EEE2035F: Signals and Systems I Class Test 2 $25~\mathrm{April}~2016$ | N | 2 | n | 10 | ٠. | |---|---|---|----|----| | | | | | | #### Student number: ## Information - The test is closed-book. - This test has four questions, totalling 20 marks. - \bullet Answer *all* the questions. - You have 45 minutes. 1. (5 marks) Consider the signal $$x(t) = \sin\left(3\pi t + \frac{\pi}{3}\right).$$ (a) Show that the signal can be written as a complex exponential Fourier series $$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk(3\pi)t}$$ with $c_1 = c_{-1}^* = \frac{1}{2j}e^{j\pi/3}$ and all other coefficients zero. Plot the magnitude and phase of the coefficients c_k as a function of k. (b) The signal x(t) can also be expressed as a standard trigonometric Fourier series $$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t + b_k).$$ Specify ω_0 and the coefficients a_k and b_k . 2. (5 marks) The signal has a Fourier series representation $$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\pi t},$$ where $$c_k = \begin{cases} 1/2 & k = 0\\ \frac{1}{k\pi} \sin(k\pi/2) & \text{otherwise.} \end{cases}$$ - (a) What is the total average power contained in the signal? - (b) How much signal power is contained in the frequency range $|\omega| \ge 1.5\pi$? Recall that Parseval's theorem states that $$\frac{1}{T} \int_{-T/2}^{T/2} x^2(t) dt = \sum_{k=-\infty}^{\infty} |c_k|^2.$$ 3. (5 marks) Plot the magnitude and phase spectrum (in other words $|X(\omega)|$ and $\angle X(\omega)$) of the signal $x(t)=e^{-t}u(t)$. 4. (5 marks) Suppose $y(t) = h(t) * e^{j\omega_0 t}$ with $$h(t) = e^{-2t}u(t),$$ where * indicates the convolution operator. - (a) Find $H(\omega)$. - (b) Show that $$Y(\omega) = \frac{2\pi}{j\omega_0 + 2}\delta(\omega - \omega_0).$$ (c) Find y(t). #### INFORMATION SHEET # Fourier transform properties | Property | Transform Pair/Property | |--------------------------------------|--| | Linearity | $ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$ | | Time shift | $x(t-c) \leftrightarrow X(\omega)e^{-j\omega c}$ | | Time scaling | $x(at) \leftrightarrow \frac{1}{a}X(\frac{\omega}{a}) a > 0$ | | Time reversal | $x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$ | | Multiplication by power of t | $t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$ | | Frequency shift | $x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \omega_0 \text{ real}$ | | Multiplication by $\cos(\omega_0 t)$ | $x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$ | | Differentiation in time domain | $\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega) n = 1, 2, \dots$ | | Integration | $\int_{-\infty}^{t} x(\lambda)d\lambda \leftrightarrow \frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$ | | Convolution in time domain | $x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$ | | Multiplication in time domain | $x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$ | | Parseval's theorem | $\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$ | | Parseval's theorem (special case) | $\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$ | | Duality | $X(t) \leftrightarrow 2\pi x(-\omega)$ | ## Common Fourier Transform Pairs | $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$ | $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$ | |---|--| | $1 (-\infty < t < \infty)$ | $2\pi\delta(\omega)$ | | -0.5 + u(t) | $\frac{1}{j\omega}$ | | u(t) | $\pi\delta(\omega) + \frac{1}{j\omega}$ | | $\delta(t)$ | 1 | | $\delta(t-c)$ | $e^{-j\omega c}$ (c any real number) | | $e^{-bt}u(t)$ | $\frac{1}{i\omega+b}$ $(b>0)$ | | $e^{j\omega_0t}$ | $2\pi\delta(\omega-\omega_0)$ (ω_0 any real number) | | $p_{ au}(t)$ | $ au \mathrm{sinc} rac{ au \omega}{2\pi}$ | | $ au \mathrm{sinc} rac{ au t}{2\pi}$ | $2\pi p_{ au}(\omega)$ | | $\left(1-\frac{2 t }{\tau}\right)p_{\tau}(t)$ | $\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$ | | $\frac{\tau}{2} \operatorname{sinc}^2 \frac{\tau t}{4\pi}$ | $2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$ | | $\cos(\omega_0 t + \theta)$ | $\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$ | | $\sin(\omega_0 t + \theta)$ | $j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$ | | $\sum_{n=-\infty}^{\infty} \delta(t - nT)$ | $\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\frac{2\pi}{T})$ | with $p_{\tau}(t) = u(t + \tau/2) - u(t - \tau/2)$ and $\operatorname{sinc}(\lambda) = \sin(\pi \lambda)/(\pi \lambda)$. ## Trigonometric identities $$\begin{split} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) = \cos(\theta) & \tan(-\theta) = -\tan(\theta) & \sin^2(\theta) + \cos^2(\theta) = 1 \\ \sin(2\theta) &= 2\sin(\theta)\cos(\theta) & \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{split}$$