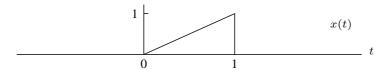
EEE2035F: Signals and Systems I


Class Test 1

11 March 2013

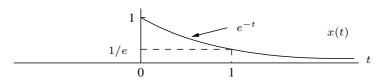
Name:		
Student number:		
	Information	
	Information	

- The test is closed-book.
- This test has *four* questions, totaling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) Suppose x(t) is as shown below:

Sketch the following signals:

(a)
$$y_1(t) = x(2-t)$$


(b)
$$y_2(t) = x(t-2)$$

(c)
$$y_3(t) = x(t/2 - 1)$$

(d)
$$y_4(t) = x(t)\delta(t - 1/2)$$

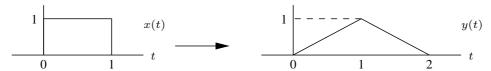
(e)
$$y_5(t) = -2x(-t)$$
.

2. (5 marks) The signal $x(t) = e^{-t}u(t)$ is shown below:

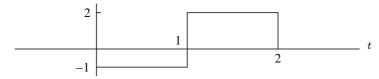
Find and sketch the following:

- (a) $y(t) = \frac{d}{dt}x(t)$ (the generalised derivative)
- (b) $z(t) = \int_{-\infty}^t x(\lambda) d\lambda$.

In each case write down a mathematical expression for your answer.


3. (5 marks) The input x(t) and output y(t) from a system satisfies the relationship

$$y(t) = x(2t).$$


The signal u(t) is the standard unit step.

- (a) Find and sketch the output $y_1(t)$ when the input is $x_1(t) = u(t)$
- (b) Find and sketch the output $y_2(t)$ when the input is $x_2(t)=u(t-1)$
- (c) Based on your answers, does the system appear to be time invariant? Why?

4. (5 marks) For a given linear and time invariant system it is known that the input x(t) and output y(t) below is a valid input-output pair:

Use this information to find the response to the input

