EEE2035F: Signals and Systems I

Class Test 2

22 April 2013

Name:		
Student number:		
	Information	

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) Consider the two signals below:

The convolution v(t) = x(t) * y(t) is as follows:

Specify a, b, and c.

2. (5 marks) A signal x(t) with fundamental frequency $\omega_0=2\pi$ radians/second has the Fourier series coefficients shown below:

- (a) Is the signal real? Why?
- (b) Write a time domain expression for the signal.
- (c) What is the total power in the signal?

3. (5 marks) The signal

$$x(t) = 2\cos(2t + \pi/3) + \sin(3t)$$

has a Fourier series representation of the form

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}.$$

Specify ω_0 , and find and plot the magnitude and phase of the Fourier series coefficients as a function of the frequency ω .

- 4. (5 marks) Use the definition of the Fourier transform (that is, without using tables or properties) to compute the frequency domain representations of the following signals:
 - (a) $x_1(t) = \delta(t c)$.
 - (b) $x_2(t) = e^{at}u(-t)$, where a > 0.

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \leftrightarrow X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \leftrightarrow \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0t}\leftrightarrow X(\omega-\omega_0)$ ω_0 real
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t)\leftrightarrow \frac{1}{2\pi}X(\omega)*V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$
Duality	$X(t) \leftrightarrow 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{j\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ $(b>0)$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{ au}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2 \pi}$
$ au \operatorname{sinc} rac{ au t}{2\pi}$	$2\pi p_{ au}(\omega)$
$\left(1 - \frac{2 t }{\tau}\right) p_{\tau}(t)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\tau \omega}{4\pi} \right)$
$\frac{\tau}{2}$ sinc $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{ au}\right) p_{ au}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k \frac{2\pi}{T})$

Trigonometric identities

$$\begin{split} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) = \cos(\theta) & \tan(-\theta) = -\tan(\theta) & \sin^2(\theta) + \cos^2(\theta) = 1 \\ \sin(2\theta) &= 2\sin(\theta)\cos(\theta) & \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{split}$$