Chapter 5
Frequency Domain Analysis
of Systems

CT, LTI Systems

* Consider the following CT LTI system:

x(t) h(t) —— y(0)

 Assumption: the impulse response h(t) is
absolutely integrable, i.e.,

[Ih(t) [ dt <o

(this has to do with system stability (ECE 352))

Response of a CT, LTI System to a
Sinusoidal Input

» What’s the response y(t) of this system to
the input signal

X(t) = Acos(w,t +0), te R ?

* We start by looking for the response y,(t) of
the same system to

X (t) = Ae/ @) teR

Response of a CT, LTI System to a
Complex Exponential Input

 The output is obtained through convolution

as
Yo () = () * %, (t) = [h(z)x,(t—)d7 =

= [n(x)pel 7 =

R
— J(eot+0) —ioetd - —
= Ae j h(r)e ' dr =

X (t) R

=x, (O] h(z)e " dr

The Frequency Response of a CT,
LTI System

* By defining H (o) is the frequency
_ - jor response of the CT,
H(w) = J-h(‘[)e dz LTI system = Fourier
R transform of h(t)

itis
yc (t) = H (a)o)xc (t) =
=H(w))Ae' ") teR
* Therefore, the response of the LTI system to a

complex exponential is another complex
exponential with the same frequency w,

Analyzing the Output Signal y.(t)

* Since H (@,) is in general a complex
quantity, we can write

Ye() = H (w5) A7 =
=|H (a)o) | alagH (@) pqi(@t+0) _

— Al H (wo) |ej(w0t+z9+argH(a)o))
output signal’s

output signal’s phase

magnitude




Response of a CT, LTI System to a
Sinusoidal Input

» With Euler’s formulas we can express
X(t) = Acos(w,t +0)
as
X(t) = R(x (1) = 3 (X, (O +x: (1))
and, by exploiting linearity, it is
y(t) =R(y. (1) =z (Y. () +y: (1) =
= A|H (@,) | cos(myt + 80 +arg H(w,))

Response of a CT, LTI System to a
Sinusoidal Input — Cont’d

 Thus, the response to
X(t) = Acos(a,t +0)
is
y(t) = Al H(®,) | cos(ayt +6+argH (w,))
which is also a sinusoid with the same
frequency @, but with the amplitude scaled by

the factor| H (@, ) | and with the phase shifted
by amount arg H (@,)

DT, LTI Systems

* Consider the following DT, LTI system:

x[n]

h[n] —— vIn]

» The I/O relation is given by

y[n]=h[n]*x[n]

Response of a DT, LTI System to a
Complex Exponential Input

« If the input signal is
x [n]= Ae!@™) nez
 Then the output signal is given by
yc[n] = H (wo)xc[n] =
=H(w,)Ae' ™™ nez

H (@) is the frequency
_ — jok response of the DT, LTI
H (w) - z h[k]e , ®eR system = DT Fourier
keZ transform (DTFT) of h[n]

where

Response of a DT, LTI System to a
Sinusoidal Input

* If the input signal is
X[n]= Acos(w,n+8) neZ
 Then the output signal is given by

y[n]= Al H (@,) | cos(m,n+6 +arg H (w,))

arg H (@)

Specs:
IH@Il 45 15 0<w<?20,
H@,
0 , > 20,
20 2]
T; argH (w) =-60°,Vo

Example: Response of a CT, LTI
System to Sinusoidal Inputs

 Suppose that the frequency response of a
CT, LTI system is defined by the following




Example: Response of a CT, LTI
System to Sinusoidal Inputs —
Cont’d

* If the input to the system is
X(t) = 2cos(10t +90°) + 5cos(25t +120°)

 Then the output is
y(t) =2| H(10) | cos(10t + 90° + arg H (10)) +
+5|H(25) | cos(25t +120° +arg H (25)) =
=3cos(10t +30°)

Example: Frequency Analysis of an
RC Circuit

* Consider the RC circuit shown in figure

il1)

A 7
A )
; i
x(r) = vir) C == W) =pd)
\])

Figure 5.1 R circuit in Example 5.2,

Example: Frequency Analysis of an
RC Circuit — Cont’d

*  From ENGR 203, we know that:

1. The complex impedance of the capacitor is
equal to 1/sC wheres=o + jo

2. Ifthe input voltage is X, (t) = €%, then the
output signal is given by

1/sC 1/RC
y.(t) = e = e
R+1/sC s+1/RC

Example: Frequency Analysis of an
RC Circuit — Cont’d

* Setting s = ja,, itis
1/RC

— joot 1) = ejwot
X (t)=e and  Y(t) jop +1/RC

whence we can write
Ye (1) = H (@) (1)
1/RC
jo+1/RC

where
H(w) =

Example: Frequency Analysis of an
RC Circuit — Cont’d

1/RC

0707 |H(w)|:ﬁ
@ Eos o+ (1/RC)

036

o 1000 2000 3000 4000 000
Frequency (radfsec)

2 o

arg H (w) = —arctan(wRC)

£

b

Angle{H), degrees

-

[ 2000 000 000 5000

Frequency (radisec)
1/RC =1000

Example: Frequency Analysis of an
RC Circuit — Cont’d

 The knowledge of the frequency response
H (w) allows us to compute the response
y(t) of the system to any sinusoidal input
signal
X(t) = Acos(w,t + )
since

y(t) = Al H ()| cos( et +6+arg H(w,))




Example: Frequency Analysis of an
RC Circuit — Cont’d

* Suppose that 1/ RC =1000 and that
X(t) = cos(100t) + cos(3000t)
 Then, the output signal is
y(t) =| H(100) | cos(100t +arg H (100)) +
+| H(3000) | cos(3000t +arg H (3000)) =
=0.9950c0s(100t —5.71°) + 0.3162 cos(3000t — 71.56°)

Example: Frequency Analysis of an
RC Circuit — Cont’d
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Figare 53 (a) Isput and (b) cutput of BC circuit whes LRC = 1000

Example: Frequency Analysis of an
RC Circuit — Cont’d

 Suppose now that
X(t) = cos(100t) + cos(50,000t)
*Then, the output signal is
y(t) =| H(100) | cos(100t +arg H (100)) +
+| H (50,000} | cos(50,000t +arg H (50,000)) =
=0.9950c0s(100t —5.71°) + 0.0200 cos(50, 000t —88.85°

JX(®)

Example: Frequency Analysis of an
RC Circuit — Cont’d

Ty®

The RC circuit behaves as a lowpass filter, by letting low-
frequency sinusoidal signals pass with little attenuation and by
significantly attenuating high-frequency sinusoidal signals

Response of a CT, LTI System to
Periodic Inputs

* Suppose that the input to the CT, LTI
system is a periodic signal x(t) having
period T

* This signal can be represented through its
Fourier series as

xt)= Y cre’, teR
k=—00

where to+T

c;:? j x(t)e ktdt, kez
I

Response of a CT, LTI System to
Periodic Inputs — Cont’d

By exploiting the previous results and the
linearity of the system, the output of the
system is

Yyt = 3 H(kay)cieh

k=—0
_ Z | H (ka)o) ” C; | ej(kw0t+arg(clf)+argr/—l(k(ao)) —
Kog ™ argc,

4

_ i |G [l kentrantel) _ i ekt teR
k=—0

k=—c0




Example: Response of an RC Circuit
to a Rectangular Pulse Train

» Consider the RC circuit

_idn
-

; l My |

+
xit) = v |/ ) € == M) =vei)
e

|

with input x(t) =" rect(t—2n)

nez

Figure 5.1 RC circuit in Example 5.2.

Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

"X = > rect(t—2n)

o irepest]

* We have found its Fourier series to be
x(t)=> cre™, teR

keZ

with 1. k
Cr :—smc(—J
2 2

Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

* Magnitude spectrum | ¢; |of input signal x(t)
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Figure 5.8 Amplitude spectrum of periodic input in Example 5.4.

Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

 The frequency response of the RC circuit
was found to be

H (o) = 1/RC

jo+1/RC

« Thus, the Fourier series of the output signal
is given by

yt) = > H(kay)creh = 3 clel
k

= k=—0

Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

|H(a))|(dB)I: ; }/\

| 1/RC =100

2071

g®
filter more | &,

. 1/RC =10
selective

Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d
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Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

fo [
1/RC =1 . r_/‘\/’\_/\
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Response of a CT, LTI System to
Aperiodic Inputs

* Consider the following CT, LTI system

Xt) —— ht) - y@®

* Its I/O relation is given by
y(t) = h(t) = x(t)
which, in the frequency domain, becomes

Y () = H(w)X ()

Response of a CT, LTI System to
Aperiodic Inputs — Cont’d

* FromY (w) = H (@) X (@), the magnitude
spectrum of the output signal y(t) is given

by
[Y (@) H H (@) || X (o) |

and its phase spectrum is given by
argY (w) =arg H (w) +arg X (o)

Example: Response of an RC Circuit
to a Rectangular Pulse

» Consider the RC circuit

B
an = u‘r.n( ) C == Wi =vdn

W

with input  x(t) = rect(t)

Figure 5.1  RC circuit in Example 5.2

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

o

] X(t) = rect(t)

 The Fourier transform of x(t) is

. (4]
X (o) :smc(gj

Figure 58 Input pubsc in Example 5.5.

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure £9 (a) Amplitude and (b) phase spectra of the inpat pulse.




Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 10 {3) Amplitude and (b) phase specira of yir) when UVRC = 1

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 811 () Amplitude and (b) phase spectra of yir) when URC = 10,

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

 The response of the system in the time
domain can be found by computing the
convolution

y(t) = h(t) = x(t)
where
h(t) = (1/RC)e ' *u(t)
X(t) = rect(t)

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure £12 Cutput response whea () 1RC = 1 and (b} LRC = 10,

Example: Attenuation of High-
Frequency Components
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Example: Attenuation of High-
Frequency Components

0

Figure 816 () Inpet and (b} resubting output in Exampde £,




Filtering Signals

» The response of a CT, LTI system with
frequency response H (w)to a sinusoidal
signal

is X(t) = Acos(w,t + 6)

y(t) = A|H(@,) | cos(wpt + 0 +arg H(ew,))

. if [H(w,)|=00r|H(w,)|=0
theny(t)=0or y(t)=0, VteR

Four Basic Types of Filters

lowpass ¢H(w)|
| | passband

14
stopband | | stopband | |
B

] 0 -B o
]

bandstop {|H ()|

highpass {|H(®)|

h‘\
cutoff frequency

bandpass {|H (@) |

Nk Ml

(5] )

Figure 5.17  Magnitude functions of ideal filters: (a) lowpass; (b) highpass; (c) band-
pass; (d) bandstop.

(many more details about filter design in ECE 464/564 and ECE 567)

Phase Function

« Filters are usually designed based on
specifications on the magnitude response| H (@) |

« The phase response arg H (») has to be taken
into account too in order to prevent signal
distortion as the signal goes through the
system

« If the filter has linear phase in its
passband(s), then there is no distortion

Linear-Phase Filters

« Afilter H (w) is said to have linear phase if
argH (w) =-wt,, Vo < passhand
* If @, isin passhand of a linear phase filter,
its response to
X(t) = Acos(aw,t)
is
y(t) = Al H () | cos(@pt — mpty) =
= A[H(e,) ] cos(a, (t—t4))

Ideal Linear-Phase Lowpass

 The frequency response of an ideal lowpass
filter is defined by

H(w)={

el we[-B,B]
0, w ¢[-B,B]

#narg H (w)

Figuee 519 Phase fusctson of ideal low
pass filter defined by (5.48).

Ideal Linear-Phase Lowpass — Cont’d

* H(w)can be written as

H (w) = rect (ﬂj g Ik
2B

whose inverse Fourier transform is

h(t) =§sinc(§(t—td))




Ideal Linear-Phase Lowpass — Cont’d

h(t) :%sinc(g(tftd)j

T 'x
i -k

Figure 5.20  Impulse response of ideal linear-phase lowpass filter

Notice: the filter is noncausal since h(t) is not zero for t <0

Ideal Sampling

* Consider the ideal sampler:

X(t) el X[n] = X(t)],_pr =X(nT)
teR T neZz

« It is convenient to express the sampled signal
x(nT)as X(t) p(t) where

p(t)=>_5(t—nT)

nez

Ideal Sampling — Cont’d

e Thus, the sampled waveform x(t) p(t) is

X(t)p(t) =D x(®)S(t—nT) =) x(nT)S(t—nT)
nez nez
* Xx(t) p(t)is an impulse train whose weights
(areas) are the sample values x(nT) of the
original signal x(t)

Ideal Sampling — Cont’d

« Since p(t) is periodic with period T, it can
be represented by its Fourier series

) 2 sampling

1) = C ejkwst, @, =—— frequenc

p() é ‘ ° T (rag/sec)y

1 T2 )
where G, = [ pedt, kez
-T/2
T/2
:% [ s(e it =%

-TI2

Ideal Sampling — Cont’d

» Therefore )
p(t) = Y ek
keZ T
and
X0 = XOPO) = 32X == 3 x(t)e™™
keZT T KeZ

whose Fourier transform is

X.(@) =2 X (0-ka)

keZ

Ideal Sampling — Cont’d

/\W

| X, () :le X (@ ka,)

Yo, — 8~ 2o, s v & E Ry

Figare $:34  Foosricr transiorm of (2] it} and (%) 5,01} = s{ripir)




Signal Reconstruction

* Suppose that the signal x(t) is bandlimited
with bandwidth B, i.e., | X (@) |= 0, for | @ |> B
* Then, if @, > 2B, the replicas of X (@) in

1

X,(@) =23 X(0—ko,)
T keZ

do not overlap and X () can be recovered by

applying an ideal lowpass filter to X, (@)

(interpolation filter)

Interpolation Filter for Signal
Reconstruction

Hiea)

T, oe[-B,B]

Hi@)= {o, ® ¢[-B,B]

w

-8 V] B

Figure 5.25 Frequency response function of ideal lowpass filter with bandwidth B

Interpolation Formula

» The impulse response h(t) of the interpolation
filter is

h(t) = ﬂsinc(Etj

T T

and the output y(t) of the interpolation filter is

given by
y(t) =h(t) = x(t)

Interpolation Formula — Cont’d

e But
X, (t) = x(t) p(t) = D_x(nT)5(t—nT)

neZ
whence ©

y(t) =h(t)*x,(t) =D x(nT)h(t—nT) =

nez

_BT x(nT)sinc[E(t - nT)j
T

T nez

* Moreover, y(t) = x(t)

Shannon’s Sampling Theorem

» A CT bandlimited signal x(t) with frequencies
no higher than B can be reconstructed from its
samples X[n] = x(nT) if the samples are taken
at a rate

w,=271T >22B

» The reconstruction of x(t) from its samples
X[n] = x(nT) is provided by the interpolation
formula

x(t) = EZ x(nT)sinc(E(t - nT))
T

nez

Nyquist Rate

¢ The minimum sampling rate o, =27 /T = 2B
is called the Nyquist rate

¢ Question: Why do CD’s adopt a sampling
rate of 44.1 kHz?

« Answer: Since the highest frequency
perceived by humans is about 20 kHz, 44.1
kHz is slightly more than twice this upper
bound

10
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Aliasing

l\'---l!] X(w)

28 -8 | o & B

Figure 528 Amplitude spectrum of a sampled signal.

£
ri_ SRS e} e

48

Aliasing —Cont’d

 Because of aliasing, it is not possible to
reconstruct x(t) exactly by lowpass filtering
the sampled signal X, (t) = x(t) p(t)

« Aliasing results in a distorted version of the
original signal x(t)

* It can be eliminated (theoretically) by
lowpass filtering x(t) before sampling it so
that | X (@) |=0for|w > B

11



