Chapter 5
Frequency Domain Analysis
of Systems

CT, LTI Systems

» Consider the following CT LTI system:

X(t) —— h@®) —— y(®)

» Assumption: the impulse response h(t) is
absolutely integrable, i.e.,

j|h(t)|dt<oo

(this has to do with system stability (ECE 352))




Response of a CT, LTI System to a
Sinusoidal Input

» What’s the response y(t) of this system to
the input signal

X(t) = Acos(w,t +6), teR ?

» We start by looking for the response y (t) of
the same system to

x (t) = Ae!? teR

Response of a CT, LTI System to a
Complex Exponential Input

» The output is obtained through convolution

as Y. (t) =h(t)*x (t) = Ih(f)xc(t —7)dr =

= [h(z)Ae/r ) d 7 =

R
— J(@pt+0) = jwgr —
= Ae j h(r)e " dr =

X (1) R

= x_(t) j h(r)e **dr




The Frequency Response of a CT,
LTI System

* By defining H () is the frequency
_ - jor response of the CT,
H(w) = .‘- h(z)e *"dz LTI system = Fourier
R transform of h(t)

itis
yc (t) = H (a)O)XC (t) =
=H(w,)Ae' ") teR

» Therefore, the response of the LTI system to a
complex exponential is another complex
exponential with the same frequency o,

Analyzing the Output Signal y.(t)

* Since H(w,) is in general a complex
quantity, we can write

Ye(0) = H (@) Al =
=|H (a)o) | plargH (@) g i(@pt+d) _

— A| H (600) |ej(a)0t+9+argH(a)0))
output signal’s

\_w-__J
output signal’s phase

magnitude




Response of a CT, LTI System to a
Sinusoidal Input

» With Euler’s formulas we can express

X(t) = Acos(w,t +6)
as

X(1) = R(%: (1)) = 3 (% () + % (1))
and, by exploiting linearity, it is
y(t) =Ry (1) =7 (Y. O+ yc (1) =
= A|H(w,)|cos(w,t+6+argH (w,))

Response of a CT, LTI System to a
Sinusoidal Input — Cont’d

* Thus, the response to
X(t) = Acos(w,t +0)
IS
y(t) = A|H(w,)|cos(w,t+60+arg H(w,))
which is also a sinusoid with the same

frequency w, but with the amplitude scaled by

the factor| H (w,) | and with the phase shifted
by amount arg H (o,)




DT, LTI Systems

 Consider the following DT, LTI system:

h[n] y[n]

x[n]

e The I/O relation is given by
y[n] = h[n]=x[n]

Response of a DT, LTI System to a
Complex Exponential Input

o If the input signal is
x.[n]= Ae!“@™? nez
» Then the output signal is given by
yc[n] =H (G)O)XC [n] =

= H(w,)Ae @™ neZ

where H () is the frequency
. — jowk response of the DT, LTI
H (C()) - Z h[k]e y WE R system = DT Fourier
keZ transform (DTFT) of h[n]




Response of a DT, LTI System to a

Sinusoidal Input

o If the input signal is

X[n] = Acos(w,n+6) neZ

» Then the output signal is given by

y[n]= A|H(w,)|cos(w,n+0+argH(w,))

Example: Response of a CT, LTI
System to Sinusoidal Inputs

» Suppose that the frequency response of a
CT, LTI system is defined by the following

Specs:

|H(@)]

arg H (w)

15

1.5, 0<w <20,

lH(w)lz{o ©> 20

20

—60°

o argH(w)=-60",Vo




Example: Response of a CT, LTI
System to Sinusoidal Inputs —
Cont’d

o If the input to the system is
X(t) = 2cos(10t +90°) + 5cos(25t +120°)
* Then the output is

y(t)=2|H(10)|cos(10t +90° +arg H (10)) +
+5| H(25) | cos(25t +120° +arg H (25)) =
= 3c0s(10t + 30°)

Example: Frequency Analysis of an
RC Circuit

 Consider the RC circuit shown in figure

i)

M

R

+

,+
() = () C) ¢ == ¥ = velt)

Figure 5.1 RC circuit in Example 5.2.




Example: Frequency Analysis of an
RC Circuit — Cont’d

 From ENGR 203, we know that:
1. The complex impedance of the capacitor is
equal to 1/SC whereS =0 + jo
2. If the input voltage is X_(t) = €, then the
output signal is given by

V.0 1/sC_ «__lRC

"R+1/sC_ s+1/RC

Example: Frequency Analysis of an
RC Circuit — Cont’d

* Setting S = jaw,, itis

joopt

_ 1/RC
e Ja)ot t ==
%(t)=e and Ye(t) Jo,+1/RC

whence we can write
yc (t) = H (a)O)Xc (t)

H (@) = - 1/RC
jJo+1/RC

where




Example: Frequency Analysis of an
RC Circuit — Cont’d
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Example: Frequency Analysis of an
RC Circuit — Cont’d

» The knowledge of the frequency response
H (@) allows us to compute the response
y(t) of the system to any sinusoidal input
signal

X(t) = Acos(w,t +6)
since

y(t) = A|H(w,)|cos(a,t+0+arg H(w,))




Example: Frequency Analysis of an
RC Circuit — Cont’d

e Suppose that1/RC =1000 and that
X(t) = cos(100t) + cos(3000t)
e Then, the output signal is

y(t) =] H(100) | cos(100t + arg H (100)) +
+ | H(3000) | cos(3000t +arg H (3000)) =
=0.9950c0s(100t —5.71") + 0.3162 cos(3000t — 71.56°)

Example: Frequency Analysis of an
RC Circuit — Cont’d

-0.05 0 0.05 0.1

34 -0.05 0 0.05 0.1
Time (sec)

Figure 5.3 (a) Input and (b) output of RC circuit when 1/RC = 1000.
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y(t)

Example: Frequency Analysis of an
RC Circuit — Cont’d

» Suppose now that
X(t) = cos(100t) + cos(50,000t)
*Then, the output signal is

=| H (100) | cos(100t + arg H (100)) +
+| H(50,000) | cos(50,000t +arg H (50,000)) =
=0.9950c0s(100t —5.71°) + 0.0200 cos(50,000t — 88.85)

Example: Frequency Analysis of an
RC Circuit — Cont’d

2
1.5
1

xX© i ] y®

1 o 0 o002 003 004 005 406 004 003 002 0M o
Time (se0) Tirme (sed)

The RC circuit behaves as a lowpass filter, by letting low-
frequency sinusoidal signals pass with little attenuation and by
significantly attenuating high-frequency sinusoidal signals
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Response of a CT, LTI System to
Periodic Inputs

» Suppose that the input to the CT, LTI
system is a periodic signal x(t) having
period T

 This signal can be represented through its
Fourier series as

X(t)= > cie’, teR
k=—o0

where ty+T

c;:$ [ x@®e *dt, kez
ty

Response of a CT, LTI System to
Periodic Inputs — Cont’d

» By exploiting the previous results and the
linearity of the system, the output of the
system is

y(t) = > H(ke,)c;e™
k=—o0

_ i [ H (keop) [ ¢ | @ kmsmateid=art on))

_ N argc
A ] o
o0 " y © ’
t jka,t
— Z | Clzl |eJ( a)O +arg(ck )) — Z Ckyej wO , t e R
k=—c0 k=—c0
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Example: Response of an RC Circuit
to a Rectangular Pulse Train

» Consider the RC circuit

-+

x(t) = v() (

AN

R

iclh)

+

6 = W=7

Figure 5.1 RC circuit in Example 5.2.

with input x(t) = ) rect(t - 2n)

nez

Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

() & X(t) iy Z reCt(t = 2n)
nez

® e (repeas)

=15 0.5 0 05 1.3 2.5

Figure 5.4 Periodic input signal in Example 5.4.

» We have found its Fourier series to be

with

X(t) = Zcﬁ‘ejk”t, teR

keZ

1. [kj
¢ = sinc| -
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Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

« Magnitude spectrum | ¢; |of input signal x(t)

200,9,2,0,7 !-?-T-T..T-TJ ‘-I-T.T-T-?-!-Lt_!_c_o ;

80 -60 -40 -20 0 20 40 60 80
w = ke (rad/sec)

Figure 5.5 Amplitude spectrum of periodic input in Example 5.4.

Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

» The frequency response of the RC circuit
was found to be
H () = - 1/RC
Jo+1/RC

» Thus, the Fourier series of the output signal
Is given by

Yt = > Hikap)ceh = 3 ceh

k=—o0 k=—o0
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Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d
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Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

y
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pare &lou plitade spectrum of output when (a) VRC = 1; (b) LRC = 10 (c)
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Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

y(t) .
@ £os \/\/\/\
1/RC =1 0

i (sec)h

t),
y()w filter more
1/RC =10 ) selective

05 zl— =

Time (sec)

y(t) |
1/RC =100

Figure 5.7 Plot of cutput when (a) URC = 1;(b) URC = 1

Response of a CT, LTI System to
Aperiodic Inputs

 Consider the following CT, LTI system

Xt) —— h@®) —— y(®)

o Its I/O relation is given by

y(t) = h(t) = x(t)
which, in the frequency domain, becomes

Y(w) = H (o)X ()

16



Response of a CT, LTI System to
Aperiodic Inputs — Cont’d

* FromY (@) = H (@) X (»), the magnitude
spectrum of the output signal y(t) is given

by
1Y (@) |H H(@) || X(0)|

and its phase spectrum is given by
argY (w) =argH (w)+arg X (@)

Example: Response of an RC Circuit
to a Rectangular Pulse

e Consider the RC circuit

ion)

M

R

+
x(1) = v(D) C) (o}

+

= ¥(6) = v(o)

Figure 5.1 RC circuit in Example 5.2.

with input  x(t) = rect(t)
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

i

] X(t) = rect(t)

'
0 0.3 Figure 5.8 Input pulse in Example 5.5,

» The Fourier transform of x(t) is

X(w) = sinc(zﬁj

T

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

i ) j , ; /
-4 -30 -20 -10 0 10 20 an 40
Frequency (rad/sec)
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Figure 5.9 (a) Amplitude and (b) phase spectra of the input pulse.
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

1/RC =1 ]
1Y (@) |

(a) =05

0 L Lilin L nt i

.
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Frequency {rad/sec)

argY (a)j

100

501

(b}
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10 =30 =20 =10 0 10 20 30 40
Frequency (rad/scc)

Figure 510 (a) Amplitude and (b) phase spectra of y(r) when /RC = 1.

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

1Y ()|
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0 . " ; ; e
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Figure 5.11 (a) Amplitude and (b) phase spectra of y(r) when 1/RC = 10.
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

» The response of the system in the time
domain can be found by computing the
convolution

y(t) = h(t) = x(t)
where
h(t) = (L/ RC)e MRy (t)
X(t) = rect(t)

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

y(t)” : : : —1/Re =1
Al % : Time f.uct.‘j 2 . : filter more
15 - T T T selective
Yo 1/RC =10
b =
| ﬂ

. i .
-1 0 1 2 £l 4 5
Time (sec)

Figure 512 Output response when (a) I/RC = 1 and (b) 1/RC = 10.
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Example: Attenuation of High-
Frequency Components

0s s » o ] T
Frequeasy irabies)
’ a 22 - lea b s ansd ) phase fmctions of wyators in Exarsple 5
Y (a)) e Figuee S.03  (a} Mlagnitacss and (b) phase fusssions of systors in Exarmpie

for

g -m| |
i usf
w
o £ ) 0 ] 1
Hroquency iradies) a3
Figare S15 (s} Asplitece and (b} o of sutpt in Examgle 56,
» o
[——

Example: Attenuation of High-
Frequency Components

10
(t),
@ F
0
5 : - .
0 05 1 15 2
Time (sec)
( )m - .
st E
m =
0
5 : : ;
0 0.5 1 1.5 2
Time (sec)

Figure 5.16  (a) Input and (b) resulting output in Example 5.6.
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Filtering Signals

* The response of a CT, LTI system with
frequency response H (@) to a sinusoidal

signal
. X(t) = Acos(w,t +6)
y(t) = Al H(w,)|cos(a,t+60+arg H(w,))

. if |H(w,y)|=00r|H(w,) =0
theny(t)=0or y(t)~0, VteR

Four Basic Types of Filters

lowpass {|H ()] highpass {|H(®)|
1 | passband

e

stopband stopband

—B st 0 B

0 B
(@) cutoff frequency ®)

bandpass {|H ()] bandstop {|H ()|
1

B, B 0F g B nY -B, -8 0 R
(c) (d)

Figure 5.17 Magnitude functions of ideal filters: (a) lowpass; (b) highpass; (¢) band-
pass; (d) bandstop.

(many more details about filter design in ECE 464/564 and ECE 567)
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Phase Function

* Filters are usually designed based on
specifications on the magnitude response | H (o) |

» The phase response arg H (@) has to be taken
Into account too in order to prevent signal
distortion as the signal goes through the
system

o If the filter has linear phase in its
passband(s), then there is no distortion

Linear-Phase Filters

 Afilter H (w) is said to have linear phase if
argH (w) =-oty, Vo € passband
* If @, isin passband of a linear phase filter,
its response to
X(t) = Acos(aw,t)
IS
y(t) = Al H () [ cos(at —agty) =
= Al H(w,) | cos(a,(t—t4))
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Ideal Linear-Phase Lowpass

» The frequency response of an ideal lowpass
filter is defined by

H(w)z{

et »e[-B,B]
0, w ¢[-B, B]

e targ H (w)

Figure 5.19  Phase function of ideal low
pass filter defined by (5.48).

Ideal Linear-Phase Lowpass — Cont’d

» H(w)can be written as

H(w) = rect(ﬁj e ok
2B

whose inverse Fourier transform is

h(t) =§sinc(§(t—td)j

24



Ideal Linear-Phase Lowpass — Cont’d

hir)

iy h(t) :;sinc(g(t—td)J

W_NN""”/T'\\/\ ;. /\//'\\_/‘—w. :

Figure 5.20 Impulse response of ideal linear-phase lowpass filter.

Notice: the filter is noncausal since h(t) is not zero for t <0

Ideal Sampling

 Consider the ideal sampler:

X(t) -y X[N] = X(t)| ey =X(NT)
telR T nez

* It is convenient to express the sampled signal
x(nT)as x(t) p(t) where

p(t) =2 &(t—nT)

nez

25



Ideal Sampling — Cont’d

 Thus, the sampled waveform x(t) p(t) is

X()p(t) =D x(t)s(t—nT)=> x(nT)5(t—nT)

nez nez
* X(t) p(t)is an impulse train whose weights
(areas) are the sample values X(nT) of the
original signal x(t)

Ideal Sampling — Cont’d

* Since p(t) is periodic with period T, it can
be represented by its Fourier series

. 27 sampling
p(t)=> c el g =22 frequency
é ‘ ; T (rad/sec)
T2 .
where ¢, =— | p(t)e *'dt, keZ
T i,
TI2
L[ sye ket =L
T T

“T/2
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Ideal Sampling — Cont’d

e Therefore

()= per
keZ T
and

X0 = x()pH) = ¥ 2 x(D)e™t == 3 x()e
kEZT T keZ,
whose Fourier transform is
Xs(a)) :Tiz X (CO— ka)s)

keZ

Ideal Sampling — Cont’d

X@) Xs(a)):%ZX(w—ka)S)
AIT keZ

Figure 5.24 Fourier transform of (a) x(f) and (b) x,(t) = x{p(r).

- £ : t a
J g D w, 3w, + B
w, o+ B 2w -B R A,

27



Signal Reconstruction

» Suppose that the signal x(t) is bandlimited
with bandwidth B, i.e., | X (») |= 0, for |@ [> B

 Then, if o, > 2B, the replicas of X () in

X (0) == X (0—ka,)
T keZ
do not overlap and X (@) can be recovered by

applying an ideal lowpass filter to X (@)
(interpolation filter)

Interpolation Filter for Signal
Reconstruction

2 {T, o €[-B, B]

—B 0 B

Figure 5.25 Frequency response function of ideal lowpass filter with bandwidth B.
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Interpolation Formula

» The impulse response h(t) of the interpolation
filter is

h(t) =Esinc(5tj

T T

and the output y(t) of the interpolation filter is

given by
y(t) = h(t) * X, (t)

Interpolation Formula — Cont’d

e But
X (t) = x(®) p(t) =D x(nT)S(t-nT)

neZ
whence

y(t) =h(t) = x(t) = Z X(nNT)h(t—nT) =

nez

= BT x(nT)sinc(E(t — nT)j

nez

* Moreover, y(t) = x(t)
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Shannon’s Sampling Theorem

« A CT bandlimited signal x(t) with frequencies
no higher than B can be reconstructed from its
samples x[n] = x(nT) if the samples are taken
at a rate

o, =2rx1T >2B

» The reconstruction of x(t) from its samples
X[n] = x(nT) is provided by the interpolation
formula

X(t) =EZX(nT)sinc(E(t—nT)j
T

neZ

Nyquist Rate

« The minimum sampling rate o, =27 /T = 2B
is called the Nyquist rate

* Question: Why do CD’s adopt a sampling
rate of 44.1 kHz?

» Answer: Since the highest frequency
perceived by humans is about 20 kHz, 44.1
kHz is slightly more than twice this upper
bound
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Aliasing

|X (e X (a))

@ Figore 527  Amplitude spectrum of a
time-limited signal.

= Transposed high-frequency components

Figure 5.28  Amplitude spectrum of a sampled signal.

Aliasing —Cont’d

» Because of aliasing, it is not possible to
reconstruct x(t) exactly by lowpass filtering
the sampled signal x (t) = x(t) p(t)

 Aliasing results in a distorted version of the
original signal x(t)

* It can be eliminated (theoretically) by
lowpass filtering x(t) before sampling it so
that | X (w)|=0for|ew|> B
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