EEE2047S: Signals and Systems I

Class Test 1

18 October 2017

SOLUTIONS

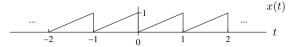
Name:

Student number:

Information

- The test is closed-book. You are welcome and encouraged to have some blank sheets of paper to do roughwork on.
- This test has four questions, totaling 20 marks.
- There is an information sheet attached at the end of this paper.
- Answer all the questions.
- You have 45 minutes.

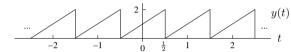
1. (5 marks) The periodic signal



has a Fourier series representation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk2\pi t} \quad \text{with} \quad c_k = \begin{cases} \frac{1}{2} & k=0\\ \frac{-1}{jk2\pi} & k \neq 0 \end{cases}$$

Suppose y(t) is the signal below:



It has a Fourier series representation $y(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk2\pi t}$. Show that $d_k = 2c_k e^{-jk\pi}$, and plot the coefficient magnitudes $|d_k|$ over the range $k = -4, \dots, 4$.

(Bonus mark) Suppose $Y(\omega)$ is the Fourier transform of y(t). Find and plot the magnitude $|Y(\omega)|$ over the range $-4\pi \le \omega \le 4\pi$.

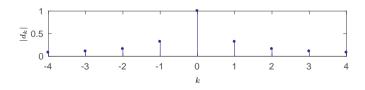
The signals are related by y(t) = 2x(t-1/2) so

$$y(t) = 2\sum_{k=-\infty}^{\infty} c_k e^{jk2\pi(t-1/2)} = \sum_{k=-\infty}^{\infty} 2c_k e^{-jk2\pi/2} e^{jk2\pi t} = \sum_{k=-\infty}^{\infty} d_k e^{j2k\pi t}$$

with $d_k = 2c_k e^{-jk\pi}$. Thus for $k \neq 0$ we have

$$|d_k| = 2|c_k| = 2\left|\frac{-1}{jk2\pi}\right| = \left|\frac{j}{k\pi}\right| = \left|\frac{1}{k\pi}e^{j\pi/2}\right| = \frac{1}{|k\pi|},$$

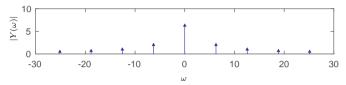
and $|d_0| = 2|c_0| = 1$. The plot follows:



The Fourier transform of y(t) is

$$Y(\omega) = \mathcal{F}\left\{\sum_{k=-\infty}^{\infty} d_k e^{jk2\pi t}\right\} = \sum_{k=-\infty}^{\infty} d_k \mathcal{F}\left\{e^{jk2\pi t}\right\} = \sum_{k=-\infty}^{\infty} 2\pi d_k \delta(\omega - 2\pi k),$$

and the plot follows:



Note the this can be generated from the previous plot. There are impulses at $\omega=2\pi k$ and the weights of these impulses are 2π times the corresponding coefficients $|c_k|$.

2. (5 marks) Find the inverse Fourier transform of

$$X(\omega) = e^{-2j\omega}(u(\omega) - u(\omega - 2)).$$

Noting that $u(\omega) - u(\omega - 2) = p_2(\omega - 1)$ we have $X(\omega) = e^{-2j\omega}p_2(\omega - 1)$. Applying frequency shift with $\omega_0 = 1$ to the pair

$$\tau \operatorname{sinc}\left(\frac{\tau t}{2\pi}\right) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad 2\pi p_{\tau}(\omega)$$

with $\tau = 2$ gives

$$2\operatorname{sinc}\left(\frac{t}{\pi}\right)e^{jt} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad 2\pi p_2(\omega-1),$$

and by linearity

$$\frac{1}{\pi}\operatorname{sinc}\left(\frac{t}{\pi}\right)e^{jt} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad p_2(\omega-1),$$

Time shift with c=2 then gives the pair

$$\frac{1}{\pi}\operatorname{sinc}\left(\frac{t-2}{\pi}\right)e^{j(t-2)} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad e^{-2j\omega}p_2(\omega-1),$$

so the inverse is

$$x(t) = \frac{1}{\pi}\operatorname{sinc}\left(\frac{t-2}{\pi}\right)e^{j(t-2)}.$$

3. (5 marks) Suppose G is a causal system described by the differential equation

$$\frac{d}{dt}y(t) + y(t) = \frac{d}{dt}x(t) - x(t).$$

(a) Show that the frequency response of G is

$$H(\omega) = \frac{j\omega - 1}{j\omega + 1}.$$

(b) Find the impulse response of G.

(Bonus mark) Find the step response of G, or the output when x(t) = u(t) under initial rest conditions.

(a) Since

$$Y(\omega)(j\omega+1) = X(\omega)(j\omega-1)$$

we have

$$H(\omega) = \frac{j\omega - 1}{j\omega + 1}.$$

(b) We have

$$H(\omega) = \frac{j\omega}{j\omega + 1} - \frac{1}{j\omega + 1}.$$

Applying the time differentiation property to $e^{-t}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1/(j\omega+1)$ gives the pair

$$\frac{d}{dt}e^{-t}u(t) \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad \frac{j\omega}{j\omega+1},$$

so the impulse response is

$$h(t) = \frac{d}{dt} \left\{ e^{-t}u(t) \right\} - e^{-t}u(t) = \delta(t) - e^{-t}u(t) - e^{-t}u(t) = \delta(t) - 2e^{-t}u(t).$$

The step response is $g(t)=\int_{-\infty}^t [\delta(\lambda)-2e^{-2\lambda}u(\lambda)]d\lambda$. For t<0 we have g(t)=0, and for t>0

$$g(t) = u(t) - 2 \int_0^t e^{-\lambda} d\lambda = 1 - 2[-e^{-\lambda}]_{\lambda=0}^t = 1 - 2(1 - e^{-t}),$$

so
$$g(t) = u(t) - 2(1 - e^{-t})u(t)$$
.

4. (5 marks) An LTI system has a frequency response

$$H(\omega) = e^{j5\omega} \frac{1}{4 + j\omega}.$$

- (a) Find the impulse response of the system.
- (b) When the input is

$$x(t) = \sin(4t)$$

then the output can be written in the form $y(t) = ce^{j\omega_0 t} + c^* e^{-j\omega_0 t}$ for some complex value c. Specify the value of c in polar form, and the value of ω_0 .

(a) The impulse response is the inverse transform. Applying the time shift property to the pair $e^{-4t}u(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1/(4+j\omega)$ gives

$$e^{-4(t+5)}u(t+5) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad e^{j5\omega}1/(4+j\omega),$$

so the impulse response is $h(t) = e^{-4(t+5)}u(t+5)$.

(b) We can write the input as

$$x(t) = \sin(4t) = \frac{1}{2j}e^{j4t} - \frac{1}{2j}e^{-j4t}.$$

The output from the system will be

$$y(t) = \frac{1}{2i}H(4)e^{j4t} - \frac{1}{2i}H(-4)e^{-j4t}.$$

Thus we have coefficient

$$c = \frac{1}{2j}H(4) = e^{j5(4)}\frac{1}{4+j4}\frac{1}{2j} = e^{j20}\frac{1}{-8+j8} = e^{j20}\frac{1}{8\sqrt{2}e^{j3\pi/4}} = \frac{1}{8\sqrt{2}}e^{j(20-3\pi/4)}$$

and $\omega_0 = 4$.

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \iff X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \iff X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \iff j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0 t} \iff X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \iff \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \iff (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \iff X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \iff \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$
Duality	$X(t) \iff 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{i\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ $(b>0)$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{ au}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2\pi}$
$\tau \operatorname{sinc} \frac{\tau t}{2\pi}$	$2\pi p_{\tau}(\omega)$
$\left(1-\frac{2 t }{\tau}\right)p_{\tau}(t)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\tau \omega}{4\pi} \right)$
$\frac{\tau}{2}$ sinc ² $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k \frac{2\pi}{T})$
with $p_{\tau}(t) = u(t + \tau/2) - u(t - \tau)$	/2) and $\operatorname{sinc}(\lambda) = \sin(\pi \lambda)/(\pi \lambda)$.

Laplace transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(s) + bV(s)$
Time shift	$x(t-a)u(t-a) \iff e^{-as}X(s) a \ge 0$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{s}{a}) a > 0$
Frequency differentiation	$t^n x(t) \Longleftrightarrow (-1)^n X^{(n)}(s)$
Frequency shift	$e^{at}x(t) \iff X(s-a)$
Differentiation	$x'(t) \iff sX(s) - x(0^-)$
	$x''(t) \iff s^2 X(s) - sx(0^-) - x'(0^-)$
	$x^{(n)}(t) \iff s^n X(s) - s^{n-1} x(0^-) - \dots - x^{(n-1)}(0^-)$
Integration	$\int_{0^{-}}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s)$
	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s) + \frac{1}{s} \int_{-\infty}^{0} x(\lambda) d\lambda$
Time convolution	$x(t) * v(t) \iff X(s)V(s)$
Frequency convolution	$x(t)v(t) \iff \frac{1}{2\pi i}X(\omega) * V(\omega)$

Initial value: $f(0^+) = \lim_{s \to \infty} sF(s)$

Final value: $f(\infty) = \lim_{s \to 0} sF(s)$ with all poles in left-hand plane

Common Unilateral Laplace Transform Pairs

$x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} ds$	$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$
$\delta(t)$	1
u(t)	$\frac{1}{s}$
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
$te^{\lambda t}u(t)$	$\frac{s-\lambda}{(s-\lambda)^2}$
$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
$\cos(bt)u(t)$	$\frac{s}{s^2+b^2}$
$\sin(bt)u(t)$	$\frac{b}{s^2+b^2}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}}, b = \sqrt{c - a^2}, \theta = \tan^{-1}\frac{Aa - b}{A\sqrt{c - a^2}}$

Trigonometric identities

```
\begin{split} &\sin(-\theta) = -\sin(\theta) &\cos(-\theta) = \cos(\theta) &\tan(-\theta) = -\tan(\theta) &\sin^2(\theta) + \cos^2(\theta) = 1 \\ &\sin(2\theta) = 2\sin(\theta)\cos(\theta) &\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ &\sin(\theta_1 + \theta_2) = \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) &\cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ &e^{j\theta} = \cos(\theta) + j\sin(\theta) \end{split}
```