Chapter 5
Frequency Domain Analysis
of Systems




CT, LTI Systems

 Consider the following CT LTI system:

X(t) ——

h(t)

— y(t)

» Assumption: the impulse response h(t) is
absolutely integrable, i.e.,

j|h(t)|dt<oo

R

(this has to do with system stability (ECE 352))




Response of a CT, LTI System to a
Sinusoidal Input

» What’s the response y(t) of this system to
the input signal

X(t) = Acos(a,t +6), te R ?
» We start by looking for the response y (t) of
the same system to
x.(t) = Ae) @) teR




Response of a CT, LTI System to a
Complex Exponential Input

» The output is obtained through convolution
as
Yo (1) = h(t) * X, (t) = [h(z)x, (t-7)dz =
R
= [n(z) Ae! =) d 7 =
R

= Aej(a)ot-i-H) Ih(z.)e—jwordz_ —
xt R

= %, (1)[h(r)e " dr




The Frequency Response of a CT,
LTI System

* By defining H (o) is the frequency

_ - jor response of the CT,
H(w) = jh(T)e dz LTI system = Fourier
R

transform of h(t)
itis
Y (t) =H (a)o)xc (t) -
= H(w,)Ae' ™ teR

» Therefore, the response of the LTI system to a
complex exponential is another complex
exponential with the same frequency w,




Analyzing the Output Signal y,(t)

* Since H (@, ) is in general a complex
guantity, we can write

Ye(t) = H (@) A =
=|H (a)o) | plargH(@) pgi(eft+0) _

= A|H (w,) et T2
‘output signal’s output signal’s
P 0 phase

magnitude




Response of a CT, LTI System to a
Sinusoidal Input

» With Euler’s formulas we can express
X(t) = Acos(aw,t + 0)
as

X(t) = R(x (1)) = 3 (. (1) + x: (1))

and, by exploiting linearity, it is

y(t) =R(y. (1)) =3 (y. O +y: () =
= A|H(@,) | cos(myt+6+argH(w,))




Response of a CT, LTI System to a
Sinusoidal Input — Cont’d

* Thus, the response to
X(t) = Acos(w,t +6)
IS
y(t) = Al H(®,) | cos(myt +0 +arg H(w,))
which is also a sinusoid with the same

frequency o, but with the amplitude scaled by

the factor| H (w,) | and with the phase shifted
by amount arg H (@, )




DT, LTI Systems

 Consider the following DT, LTI system:

x[n] y[n]

h[n]

* The I/O relation is given by
y[n]=h[n]=x[n]




Response of a DT, LTI System to a
Complex Exponential Input

o If the input signal is
x.[n]= Ae'»™) neZz
» Then the output signal is given by
yc[n] =H (G)O)XC[n] =

= H(w,) A’ nez,

where H (@) is the frequency
_ — jowk response of the DT, LTI
H ((0) = Z h[k]e , welR system = DT Fourier
keZ transform (DTFT) of h[n]
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Response of a DT, LTI System to a
Sinusoidal Input

o If the input signal is
X[n] = Acos(w,n+6) neZ
» Then the output signal is given by

y[n]= A|H(w,)|cos(wyn+6+arg H (w,))
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Example: Response of a CT, LTI
System to Sinusoidal Inputs

» Suppose that the frequency response of a
CT, LTI system is defined by the following

specs:
IH@)I] 45 1.5, 05w <20,
|H(0) =
0 0, w>?20,
argH (o) 20 @
60 o argH(w)=-60",Vo
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Example: Response of a CT, LTI
System to Sinusoidal Inputs —
Cont’d

* If the input to the system is
X(t) = 2cos(10t +90°) + 5cos(25t +120°)
* Then the output is
y(t)=2|H(10) | cos(10t +90° +arg H (10)) +
+5| H(25) | cos(25t +120° +arg H(25)) =
= 3c0s(10t +30°)
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Example: Frequency Analysis of an

RC Circuit

 Consider the RC circuit shown in figure

ic(n)

,Jr
x(H) = v (

+
¢ == (0 =Ws0)

Figure 5.1 RC circuit in Example 5.2.
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Example: Frequency Analysis of an
RC Circuit — Cont’'d

From ENGR 203, we know that:
1. The complex impedance of the capacitor is
equal to 1/SC whereS =0+ jw
2. If the input voltage is X, (t) = &, then the
output signal is given by

1/sC , 1/IRC
Yo(t) = = e = = ¢
R+1/sC  s+1/RC
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Example: Frequency Analysis of an
RC Circuit — Cont’'d

* Setting S = ja,, itis

| 1/RC .
— ont t — ejwot
xO=e" and Yol) jo, +1/RC

whence we can write
Ye (t) =H (wo)xc (t)

H (@) = — 1/RC
Jo+1/RC

where
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Example: Frequency Analysis of an
RC Circuit — Cont’d

' ot R
H(w)|=
il Ja? +(L/RC)? |

(@ =Tos5t

0 1000 ?(Il)(] 30([]0 4060 5000
Frequency (rad/sec)
0 . . i
il arg H (w) = —arctan (wRC)
(b) g"m' 45 0 1
T 60}
! NG e
“ &Y ; ; : ;
0 1000 2000 3000 4000 5000

Frequency (rad/sec)

1/RC =1000
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Example: Frequency Analysis of an
RC Circuit — Cont’d

» The knowledge of the frequency response
H (@) allows us to compute the response
y(t) of the system to any sinusoidal input
signal

X(t) = Acos(w,t + 6)
since

y(t) = Al H(®,) | cos(myt+0+arg H(w,))

18



Example: Frequency Analysis of an
RC Circuit — Cont'd

 Suppose that1/RC =1000 and that
X(t) = cos(100t) + cos(3000t)
* Then, the output signal is

y(t) =[ H(100) | cos(100t + arg H (100)) +
+| H(3000) | cos(3000t + arg H (3000)) =
=0.9950c0s(100t —5.71") + 0.3162 cos(3000t — 71.56")
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Example: Frequency Analysis of an

RC Circuit — Cont’d
XOT il

@ =0

Time (sec)

-0 " ) L
-0.1 -0.05 0 0.05 0.1
Time (sec)

Figure 5.3 (a) Input and (b) output of RC circuit when 1/RC = 1000,
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Example: Frequency Analysis of an
RC Circuit — Cont’'d

» Suppose now that
X(t) = cos(100t) + cos(50, 000t)
*Then, the output signal is
y(t) =[ H(100) | cos(100t + arg H (100)) +
+| H(50,000) | cos(50, 000t + arg H (50,000)) =
= 0.9950c0s(100t —5.71°) + 0.0200 cos(50, 000t — 88.85°)
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Example: Frequency Analysis of an
RC Circuit — Cont’d

AX@® il L y@®

2 I L I . L I L 145 I L L . . . . . .
006 0p4 0HO03 D02 001 a 001 002 003 004 005 005 004 003 002 001 a 001 002 003 004 005
Time (sec) Time {sec)

The RC circuit behaves as a lowpass filter, by letting low-
frequency sinusoidal signals pass with little attenuation and by
significantly attenuating high-frequency sinusoidal signals
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Response of a CT, LTI System to
Periodic Inputs

» Suppose that the input to the CT, LTI
system is a periodic signal x(t) having
period T

» This signal can be represented through its
Fourier series as

X(t)= > cie’', teR
k=—o0
where to+T

c;:? j x(t)e ktdt, keZ
fy
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Response of a CT, LTI System to
Periodic Inputs — Cont’d

» By exploiting the previous results and the
linearity of the system, the output of the
system is

y(t)= > H(key,)cie™

k=—o0

c j(ko, t+arg(c )+arg H (ko ))
_ZIH(kwo)IICkle T

arg c,

led|

_ Z |Ck |ej(kwot+arg(cky)) Z Cgejkwot
k=—0 =

telR
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Example: Response of an RC Circuit
to a Rectangular Pulse Train

e Consider the RC circuit

(1)

AW

R
+

+
£(0) = () () C == ¥ = ve®

Figure 5.1 RC circuit in Example 5.2.

with input x(t) =) rect(t —2n)

nezZ




Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

‘:‘ X(t) = rect(t—2n) I

‘ nez

|
e (repeits]

-25 -15 -0.5 |0 05 15 25

» We have found its Fourier series to be
X(t) =Y ce’, teR

keZ

with 1 (k
C, = —smc(—j
2 2
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Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

 Magnitude spectrum | ¢, |of input signal x(t)

0.4
03
g
=02
0.1 I I
0 etet 0,0 0 0 ¢ i T..T T_.T Vet ot ot 0 0 0,0
-80 -60 -40 -20 0 20 40 60 80

w = ke (rad/sec)

Figure 5.5 Amplitude spectrum of periodic input in Example 5.4.
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Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

» The frequency response of the RC circuit
was found to be

H (o) = 1/RC

Jo+1/RC

» Thus, the Fourier series of the output signal
IS given by

y(®) = > H(kap)cge ™ = > clel
k=—o0

k=—c0
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Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

u}
| H ()] (dB)
-10
20 1/RC =100
@SJ
filter more g0 1/RC =10
selective
50
-0 1/ RC :1

70 H H H H H H H H ]
-000 -800 -800 400 200 0 200 400 €00 810 1000
o [radsec)

@
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Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

y v
| Ck | 04 1
1/RC =1 [ ]
g IIT st
i) 60 40 N [ 1] 40 () L
y
| Ck 0.4
=03 1 flt
P il 1 liter more
1/RC =10 i vl l { L selective
-8 60 40 20 0 0 40 60 80
ketety, (radfsec)
e ..
1/RC =100 af ]H]
P PPN ) 10,01 T T 10,100, 0.0.0.0
-0 60 40 -20 0 20 0 () 80

kg (rad/sec)

Figure 5.6 Amplitude spectrum of output when (a) VRC = 1; (b) LRC = 10 (c)
URC = 100,
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Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

y(t) .
1/RC =1

af

@ Tos \/\/\/\

05 9 2
-3 2 -1 o 1 2

y(t).
1/RC=10 w

-0.5

y(t) [ | B
1/RC =100 = ° ' ‘ ‘ i

0.5 n .

-3 2 1 o 1 2

Figure 5.7 Plot of output when (1) URC = 1; (b) URC = 10 (c) LRC = 100,

filter more
selective
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Response of a CT, LTI System to
Aperiodic Inputs

 Consider the following CT, LTI system

X(t) ——  ht)

— y(t)

* Its I/O relation is given by

y(t) = h(t) = x(t)
which, in the frequency domain, becomes

Y(@)=H(o)X (o)
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Response of a CT, LTI System to
Aperiodic Inputs — Cont'd

* FromY (@) = H (@) X (w), the magnitude
spectrum of the output signal y(t) is given

by
|Y (@) |5 H(®) || X (@)

and its phase spectrum is given by
argY (w) =argH (w) +arg X (o)
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Example: Response of an RC Circuit
to a Rectangular Pulse

e Consider the RC circuit

(1)

+
x(1) = w1 ()

AW

R

+
C == ¥ =vc®

with input

Figure 5.1 RC circuit in Example 5.2.

X(t) = rect(t)
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

x(r)

X(t) = rect(t)

r

—0.5

0 0.5 Figure 5.8 Input pulse in Example 5.5.

» The Fourier transform of x(t) is

X () :sinc(zﬂj

T
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

1 —
| X() |
(@) =05r
0 h L L L A AT T
-40 -30 -20 -10 1] 10 20 30 40
Frequency (rad/sec)
arg X (o) Fibid
200 T - T T T T T
§ 150 4
oy
® 2100} -
<
il
0150 |- .
<
0 L 1 1 . | 1y 1
-40 =30 -20 -10 i} 10 20 30 40

Frequency (rad/sec)

Figure 5.9 (a) Amplitude and (b) phase spectra of the input pulse,
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

1/RC =1 ,
Y ()|

(@) =035
0 .J . L I .1
-40 -30 -20 -10 1] 10 20 30 40

Frequency (rad/fsec)

(b)

Angle(¥) degrees

20 30 40

-40 -30 =20 -10 0 10
Frequency (radfsec)

Figure 510 (a) Amplitude and (b) phase spectra of y(r) when 1/RC = 1.
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

1/RC =10 '
Y (@)]
@@ =os|
0 L A f
-40 -30 =20 -10 0 10 20 30 40
Frequency (radfsec)
argY (o
oY ()
w 100 |
£
(b) «D%D ]
S
- 100
=
-
'Ew L L ' 1 L Il L
-40 -30 -20 -10 0 10 20 30 40

Frequency (rad/sec)

Figure 511 {a) Amplitude and (b} phase spectra of y(r) when 1/RC = 10.
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

» The response of the system in the time
domain can be found by computing the
convolution

y(t) = h(t) = x(t)
where
h(t) = (1/ RC)e " y(t)
X(t) = rect(t)
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

y(t) R e I /RC
@ = -
05 N 'y
n.| 0 Il é E 4 ] 1
Time (sec) filter more
L5 : : - - - selective
y(t) 1LRC =10
® €
0.5 ﬂ
% 0 | ) 3 3 s
Time (sec)

Figure 512 Oulput response when (a) 1/RC = 1 and (b) /RC = 10.
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Example: Attenuation of High-
Frequency Components

w X

(@) * &= = =

=
£
£ W
Trnqucncy iradie
" phan
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Example: Attenuation of High-
Frequency Components

10
(t) |
@ £
0
.5 L L s
0 0.5 1 1:5 2
Time (sec)
( )][] T T
ir 4
® =
0
5 . . .
0 0.5 1 1.5
Time (sec)

Figure 5,16 (a) Input and (b) resulting output in Example 5.6,
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Filtering Signals

* The response of a CT, LTI system with
frequency response H (@) to a sinusoidal

signal
i X(t) = Acos(aw,t + 6)
y(t) = Al H(®,) | cos(myt+0+arg H(w,))

. if|H(w,)|=0o0r|H(w,)|=0
theny(t)=0or y(t)=0, VteR

43



Four Basic Types of Filters

lowpass }|H ()] highpass t|H ()|
| | passband 1
stopband stopband
-B 0 B\ =B 0 B
@ cutoff frequency (b)
bandpass {|H ()| bandstop {| H ()|
il 1
—B, —B, o BB A -B, -B g B B, 1

(c) (d)

Figure 5.17 Magnitude functions of ideal filters: (a) lowpass; (b) highpass; (c) band-
pass; (d) bandstop.

(many more details about filter design in ECE 464/564 and ECE 567)




Phase Function

o Filters are usually designed based on
specifications on the magnitude response| H (@) |

e The phase response arg H () has to be taken
into account too in order to prevent signal
distortion as the signal goes through the
system

o If the filter has linear phase in its
passband(s), then there is no distortion
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Linear-Phase Filters

« A filter H(w) is said to have linear phase if
argH (w) =-wt;, Y € passhand

* If w, isin passband of a linear phase filter,
its response to

X(t) = Acos(aw,t)
IS
y(t) = Al H(e,) | cos(a,t — axty) =
= Al H(®,) | cos(w,(t—14))
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Ideal Linear-Phase Lowpass

» The frequency response of an ideal lowpass

filter is defined by
e »e[-B,B]

H (@) =
0, w ¢[-B, B]
fwrarg H (w)
B, +
3 0 B w
=iy Slope = =1, Figure 5.19 Phase function of ideal low-

pass filter defined by (5.48).
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Ideal Linear-Phase Lowpass — Cont’d

* H(w)can be written as

H (w) = rect (ﬁj e 1t
2B

whose inverse Fourier transform is

h(t) :gsinc(g(t—td)j
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Ideal Linear-Phase Lowpass — Cont’d

0] B B
i s ol h(t)=;smc(;(t—td)j
4 L /\ | AN, ,—.\4"' .
! N lo \/\ i /\/ ~_"
1 r“ﬁ% Qﬁ-%

Figure 5.20 Tmpulse response of ideal linear-phase lowpass filter.

Notice: the filter is noncausal since h(t) is not zero for t < 0
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Ideal Sampling

 Consider the ideal sampler:

X(t)

g

telR

T

X[n] = X(t) |,y =X(NT)
nNeZ

o It is convenient to express the sampled signal
x(nT)as X(t) p(t) where

p(t) =) &(t-nT)
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Ideal Sampling — Cont’d

 Thus, the sampled waveform x(t) p(t) is

X()p(t) =D x(t)s(t—nT)=> x(nT)5(t-nT)

nez nez
 X(t) p(t)is an impulse train whose weights
(areas) are the sample values x(nT) of the
original signal x(t)
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Ideal Sampling — Cont’d

 Since p(t) is periodic with period T, it can
be represented by its Fourier series

. 27 sampling

f)=> cC ejkwst, @. =— frequenc

p() é ‘ ; T (rag/sec)y

1 T/2 _
where G, = j p(t)e *idt, keZ
~T/2
T/2
:% j 5(t)e‘jk“’3tdt:_|_1

-T/2
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Ideal Sampling — Cont’d

e Therefore

p(t)= Y e
keZ T
and

%) =x®)pM) = Y Tx@e* = 13 x(pek!
keZT T keZ,
whose Fourier transform is
X,(@) =23 X (@Ko,

keZ
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Ideal Sampling — Cont’d

X{w) ; X (a))

o
= B

{a}

oy X(@)== ZX(a) kao,)

kez

VA /\J\/\/\ ANTIRE

o, = B \r / \ —2u, / —w, o B \ :u. / \ Zang / \ ﬁa‘v. Jow, + B

o, = B =20, + 8 —w o+ 8 20,8 2o, + 8B 3w, — B

Figure 5.24 Fourier transform of (a) x(r) and (b} x,{r) = x{)p(r).




Signal Reconstruction

 Suppose that the signal x(t) is bandlimited
with bandwidth B, i.e., | X (@) |= 0, for |@ [> B

» Then, if w, > 2B, the replicas of X (@) in

X,(@) == X (@-ka)

keZ
do not overlap and X (@) can be recovered by
applying an ideal lowpass filter to X, (®)
(interpolation filter)
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Interpolation Filter for Signal

Reconstruction
@R 2 T, oe[-B,B]
H(w) =
0, wg[-B,B]
T
—B 0 B G

Figure 5.25 Frequency response function of ideal lowpass filter with bandwidth B.
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Interpolation Formula

» The impulse response h(t) of the interpolation
filter is

h(t) = Esinc(Etj
T T
and the output y(t) of the interpolation filter is

given by
y(t) = h(t) = x,(t)
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Interpolation Formula — Cont’d

* But

X, (t) = Xx(t) p(t) = D_ x(nT)S(t—nT)

whence
y(£) =h(t) *x,(t) =D x(nT)h(t-nT) =

=EZX(nT)sinc(E(t - nT)j
T

T nezZ

 Moreover, y(t) = x(t)

58



Shannon’s Sampling Theorem

» A CT bandlimited signal x(t) with frequencies
no higher than B can be reconstructed from its
samples x[n] = x(nT) if the samples are taken
at a rate

o, =2rlT >2B

» The reconstruction of x(t) from its samples
X[n] = x(nT) is provided by the interpolation
formula

X(t) = EZ x(nT)sinc(E(t — nT)j
T

T nez
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Nyquist Rate

« The minimum sampling rate w, =27z /T =2B
is called the Nyquist rate

 Question: Why do CD’s adopt a sampling
rate of 44.1 kHz?

» Answer: Since the highest frequency
perceived by humans is about 20 kHz, 44.1
kHz is slightly more than twice this upper
bound
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[X(e)]

Aliasing

X(w)

U T =@ Figure 5,27 Amplitude spectrum of a
4 | u £ time-limited signal.
(o) = —Z X(o—-Kay) wywl
1k kez Transposed high-frequency components
o
—4B =32 —2B -B 0 B 2B 3B 4B

Figure 5.28 Amplitude spectrum of a sampled signal.
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Aliasing —Cont’d

» Because of aliasing, it is not possible to
reconstruct x(t) exactly by lowpass filtering
the sampled signal x, (t) = x(t) p(t)

 Aliasing results in a distorted version of the
original signal x(t)

* It can be eliminated (theoretically) by
lowpass filtering x(t) before sampling it so
that | X (w)|=0for|ew|> B
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