# EEE2035F: Signals and Systems I

Class Test 2

20 April 2015

Name:

Student number:

### Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) The *step* response of a linear time-invariant system is given by

$$g(t) = [2 + 3e^{-4(t+1)}]u(t+1).$$

- (a) Plot g(t).
- (b) Find the impulse response of the system.
- (c) Is the system causal or non-causal? Why?

Note: the step response of a system is the output when the input is u(t).

2. (5 marks) Given x(t) and h(t) shown below, find the convolution y(t) = x(t) \* h(t) for all values of t.



3. (5 marks) Let x(t) be a real periodic function, with fundamental frequency  $\omega_0 = 4$  and with Fourier series in exponential form:

$$x(t) = \sum_{k=-\infty}^{\infty} \frac{j^k |k|}{1 + k^2} e^{jk4t}$$

- (a) Plot the magnitude and phase of the Fourier series coefficients over the range k=-4 to k=4.
- (b) Determine the Fourier series of the signal in trigonometric form.
- (c) How much power is contained in the second harmonic?

- 4. (5 marks) An LTI system has impulse response  $h(t) = e^{-t}u(t)$ .
  - (a) Use tables to find the Fourier transform  $H(\omega)$  of h(t).
  - (b) Use convolution to find the output y(t) when the input is  $x(t) = e^{j5t}$ . Show that this can be written as  $y(t) = H(5)e^{j5t}$ .
  - (c) Suppose the input to the system is the signal

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk5t}.$$

Write down an expression for the output y(t).

#### INFORMATION SHEET

#### Fourier transform properties

| Property                             | Transform Pair/Property                                                                                            |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Linearity                            | $ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$                                                            |
| Time shift                           | $x(t-c) \leftrightarrow X(\omega)e^{-j\omega c}$                                                                   |
| Time scaling                         | $x(at) \leftrightarrow \frac{1}{a}X(\frac{\omega}{a})  a > 0$                                                      |
| Time reversal                        | $x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$                                                          |
| Multiplication by power of $t$       | $t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega)$ $n = 1, 2, \dots$                                   |
| Frequency shift                      | $x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0)$ $\omega_0$ real                                         |
| Multiplication by $\cos(\omega_0 t)$ | $x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$                    |
| Differentiation in time domain       | $\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega)  n=1,2,\dots$                                          |
| Integration                          | $\int_{-\infty}^{t} x(\lambda)d\lambda \leftrightarrow \frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$        |
| Convolution in time domain           | $x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$                                                                   |
| Multiplication in time domain        | $x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega) * V(\omega)$                                                     |
| Parseval's theorem                   | $\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$ |
| Parseval's theorem (special case)    | $\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty}  X(\omega) ^{2} d\omega$              |
| Duality                              | $X(t) \leftrightarrow 2\pi x(-\omega)$                                                                             |

#### Common Fourier Transform Pairs

| $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$ | $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$                    |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $1  (-\infty < t < \infty)$                                                     | $2\pi\delta(\omega)$                                                           |
| -0.5 + u(t)                                                                     | $\frac{1}{j\omega}$                                                            |
| u(t)                                                                            | $\pi\delta(\omega) + \frac{1}{j\omega}$                                        |
| $\delta(t)$                                                                     | 1                                                                              |
| $\delta(t-c)$                                                                   | $e^{-j\omega c}$ (c any real number)                                           |
| $e^{-bt}u(t)$                                                                   | $\frac{1}{i\omega+b}$ $(b>0)$                                                  |
| $e^{j\omega_0 t}$                                                               | $2\pi\delta(\omega-\omega_0)$ ( $\omega_0$ any real number)                    |
| $p_{	au}(t)$                                                                    | $\tau \operatorname{sinc} \frac{\tau \omega}{2\pi}$                            |
| $\tau \operatorname{sinc} \frac{\tau t}{2\pi}$                                  | $2\pi p_{	au}(\omega)$                                                         |
| $\left(1 - \frac{2 t }{\tau}\right) p_{\tau}(t)$                                | $\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$            |
| $\frac{\tau}{2} \operatorname{sinc}^2 \frac{\tau t'}{4\pi}$                     | $2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$                |
| $\cos(\omega_0 t + \theta)$                                                     | $\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$  |
| $\sin(\omega_0 t + \theta)$                                                     | $j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$ |

## ${\bf Trigonometric\ identities}$

```
\begin{split} &\sin(-\theta) = -\sin(\theta) &\cos(-\theta) = \cos(\theta) &\tan(-\theta) = -\tan(\theta) \\ &\sin^2(\theta) + \cos^2(\theta) = 1 &\sin(2\theta) = 2\sin(\theta)\cos(\theta) \\ &\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ &\sin(\theta_1 + \theta_2) = \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) &\cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ &e^{j\theta} = \cos(\theta) + j\sin(\theta) \end{split}
```