$
- (b) $x(t) = \cos(2\pi t)u(t)$.

(10 marks)

3. An LTI system has impulse response $h(t) = e^{-\alpha t}u(t)$ with $\alpha > 0$.

- (a) Carefully sketch this impulse response for $\alpha = 2$.
- (b) Use time-domain convolution to find the step response of the system.
- (c) Is the system causal? Why?

(10 marks)

4. Sketch the signal $x(t) = e^{-a|t|}$ for a > 0, and find its Fourier transform.

(10 marks)

- 5. Given the signal $x(t) = \sin^2(t)$:
 - (a) Find the complex exponential Fourier series representation of x(t)
 - (b) Determine the trigonometric Fourier series representation of x(t).

(10 marks)

6. Consider the continuous-time LTI system described by

$$\frac{dy(t)}{dt} + 2y(t) = x(t).$$

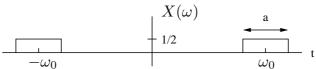
- (a) Using the Fourier transform, find the transfer function of the system
- (b) Find the output of the system for the input $x(t) = e^{-t}u(t)$
- (c) Find the impulse response of the system.

(15 marks)

7. The Fourier transform of a signal x(t) is given by

$$X(\omega) = \frac{1}{2}p_a(\omega - \omega_0) + \frac{1}{2}p_a(\omega + \omega_0),$$

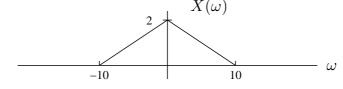
which is shown below:



Find an expression for x(t).

(10 marks)

8. Consider the signal whose Fourier transform is shown below:



Let $x_s(t) = x(t)p(t)$ represent the sampled signal (where p(t) is the impulse train with period T).

- (a) Find the Fourier series representation for the impulse train $\boldsymbol{p}(t)$
- (b) Draw $X_s(\omega)$ for $T=\pi/15$ and $T=2\pi/15$.

(10 marks)

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \leftrightarrow X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \leftrightarrow \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0t} \leftrightarrow X(\omega-\omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t)*v(t)\leftrightarrow X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$
Duality	$X(t) \leftrightarrow 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$
$\frac{2\pi J - \infty}{1 (-\infty < t < \infty)}$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{i\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ $(b>0)$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{ au}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2\pi}$
$ au \operatorname{sinc} rac{ au t}{2\pi}$	$2\pi p_{ au}(\omega)$
$\left(1-\frac{2 t }{\tau}\right)p_{\tau}(t)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\tau \omega}{4\pi} \right)$
$\frac{\tau}{3}$ sinc $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$

Trigonometric identities

$$\begin{split} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) = \cos(\theta) & \tan(-\theta) = -\tan(\theta) \\ \sin^2(\theta) + \cos^2(\theta) &= 1 & \sin(2\theta) = 2\sin(\theta)\cos(\theta) \\ \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{split}$$