EEE2047S: Signals and Systems I

Class Test 1

14 August 2019

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has *four* questions, totaling 20 marks.
- There is an information sheet attached at the end of this paper.
- Answer *all* the questions.
- You have 60 minutes.

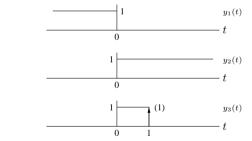
- 1. (5 marks) Plot the following signals: (a) $y_1(t) = \int_t^\infty \delta(\lambda) d\lambda$ (b) $y_2(t) = \int_0^\infty \delta(\lambda - t) d\lambda$ (c) $y_3(t) = \frac{d}{dt} (t(u(t) - u(t - 1))).$
 - (a) If t > 0 then the integration limits do not include the delta function at the origin, so the output is zero. If t < 0 then the limits do include the delta function, so the integral is the area, namely one. Thus $y_1(t) = u(-t)$.
 - (b) The integrand consists of a delta function at λ = t. For t > 0 the delta function is in the range of the integral and the result is one. For t < 0 the delta function is not included in the integration range and the result is zero. Thus y₂(t) = u(t).
- (c) If we consider the quantity t(u(t) u(t-1)) we find that

$$t(u(t) - u(t-1)) = \begin{cases} t & 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$

The required quantity is the generalised derivative:

 $y_3(t) = (u(t) - u(t-1)) + \delta(t-1).$

Plots as follows:



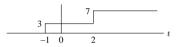
2. (5 marks) Suppose the output y(t) of a system is related to the input x(t) via the relation

$$y(t) = 3x(t+2) + 4x(t-1).$$

- (a) Is the system causal? Why?
- (b) Find and plot the output y(t) when the input is x(t) = u(t-1).
- (c) Is the system time invariant? Why?
- (a) To calculate the output at say t = 10 one needs to know the input at t = 10 1 = 9and at t = 10 + 2 = 12. This latter instant is in the future, so the system is not causal.
- (b) For x(t) = u(t-1) the output is

$$y(t) = 3x(t+2) + 4x(t-1) = 3u(t+1) + 4u(t-2).$$

Plot below:



(c) Suppose the input $x_1(t)$ generates the output $y_1(t)$, and $x_2(t)$ generates $y_2(t)$. Then we must have

$$y_1(t) = 3x_1(t+2) + 4x_1(t-1)$$
 and $y_2(t) = 3x_2(t+2) + 4x_2(t-1)$

If in addition $x_2(t) = x_1(t-c)$ then we see that

$$y_2(t) = 3x_2(t+2) + 4x_2(t-1) = 3x_1(t+2-c) + 4x_2(t-1-c)$$

= $3x_1((t-c)+2) + 4x_2((t-c)-1) = y_1(t-c).$

Thus a shift by c in the input leads to a corresponding shift by c in the output, so the system is time invariant.

3. (5 marks) Consider the signal y(t) = x(t) * v(t) for the signals given below:

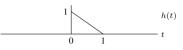
- (a) For what range of values of t is y(t) = 0?
- (b) Specify y(t) over the interval $1 \le t \le 2$.
- (a) The convolution is given by

$$y(t) = \int_{-\infty}^{\infty} x(\lambda)v(t-\lambda)d\lambda.$$

- Since $v(t \lambda)$ is nonzero for $\lambda = t 1$ to $\lambda = t$ we can see from graphical means that y(t) = 0 for t < 1 and for t 1 > 2 (i.e. t > 3).
- (b) Again using graphical means we find that for $1 \le t \le 2$ the result is given by

$$y(t) = \int_{-\infty}^{\infty} x(\lambda)v(t-\lambda)d\lambda = \int_{1}^{t} (\lambda-1)(2)d\lambda = 2\left[\lambda^{2}/2 - \lambda\right]_{\lambda=1}^{t}$$
$$= 2((t^{2}/2 - t) - (1/2 - 1)) = 2(t^{2}/2 - t + 1/2) = (t^{2} - 2t + 1)$$
$$= (t-1)^{2}.$$

4. (5 marks) Consider an LTI system with impulse response



- (a) Is the system causal? Why?
- (b) Find and sketch the step response of the system, i.e. the output g(t) when the input is x(t) = u(t).
- (c) Find the response of the system to the signal below:

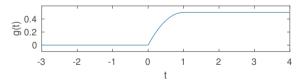


Express the result in terms of the step response g(t) in (b), and sketch your solution.

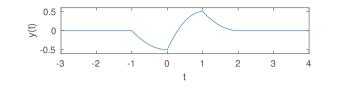
- (a) The impulse response is right-sided (zero for t < 0) so the system is causal.
- (b) Applying the integration property to the pair $\delta(t) \longrightarrow h(t)$ gives the step response

$$g(t) = \int_{-\infty}^{t} h(\tau) d\tau = \begin{cases} 0 & t \le 0\\ \int_{0}^{t} (1-\tau) d\tau & 0 < t < 1\\ \int_{0}^{1} (1-\tau) d\tau & t \ge 1. \end{cases}$$
$$= (t - t^{2}/2)(u(t) - u(t-1)).$$

Plot as follows:



(c) The input can be written as v(t) = -u(t+1) + 2u(t) - u(t-1). Since $u(t) \longrightarrow g(t)$, using linearity and time invariance the required output is y(t) = -g(t+1) + 2g(t) - g(t-1). Plot as follows:



INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \iff X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \iff X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \iff j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0 t} \iff X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \iff \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \iff (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \iff X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \iff \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$
Duality	$X(t) \iff 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{j\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ (b > 0)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{\tau}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2\pi}$
$\tau \operatorname{sinc} \frac{\tau t}{2\pi}$	$2\pi p_{\tau}(\omega)$
$\left(1-\frac{2 t }{\tau}\right)p_{\tau}(t)$	$\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$
$\frac{\tau}{2}$ sinc ² $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\omega-k\frac{2\pi}{T})$

with $p_{\tau}(t) = u(t + \tau/2) - u(t - \tau/2)$ and $\operatorname{sinc}(\lambda) = \sin(\pi\lambda)/(\pi\lambda)$.

Laplace transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(s) + bV(s)$
Time shift	$x(t-a)u(t-a) \iff e^{-as}X(s) a \ge 0$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{s}{a}) a > 0$
Frequency differentiation	$t^n x(t) \iff (-1)^n X^{(n)}(s)$
Frequency shift	$e^{at}x(t) \iff X(s-a)$
Differentiation	$x'(t) \iff sX(s) - x(0^-)$
	$x^{\prime\prime}(t) \iff s^2 X(s) - s x(0^-) - x^{\prime}(0^-)$
	$x^{(n)}(t) \iff s^n X(s) - s^{n-1} x(0^-) - \dots - x^{(n-1)}(0^-)$
Integration	$\int_{0^{-}}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s)$
	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s) + \frac{1}{s} \int_{-\infty}^{0^{-}} x(\lambda) d\lambda$
Time convolution	$x(t) * v(t) \iff X(s)V(s)$
Frequency convolution	$x(t)v(t) \iff \frac{1}{2\pi i}X(s) * V(s)$

Final value: $f(\infty) = \lim_{s \to \infty} sF(s)$ Final value: $f(\infty) = \lim_{s \to 0} sF(s)$ with all poles in left-hand plane

Common Unilateral Laplace Transform Pairs

$x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} ds$	$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$
$\delta(t)$	1
u(t)	$\frac{1}{s}$
tu(t)	$\frac{1}{s}$ $\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$
$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
$\cos(bt)u(t)$	$\frac{s}{s^2+b^2}$
$\sin(bt)u(t)$	$\frac{b}{s^2+b^2}$
$e^{-at}\cos(bt)u(t)$	$\frac{s+a}{(s+a)^2+b^2}$
$e^{-at}\sin(bt)u(t)$	$\frac{b}{(s+a)^2+b^2}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{\frac{0.5re^{j\theta}}{s+a-jb}}{\frac{0.5re^{-j\theta}}{s+a+jb}} + \frac{0.5re^{-j\theta}}{s+a+jb}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2 c + B^2 - 2ABa}{c - a^2}}, \ b = \sqrt{c - a^2}, \ \theta = \tan^{-1} \frac{Aa - b}{A\sqrt{c - a^2}}$

Trigonometric identities

 $\begin{aligned} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) &= \cos(\theta) & \tan(-\theta) &= -\tan(\theta) & \sin^2(\theta) + \cos^2(\theta) &= 1\\ \sin(2\theta) &= 2\sin(\theta)\cos(\theta) & \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) &= 2\cos^2(\theta) - 1 &= 1 - 2\sin^2(\theta)\\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) &= \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)\\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{aligned}$