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Chapter 5
Frequency Domain Analysis 

of Systems

Chapter 5
Frequency Domain Analysis 

of Systems

• Consider the following CT LTI system:

• Assumption: the impulse response h(t) is 
absolutely absolutely integrableintegrable, , i.e.,

CT, LTI SystemsCT, LTI Systems

( )y t( )x t ( )h t

| ( ) |h t dt < ∞∫
(this has to do with system stabilitysystem stability (ECE 352))



22

• What’s the response y(t) of this system to 
the input signal

• We start by looking for the response yc(t) of 
the same system to

Response of a CT, LTI System to a 
Sinusoidal Input 

Response of a CT, LTI System to a 
Sinusoidal Input 

0( ) cos( ), ?x t A t tω θ= + ∈

0( )( ) j t
cx t Ae tω θ+= ∈

• The output is obtained through convolution 
as

Response of a CT, LTI System to a 
Complex Exponential Input

Response of a CT, LTI System to a 
Complex Exponential Input
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• By defining 

it is

• Therefore, the response of the LTI system to a 
complex exponential is another complex 
exponential with the same frequency

The Frequency Response of a CT, 
LTI System

The Frequency Response of a CT, 
LTI System

( ) ( ) jH h e dωτω τ τ−= ∫

0

0
( )

0

( ) ( ) ( )

( ) ,
c c

j t

y t H x t

H Ae tω θ

ω

ω +

= =

= ∈

is the frequency 
response of the CT, 
LTI system = Fourier 
transform of h(t)

( )H ω

0ω

• Since             is in general a complex 
quantity, we can write

Analyzing the Output Signal yc(t)Analyzing the Output Signal yc(t)

0

0 0

0 0

( )
0

arg ( ) ( )
0

( arg ( ))
0

( ) ( )

| ( ) |

| ( ) |

j t
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j H j t
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y t H Ae
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A H e
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=

0( )H ω

output signal’s 
magnitude

output signal’s 
phase
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• With Euler’s formulas we can express

as   

and, by exploiting linearityexploiting linearity, it is

Response of a CT, LTI System to a 
Sinusoidal Input 

Response of a CT, LTI System to a 
Sinusoidal Input 

0( ) cos( )x t A tω θ= +

1
2( ) ( ( )) ( ( ) ( ))c c cx t x t x t x t∗= ℜ = +

( )

1
2

0 0 0

( ) ( ( )) ( ( ) ( ))

| ( ) | cos arg ( )
c c cy t y t y t y t

A H t Hω ω θ ω

∗= ℜ = + =

= + +

• Thus, the response to 

is

which is also a sinusoid with the same 
frequency      but with the amplitudeamplitude scaled by scaled by 
the factorthe factor and with the phase shifted 
by amount

Response of a CT, LTI System to a 
Sinusoidal Input – Cont’d

Response of a CT, LTI System to a 
Sinusoidal Input – Cont’d

0( ) cos( )x t A tω θ= +

( )0 0 0( ) cos| arg ( )( ) |y t A t HH θ ωωω= + +

0ω
0| ( ) |H ω

0arg ( )H ω
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• Consider the following DT, LTI system:

• The I/O relation is given by

DT, LTI SystemsDT, LTI Systems

[ ]y n[ ]x n [ ]h n

[ ] [ ] [ ]y n h n x n= ∗

• If the input signal is

• Then the output signal is given by

where

Response of a DT, LTI System to a 
Complex Exponential Input

Response of a DT, LTI System to a 
Complex Exponential Input

0( )[ ] j n
cx n Ae nω θ+= ∈

0

0
( )

0

[ ] ( ) [ ]

( ) ,
c c

j n

y n H x n

H Ae nω θ

ω

ω +

= =

= ∈

( ) [ ] ,j k

k
H h k e ωω ω−

∈

= ∈∑
is the frequency 

response of the DT, LTI 
system = DT Fourier 
transform (DTFT) of h[n]

( )H ω
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Response of a DT, LTI System to a 
Sinusoidal Input

Response of a DT, LTI System to a 
Sinusoidal Input

• If the input signal is

• Then the output signal is given by
0[ ] cos( )x n A n nω θ= + ∈

( )0 0 0[ ] cos| arg ( )( ) |y n A n HH θ ωωω= + +

• Suppose that the frequency response of a 
CT, LTI system is defined by the following 
specs:

Example: Response of a CT, LTI 
System to Sinusoidal Inputs

Example: Response of a CT, LTI 
System to Sinusoidal Inputs
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• If the input to the system is

• Then the output is

Example: Response of a CT, LTI 
System to Sinusoidal Inputs –

Cont’d

Example: Response of a CT, LTI 
System to Sinusoidal Inputs –

Cont’d

( ) 2cos(10 90 ) 5cos(25 120 )x t t t= + + +

| (10) |

| (2

( ) 2 cos(10 90 )

5 cos(25 120

arg (10)

arg )

3cos

5) |

(10 30 )

(25)

H

H

y t t

t

t

H

H

= + + +

+ + + =

= +

• Consider the RC circuit shown in figure

Example: Frequency Analysis of an 
RC Circuit

Example: Frequency Analysis of an 
RC Circuit
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• From ENGR 203, we know that:
1. The complex impedancecomplex impedance of the capacitor is 

equal to             where
2. If the input voltage is                    , then the 

output signal is given by

Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

1/ sC s jσ ω= +
( ) st

cx t e=

1/ 1/( )
1/ 1/

st st
c

sC RCy t e e
R sC s RC

= =
+ +

• Setting              , it is 

whence we can write

where

Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

0s jω=

0

0

1/( )
1/

j t
c

RCy t e
j RC

ω

ω
=

+
0( ) j t
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j RC
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Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

2 2

1/| ( ) |
(1/ )
RCH

RC
ω

ω
=

+

( )arg ( ) arctanH RCω ω= −

1/ 1000RC =

• The knowledge of the frequency response      
allows us to compute the response 

y(t) of the system to any sinusoidal input 
signal 

since

Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

( )H ω

0( ) cos( )x t A tω θ= +

( )0 0 0( ) cos| arg ( )( ) |y t A t HH θ ωωω= + +
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• Suppose that                        and that 

• Then, the output signal is

Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

( ) cos(100 ) cos(3000 )x t t t= +
1/ 1000RC =

arg (100)
arg (3000

( ) cos(100 )
cos(3000 )

0.9950cos(10

| (100) |
| (30

0 5.71 ) 0.3162cos(3

00) |

000 7

)

1.56 )

y t t
t

t t

H
H

H
H

= + +
+ + =

= − + −

Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

( )x t

( )y t
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• Suppose now that
( ) cos(100 ) cos(50,000 )x t t t= +

Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

•Then, the output signal is

arg (100)
arg (50,000)

( ) cos(100 )
cos(50,000 )

0.9950cos(10

| (100) |
| (50,000)

0 5.71 ) 0.0200cos(50,000 88.85

|

)

y t t
t

t t

HH
HH

= + +
+ + =

= − + −

Example: Frequency Analysis of an 
RC Circuit – Cont’d

Example: Frequency Analysis of an 
RC Circuit – Cont’d

( )x t ( )y t

The RC circuit behaves as a lowpasslowpass filterfilter, by letting low-
frequency sinusoidal signals pass with little attenuation and by
significantly attenuating high-frequency sinusoidal signals
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• Suppose that the input to the CT,  LTI 
system is a periodic signalperiodic signal x(t) having 
period T

• This signal can be represented through its 
Fourier seriesFourier series as

Response of a CT, LTI System to 
Periodic Inputs

Response of a CT, LTI System to 
Periodic Inputs

0( ) ,jk tx
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k
x t c e tω
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=−∞
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ω
+

−= ∈∫
where

• By exploiting the previous results and the 
linearity of the system, the output of the 
system is

Response of a CT, LTI System to 
Periodic Inputs – Cont’d

Response of a CT, LTI System to 
Periodic Inputs – Cont’d
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Example: Response of an RC Circuit 
to a Rectangular Pulse Train

Example: Response of an RC Circuit 
to a Rectangular Pulse Train

• Consider the RC circuit

with input ( ) rect( 2 )
n

x t t n
∈

= −∑

• We have found its Fourier series to be

with

Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

( ) ,x jk t
k

k
x t c e tπ

∈

= ∈∑

1 sinc
2 2

x
k

kc ⎛ ⎞= ⎜ ⎟
⎝ ⎠

( ) rect( 2 )
n

x t t n
∈

= −∑
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• Magnitude spectrum        of input signal x(t)

Example: Response of an RC Circuit 
to a Rectangular Pulse Train – Cont’d
Example: Response of an RC Circuit 
to a Rectangular Pulse Train – Cont’d

| |x
kc

• The frequency response of the RC circuit 
was found to be

• Thus, the Fourier series of the output signal 
is given by

Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

1/( )
1/
RCH

j RC
ω

ω
=

+

0 0
0( ) ( ) jk t jk tx y

k k
k k

y t H k c e c eω ωω
∞ ∞

=−∞ =−∞

= =∑ ∑
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Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

| ( ) | ( )H dBω

ω

1/ 1RC =

1/ 10RC =

1/ 100RC =

filter more 
selective

Example: Response of an RC Circuit 
to a Rectangular Pulse Train – Cont’d
Example: Response of an RC Circuit 
to a Rectangular Pulse Train – Cont’d

| |y
kc

1/ 1RC =

| |y
kc

| |y
kc

1/ 100RC =

1/ 10RC =
filter more 
selective
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Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

Example: Response of an RC Circuit to 
a Rectangular Pulse Train – Cont’d

( )y t

( )y t

( )y t

1/ 1RC =

1/ 10RC =

1/ 100RC =

filter more 
selective

• Consider the following CT, LTI system

• Its I/O relation is given by

which, in the frequency domain, becomes 

Response of a CT, LTI System to 
Aperiodic Inputs

Response of a CT, LTI System to 
Aperiodic Inputs

( )y t( )x t ( )h t

( ) ( ) ( )y t h t x t= ∗

( ) ( ) ( )Y H Xω ω ω=
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• From                                  , the magnitude magnitude 
spectrumspectrum of the output signal y(t) is given 
by

and its phase spectrumphase spectrum is given by

Response of a CT, LTI System to 
Aperiodic Inputs – Cont’d

Response of a CT, LTI System to 
Aperiodic Inputs – Cont’d

( ) ( ) ( )Y H Xω ω ω=

arg ( ) argarg (( ))HY Xωω ω= +

| (| ( ) | || ( ) |)HY Xωω ω=

Example: Response of an RC Circuit 
to a Rectangular Pulse 

Example: Response of an RC Circuit 
to a Rectangular Pulse 

• Consider the RC circuit

with input ( ) rect( )x t t=
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• The Fourier transform of x(t) is

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

( ) rect( )x t t=

( ) sinc
2

X ωω
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

| ( ) |X ω

arg ( )X ω
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Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

| ( ) |Y ω

arg ( )Y ω

1/ 1RC =

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

1/ 10RC =
| ( ) |Y ω

arg ( )Y ω
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• The response of the system in the time 
domain can be found by computing the  
convolution

where

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

(1/ )( ) (1/ ) ( )RC th t RC e u t−=
( ) rect( )x t t=

( ) ( ) ( )y t h t x t= ∗

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

Example: Response of an RC Circuit 
to a Rectangular Pulse – Cont’d

1/ 1RC =

1/ 10RC =

( )y t

( )y t

filter more 
selective
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Example: Attenuation of High-
Frequency Components

Example: Attenuation of High-
Frequency Components

( )Y ω

( )H ω

( )X ω

= ×

Example: Attenuation of High-
Frequency Components

Example: Attenuation of High-
Frequency Components

( )y t

( )x t
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• The response of a CT, LTI system with 
frequency response           to a sinusoidal 
signal

•• FilteringFiltering: if                      or
then               or

Filtering SignalsFiltering Signals

0( ) cos( )x t A tω θ= +

( )0 0 0( ) cos| arg ( )( ) |y t A t HH θ ωωω= + +

( )H ω

0| ( ) | 0H ω = 0| ( ) | 0H ω ≈
( ) 0y t = ( ) 0,y t t≈ ∀ ∈

isis

Four Basic Types of FiltersFour Basic Types of Filters

lowpasslowpass | ( ) |H ω

| ( ) |H ω

| ( ) |H ω

| ( ) |H ω bandstopbandstopbandpassbandpass

highpasshighpass
passbandpassband

cutoff frequencycutoff frequency

stopbandstopband stopbandstopband

(many more details about filter design in ECE 464/564 and ECE 56(many more details about filter design in ECE 464/564 and ECE 567)7)
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• Filters are usually designed based on 
specifications on the magnitude response

• The phase response                has to be taken 
into account too in order to prevent signal 
distortion as the signal goes through the 
system

• If the filter has linear phaselinear phase in its 
passband(s), then there is no distortionno distortion

Phase FunctionPhase Function

| ( ) |H ω
arg ( )H ω

• A filter           is said to have linear phase if

• If        is in passband of a linear phase filter, 
its response to  

is                 

Linear-Phase FiltersLinear-Phase Filters

( )H ω
arg ( ) , passbanddH tω ω ω= − ∀ ∈

0ω

0( ) cos( )x t A tω=

0 0 0

0 0

( ) | ( ) | cos( )
| ( ) | cos( ( ))

d

d

y t A H t t
A H t t

ω ω ω
ω ω

= − =
= −
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• The frequency response of an ideal lowpass
filter is defined by

Ideal Linear-Phase LowpassIdeal Linear-Phase Lowpass

, [ , ]
( )

0, [ , ]

dj te B B
H

B B

ω ω
ω

ω

−⎧ ∈ −
= ⎨

∉ −⎩

arg ( )H ω

• can be written as

whose inverse Fourier transform is

Ideal Linear-Phase Lowpass – Cont’dIdeal Linear-Phase Lowpass – Cont’d

( )H ω

( ) rect
2

dj tH e
B

ωωω −⎛ ⎞= ⎜ ⎟
⎝ ⎠

B( ) sinc ( )d
Bh t t t
π π

⎛ ⎞= −⎜ ⎟
⎝ ⎠
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Ideal Linear-Phase Lowpass – Cont’dIdeal Linear-Phase Lowpass – Cont’d

B( ) sinc ( )d
Bh t t t
π π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

Notice: the filter is Notice: the filter is noncausalnoncausal since        is not zero forsince        is not zero for( )h t 0t <

• Consider the ideal sampler:

• It is convenient to express the sampled signal       
as                 where

Ideal SamplingIdeal Sampling

( )x t [ ] ( ) ( )t nTx n x t x nT== =. .
T n∈

( )x nT ( ) ( )x t p t

( ) ( )
n

p t t nTδ
∈

= −∑

t∈
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• Thus, the sampled waveform               is

• is an impulse train whose weights 
(areas) are the sample values            of the 
original signal x(t) 

Ideal Sampling – Cont’dIdeal Sampling – Cont’d

( ) ( ) ( ) ( ) ( ) ( )
n n

x t p t x t t nT x nT t nTδ δ
∈ ∈

= − = −∑ ∑
( ) ( )x t p t

( ) ( )x t p t
( )x nT

• Since p(t) is periodic with period T, it can 
be represented by its Fourier seriesFourier series

Ideal Sampling – Cont’dIdeal Sampling – Cont’d

2( ) ,sjk t
k s

k
p t c e

T
ω πω

∈

= =∑
sampling sampling 
frequencyfrequency
((radrad/sec)/sec)

/ 2

/ 2
/ 2

/ 2

1 ( ) ,

1 1( )

s

s

T
jk t

k
T

T
jk t

T

c p t e dt k
T

t e dt
T T

ω

ωδ

−

−

−

−

= ∈

= =

∫

∫

wherewhere
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• Therefore

and

whose Fourier transform is

Ideal Sampling – Cont’dIdeal Sampling – Cont’d

1( ) sjk t

k
p t e

T
ω

∈

= ∑

1 1( ) ( ) ( ) ( ) ( )s sjk t jk t
s

k k
x t x t p t x t e x t e

T T
ω ω

∈ ∈

= = =∑ ∑

1( ) ( )s s
k

X X k
T

ω ω ω
∈

= −∑

Ideal Sampling – Cont’dIdeal Sampling – Cont’d

1( ) ( )s s
k

X X k
T

ω ω ω
∈

= −∑

( )X ω
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• Suppose that the signal x(t) is bandlimited
with bandwidth B, i.e.,

• Then, if                 the replicas of            in

do not overlap and            can be recovered by 
applying an ideal lowpass filter to              
(interpolation filterinterpolation filter)

Signal ReconstructionSignal Reconstruction

| ( ) | 0, for | |X Bω ω= >
2 ,s Bω ≥ ( )X ω

1( ) ( )s s
k

X X k
T

ω ω ω
∈

= −∑
( )X ω

( )sX ω

Interpolation Filter for Signal 
Reconstruction

Interpolation Filter for Signal 
Reconstruction

, [ , ]
( )

0, [ , ]
T B B

H
B B

ω
ω

ω
∈ −⎧

= ⎨ ∉ −⎩
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• The impulse response h(t) of the interpolation 
filter is

and the output y(t) of the interpolation filter is 
given by

Interpolation FormulaInterpolation Formula

B( ) sincBTh t t
π π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

( ) ( ) ( )sy t h t x t= ∗

• But

whence

• Moreover,

Interpolation Formula – Cont’dInterpolation Formula – Cont’d

( ) ( ) ( ) ( ) ( )s
n

x t x t p t x nT t nTδ
∈

= = −∑

( ) ( ) ( ) ( ) ( )

( )sinc ( )

s
n

n

y t h t x t x nT h t nT

BT Bx nT t nT
π π

∈

∈

= ∗ = − =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑

∑

( ) ( )y t x t=
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• A CT bandlimited signal x(t) with frequencies 
no higher than B can be reconstructed from its 
samples                       if the samples are taken 
at a rate 

• The reconstruction of x(t) from its samples            
is provided by the interpolation 

formula  

Shannon’s Sampling TheoremShannon’s Sampling Theorem

[ ] ( )x n x nT=

2 / 2s T Bω π= ≥

si( n) c) ( )(
n

B xT B tTx t nTn
π π∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑

([ )] xx n nT=

• The minimum sampling rate    
is called the Nyquist rate

• Question: Why do CD’s adopt a sampling 
rate of 44.1 kHz?

• Answer: Since the highest frequency 
perceived by humans is about 20 kHz, 44.1 
kHz is slightly more than twice this upper 
bound 

Nyquist RateNyquist Rate

2 / 2s T Bω π= =
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AliasingAliasing

1( ) ( )s s
k

X X k
T

ω ω ω
∈

= −∑

( )X ω

• Because of aliasing, it is not possible to 
reconstruct x(t) exactly by lowpass filtering 
the sampled signal 

• Aliasing results in a distorted version of the 
original signal x(t) 

• It can be eliminated (theoretically) by 
lowpass filtering x(t) before sampling it so 
that                     for 

Aliasing –Cont’dAliasing –Cont’d

( ) ( ) ( )sx t x t p t=

| ( ) | 0X ω = | | Bω ≥


