Chapter 5
Frequency Domain Analysis
of Systems



CT, LTI Systems

e Consider the following CT LTI system:

X(t) 1 h(t)

- y(t)

o Assumption: the impulse response h(t) Is

absolutely integrable, i.e.,
j 'h(t) | dt < oo
R

(this has to do with system stability (ECE 352))



Response of a CT, LTI System to a
Sinusoidal Input

e \What’s the response y(t) of this system to
the Iinput signal

X(t) = Acos(w,t +6), teR ?

» We start by looking for the response y,(t) of
the same system to

X, (t) = Ae! @9 teR



Response of a CT, LTI System to a
Complex Exponential Input

e The output Is obtained through convolution
as
Yo (t) =h() %X, (t) = [h(r)x (t—7)d7 =
R
= j h(z) Aed (@) g -
R

— Aej(w0t+0) j‘h(z_)e—ja)ordz_ _

x.() R

=%, (0)[h(r)e ™ dz




The Freguency Response of a CT,
LTI System

* By defining H () is the frequency

B —jor response of the CT,
H (w) — _[ h(T)e dz LTI system = Fourier
R

transform of h(t)
It Is
yc (t) — H (a)O)Xc (t) —
= H(w,) A", teR

e Therefore, the response of the LTI system to a
complex exponential i1s another complex
exponential with the same frequency w,



Analyzing the Output Signal y,(t)

 Since H(w,) is in general a complex
guantity, we can write

Yo 0) = H (@) Ae ") =
=|H (a)o) | plagH (@) g l(wt+0) _

. A‘ H (a)o) ‘ej(a)ot+9+argH(a)0))

output signal’s
phase

output S|gnal
magnitude



Response of a CT, LTI System to a
Sinusoidal Input

o With Euler’s formulas we can express
X(t) = Acos(aw,t + &)
as

X(t) = R(x (1) = 7 (% () + x: (1))

and, by exploiting linearity, 1t Is

y(t) =Ry (1) =3 (Y. () + y: (1)) =
= A|H(w,) | cos(myt +6 +arg H(w,))



Response of a CT, LTI System to a
Sinusoidal Input — Cont’d

e Thus, the response to
X(t) = Acos(w,t + &)
IS
y(t) = Al H(w,) | cos(wst+0+argH (w,))
which iIs also a sinusoid with the same
frequency w, but with the amplitude scaled by

the factor| H (@, ) | and with the phase shifted
by amount arg H (@, )



DT, LTI Systems

o Consider the following DT, LTI system:

ul 1 h[n]

e The I/O relation is given by
yln]=h[n]=*X[n]

- y[n]



Response of a DT, LTI System to a
Complex Exponential Input

o |If the Input signal Is
x.[n]= Ael ™ nez

* Then the output signal is given by
yc[n] — H (wO)Xc[n] —

= H(w,)Ae/ @™ nez

where H () is the frequency
_ — jok response of the DT, LTI
H (o) = Z hikle . ®eR system = DT Fourier
KeZ transform (DTFT) of h[n]



Response of a DT, LTI System to a
Sinusoidal Input

e |If the Input signal Is
X[n] = Acos(ow,n+6) neZ
* Then the output signal Is given by

y[n]= A|H (w,) | cos(wyn+8+argH (w,))



Example: Response of a CT, LTI
System to Sinusoidal Inputs

e Suppose that the frequency response of a
CT, LTI system is defined by the following

Specs:
[H@)t & 1.5 0<w<?20,
H@)=q,
0o 0, w>20,
arg H (o)t 20 @
™ o argH(w)=-60",Vo




Example: Response of a CT, LTI
System to Sinusoidal Inputs —
Cont’d

e |f the input to the system Is
X(t) =2c0s(10t +90°) + 5cos(25t +120°)
e Then the output Is

y(t) =2|H(10) | cos(10t +90° + arg H (10)) +
+5|H(25) | cos(25t +120° +arg H (25)) =
= 3cos(10t +30°)



Example: Freqguency Analysis of an
RC Circuit

* Consider the RC circuit shown In figure

ic(1)

x(t) = v() Ci== ) =val

Figure 5.1 RC circuit in Example 5.2.



Example: Freqguency Analysis of an
RC Circuit — Cont’d

e From ENGR 203, we know that:

1. The complex impedance of the capacitor Is
equal to 1/sC whereS =0+ jo

2. Ifthe input voltage is X_(t) = €%, then the
output signal iIs given by
V. (t) = 1/sC ot _ 1/RC oS
R+1/sC s+1/RC




Example: Freqguency Analysis of an
RC Circuit — Cont’d

o Setting S = Jw,, itis

| 1/RC -
% (1) =€ and Y (1) Jo, +1/RC

whence we can write
yc (t) — H (a)O)XC (t)

1/RC
Jo+1/RC

where

H () =



Example: Frequency Analysis of an
RC Circuit — Cont’d

]. 1 I 1
1/RC
Hiodk :
@ Tosf o +(1/RC)" |
0 i ] I ]
0 1000 2000 3000 4000 5000
Frequency (rad/sec)
0 T 1 .
20t arg H (w) = —arctan (@RC) -
& S ‘
%ﬁﬂ i
GOSRRRIRRERY | CIAOHD O PR O A ey
é o . -71.6 ;
0 1000 2000 3000 4000 5000
Frequency (rad/sec) -

1/RC =1000



Example: Freqguency Analysis of an
RC Circuit — Cont’d

* The knowledge of the frequency response
H (w) allows us to compute the response
y(t) of the system to any sinusoidal input
signal

X(t) = Acos(w,t + &)
since

y(t) = Al H(w,) | cos(wpt+0+argH (w,))



Example: Freqguency Analysis of an
RC Circuit — Cont’d

« Suppose that1/ RC =1000 and that
X(t) = cos(100t) + cos(3000t)
e Then, the output signal Is

y(t) =[ H(100) | cos(100t +arg H (100)) +
+| H(3000) | cos(3000t + arg H (3000)) =
=0.9950c0s(100t —5.71") + 0.3162 cos(3000t — 71.56°)



Example: Freqguency Analysis of an
RC Circuit — Cont’d
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Figure 5.3 (a) Input and (b) output of RC circuit when 1/RC = 1000.



Example: Freqguency Analysis of an
RC Circuit — Cont’d

e Suppose now that
X(t) = cos(100t) + cos(50,000t)

*Then, the output signal Is

y(t) =[ H(100) | cos(100t +arg H (100)) +
+| H (50,000) | cos(50,000t +arg H (50,000)) =
=0.9950c0s(100t —5.71") + 0.0200 cos(50, 000t —88.85")



Example: Freqguency Analysis of an
RC Circuit — Cont’d
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The RC circuit behaves as a lowpass filter, by letting low-
frequency sinusoidal signals pass with little attenuation and by
significantly attenuating high-frequency sinusoidal signals



Response of a CT, LTI System to
Periodic Inputs

e Suppose that the input to the CT, LTI
system Is a periodic signal x(t) having
period T

 This signal can be represented through its
Fourier series as

X(t) = Z crel ' teR

k=—00
where ty+T

]_ .
== | x@)e *dt, keZ
k Tt{ (t)



Response of a CT, LTI System to
Periodic Inputs — Cont’d

* By exploiting the previous results and the
linearity of the system, the output of the
system Is

y(t) = Z H (ko )cie ™™

e J (kcoot+arg(ck )+arg H (ka)O ))

=i|H(kaj9>||ck

lc¢ |

_ i ‘Cﬁl |ej(ka)0t+arg(c Z Cyejka)o'[ t = R

K=—00

y
arg C,




Example: Response of an RC Circuit
to a Rectangular Pulse Train

e Consider the RC circuit

(1)

M

R
- -

x(t) = v(?) € == y()=a

Figure 5.1 RC circuit in Example 5.2.

with input x(t) = rect(t —2n)

neZ



Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

x(1) 4
Aty =" rect{t = 2n)

neZ

e s (repeats)

—2S D) —=0.5 OF S 155 2.5

e \We have found i1ts Fourier series to be
X(t) = chfe’k”t, teR

keZ

with 1 . k
C, = —smc(—j
2 2



Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d
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Figure 5.5 Amplitude spectrum of periodic input in Example 5.4.



Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

* The frequency response of the RC circuit
was found to be

H () = 1/RC

Jo+1/RC

e Thus, the Fourier series of the output signal
IS given by

y(t) = 2 H(kap)cge™™ = > cre
K=—00 K=—0o0




Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d
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Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’'d
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Figure 5.6 Amplitude spectrum of output when (a) 1/RC = 1; (b) I/RC = 10; (c)
1/RC = 100.



Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d
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Figure 5.7 Plot of output when (a) 1/RC = 1;(b) I/RC = 10;(c) I/RC = 100.



Response of a CT, LTI System to

Aperiodic Inputs

e Consider the following CT, LTI system

X(t) 1 h(t)

 |Its I/O relation Is given by

y(t) = h(t) = x(t)

- y(t)

which, In the frequency domain, becomes

Y (@) =H (o)X (o)



Response of a CT, LTI System to
Aperiodic Inputs — Cont’'d

* FromY (w) = H(w) X (w), the magnitude
spectrum of the output signal y(t) Is given

by
Y (@) |5 H(o) || X(@) ]

and Its phase spectrum Is given by

argY (w) =arg H(w) +arg X (w)



Example: Response of an RC Circuit
to a Rectangular Pulse

e Consider the RC circuit

ic(r)

M

R
- -

x(t) = v(?) € == y()=a

Figure 5.1 RC circuit in Example 5.2.

with input X(t) = rect(t)



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

x(t) &
1

X(t) = rect(t)

;
=0.5 0 0.5 Figure 5.8 Input pulse in Example 5.5.

e The Fourier transform of x(t) Is

! 0,
X(w) = smc(zj



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’'d
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Figure 5.9 (a) Amplitude and (b) phase spectra of the input pulse.



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.10 (a) Amplitude and (b) phase spectra of y(7) when 1/RC = 1.



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’'d
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Figure 5.11 (a) Amplitude and (b) phase spectra of y() when 1/RC = 10.



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’'d

* The response of the system in the time
domain can be found by computing the
convolution

y(t) = h(t) = x(t)
where

h(t) = (1/ RC)e MRy (t)
X(t) = rect(t)



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’'d
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Figure 5.12 Output response when (a) 1/RC = 1 and (b) 1/RC = 10.
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Figure 515 (a) Amplitude and (b) phase spectra of output in Example 5.6.
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Example: Attenuation of High-
Freguency Components
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Figure 5.16 (a) Input and (b) resulting output in Example 5.6.



Filtering Signals

e The response of a CT, LTI system with
frequency response H (@) to a sinusoidal

signal
. X(t) = Acos(w,t + &)
y(t) = Al H(w,) | cos(wet+0+argH (w,))

. if|H(w,) |=0o0r|H(w,)|~0
theny(t) =0 or y(t) =0, VteR



Four Basic Types of Filters

lowpass t|H(w)| highpass {| H ()]
(| passband 1
stopband stopband ;
~B 0 "B —B Ot B g
() cutoff frequency (b)
bandpass {|H (o) ] bandstop {| H(®)|
Ft =t L —
87 > (1)
—B, —B, 0 By B —B, —B, 0l =B = b

(c) (d)

Figure 5.17 Magnitude functions of ideal filters: (a) lowpass; (b) highpass; (c) band-
pass; (d) bandstop.

(many more details about filter design in ECE 464/564 and ECE 567)



Phase Function

 Filters are usually designed based on
specifications on the magnitude response | H () |

e The phase response arg H (@) has to be taken
Into account too In order to prevent signal
distortion as the signal goes through the
system

o |If the filter has linear phase In its
passband(s), then there iIs no distortion



Linear-Phase Filters

o A filter H(w) is said to have linear phase if

arg H(w) = —wt,,

V w € passband

o If @, Isin passband of a linear phase filter,

Its response to

X(t) = Acos(w,t)

IS
y(t) = A
= A

H (w,)
H (w,)

COS(w,t —w,t,) =
cos(w, (t—t,))



Ideal Linear-Phase Lowpass

e The frequency response of an ideal lowpass
filter is defined by

e % @ e[-B,B]
H(w) =+
kO’ W & [_81 B]
lorarg H (@)
Bty +
=i 0 B 5
S L i




Ideal Linear-Phase Lowpass — Cont’d

* H(w)can be written as

H () = rect(ﬂjem
2B

whose inverse Fourier transform is

h(t) :Esinc(E(t—td)j

7T



Ideal Linear-Phase Lowpass — Cont’d

i B svodeiB
STl o faonis | h(t) = ;smc(;(t —td)j
e Al e
DRSS . /\_/ S
e g

Figure 5.20 Impulse response of ideal linear-phase lowpass filter.

Notice: the filter is noncausal since h(t) is not zero for t <0



Ildeal Sampling

e Consider the ideal sampler:

X(t)

(.

telR

T

- X[N] = X() | iy =X(NT)

nezz

* |t Is convenient to express the sampled signal
x(nT)as x(t) p(t) where

p(t) => 5(t—nT)



Ideal Sampling — Cont’d

e Thus, the sampled waveform x(t)

X(E)p(t) =D x(t)st—nT)=> x(n

neZ neZ

0(t) is

)o(t—nT)

« X(t) p(t)is an impulse train whose weights
(areas) are the sample values X(nT) of the

original signal x(t)



Ideal Sampling — Cont’d

 Since p(t) Is periodic with period T, It can
be represented by Its Fourier series

. 2 sampling
Kot
p(t)= > c.e’™™, w. =—— frequency
é ‘ S T (rad/sec)
1 T/2 |
where C, =— J p(t)e **'dt, keZ
T -T/2
1 T/2

= 5(t)e kot =
T -T/2 T



Ideal Sampling — Cont’d

e Therefore 1

p(t) = ) —e’
keZT
and
X0 = xOpM) = 3 2 x(t)e’ =13 x(t)eke
keZT T keZ

whose Fourier transform is

X,(@) == ¥ X (@-ka,)

keZ



Ideal Sampling — Cont’d
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Figure 5.24 Fourier transform of (a) x(¢) and (b) x,(¢) = x(£)p(¢).



Sighal Reconstruction

o Suppose that the signal x(t) 1s bandlimited
with bandwidth B, i.e., | X (@) |=0, for |w |> B

» Then, if o, > 2B, the replicas of X (w) iIn

X.(@) == ¥ X (@-ka,)

keZ
do not overlap and X (@) can be recovered by

applying an ideal lowpass filter to X (w)
(interpolation filter)



Interpolation Filter for Signal
Reconstruction

) Cpat aigh apiop B
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Figure 5.25 Frequency response function of ideal lowpass filter with bandwidth B.



Interpolation Formula

* The impulse response h(t) of the interpolation
filter Is

h(t) =Esinc(5tj

/4 /4

and the output y(t) of the interpolation filter is

given by
y(t) = h(t) * X (t)



Interpolation Formula — Cont’d

e But

X, (t) = x(t) p(t) = Zx(nT)a(t nT)

whence

y(t) = h(t) = x_(t) = Z x(nNT)h(t—nT) =

= EZx(nT)smc( (t— nT)j

T neZ
e Moreover, y(t) = X(t)



Shannon’s Sampling Theorem

o A CT bandlimited signal x(t) with frequencies
no higher than B can be reconstructed from its
samples X[n] = xX(nT) if the samples are taken
at a rate

o, =27lT >2B

* The reconstruction of x(t) from its samples
X[n] = x(nT) is provided by the interpolation
formula

X(t) = EZ x(nT)sinc(E(t - nT)j

T neZ



Nyquist Rate

e The minimum sampling ratew, =27 /T = 2B
Is called the Nyquist rate

e Question: Why do CD’s adopt a sampling
rate of 44.1 kHz?

o Answer: Since the highest frequency
perceived by humans iIs about 20 kHz, 44.1
KHz 1s slightly more than twice this upper
pound




Aliasing

1X()| JT X (a))
; \1' =~ @  Figure 527 Amplitude spectrum of a
—B 0 B time-limited signal.
K (w)=— Z X(w—-Kko,) xwl}
i Transposed high-frequency components
keZ
/W SRR i
—4B —3%; —2B —/5) 0 B 2B 3B 4B

Figure 5.28 Amplitude spectrum of a sampled signal.



Aliasing —Cont’d

e Because of aliasing, it 1s not possible to
reconstruct x(t) exactly by lowpass filtering
the sampled signal x_ (t) = x(t) p(t)

 Aliasing results in a distorted version of the
original signal x(t)

* |t can be eliminated (theoretically) by
lowpass filtering x(t) before sampling it so
that | X (w)|=0for|w|> B



