Chapter 4 The Fourier Series and Fourier Transform

Representation of Signals in Terms of Frequency Components

• Consider the CT signal defined by

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_k t + \theta_k), \quad t \in \mathbb{R}$$

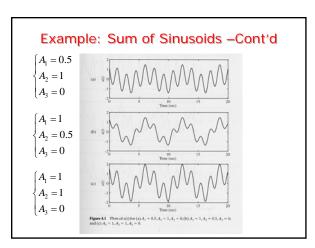
- The frequencies `present in the signal' are the frequency ω_k of the component sinusoids
- The signal x(t) is completely characterized by the set of frequencies ω_k, the set of amplitudes A_k, and the set of phases θ_k

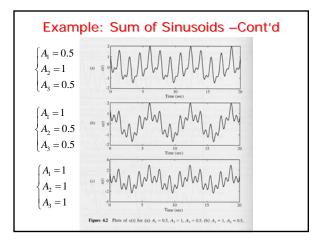
Example: Sum of Sinusoids

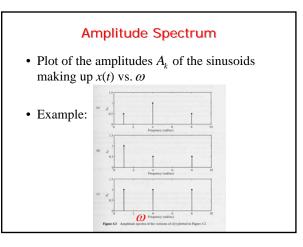
• Consider the CT signal given by

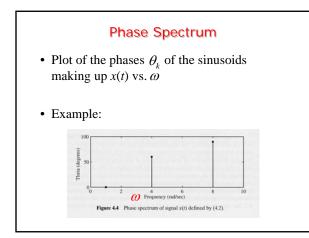
$$\begin{aligned} x(t) &= A_1 \cos(t) + A_2 \cos(4t + \pi/3) + A_3 \cos(8t + \pi/2), \\ t &\in \mathbb{R} \end{aligned}$$

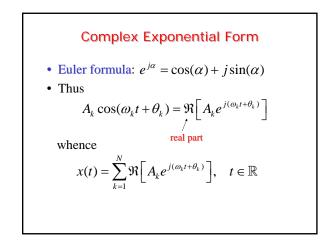
- The signal has only three frequency components at 1,4, and 8 *rad/sec*, amplitudes A_1, A_2, A_3 and phases $0, \pi/3, \pi/2$
- The shape of the signal x(t) depends on the relative magnitudes of the frequency components, specified in terms of the amplitudes A_1, A_2, A_3









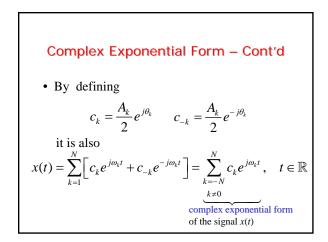


Complex Exponential Form – Cont'd

• And, recalling that $\Re(z) = (z + z^*)/2$ where z = a + jb, we can also write

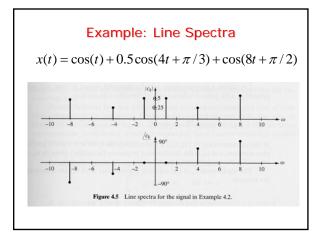
$$x(t) = \sum_{k=1}^{N} \frac{1}{2} \left[A_k e^{j(\omega_k t + \theta_k)} + A_k e^{-j(\omega_k t + \theta_k)} \right], \quad t \in \mathbb{R}$$

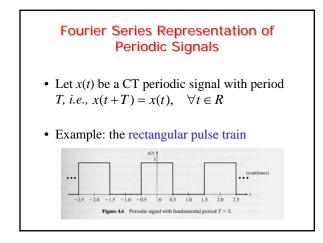
- This signal contains both positive and negative frequencies
- The *negative frequencies* $-\omega_k$ stem from writing the *cosine* in terms of complex exponentials and have no physical meaning



Line Spectra

- The *amplitude spectrum* of x(t) is defined as the plot of the magnitudes $|c_k|$ versus ω
- The *phase spectrum* of x(t) is defined as the plot of the angles $\angle c_k = \arg(c_k)$ versus ω
- This results in *line spectra* which are defined for both positive and negative frequencies
- Notice: for k = 1, 2, ...





• Then, x(t) can be expressed as

$$\mathbf{x}(t) = \sum_{k = -\infty} c_k e^{jk\omega_0 t}, \quad t \in \mathbb{R}$$

where $\omega_0 = 2\pi/T$ is the *fundamental frequency* (*rad/sec*) of the signal and

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_o t} dt, \quad k = 0, \pm 1, \pm 2, \dots$$

 C_0 is called the *constant or dc component* of x(t)

The Fourier Series - Cont'd

- The frequencies $k\omega_0$ present in x(t) are integer multiples of the fundamental frequency ω_0
- Notice that, if the dc term c_0 is added to

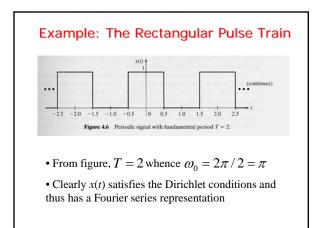
$$x(t) = \sum_{\substack{k=-N\\k\neq 0}}^{N} c_k e^{j\omega_k t}$$

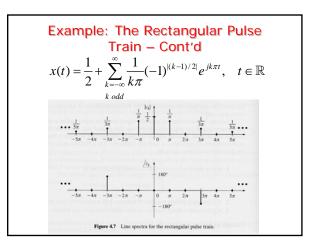
and we set $N = \infty$, the Fourier series is a special case of the above equation where all the frequencies are integer multiples of ω_0

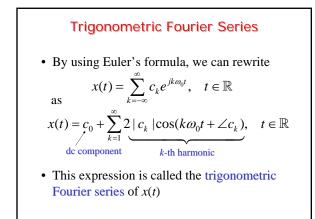
- A periodic signal *x*(*t*), has a Fourier series if it satisfies the following conditions:
- *1. x*(*t*) is absolutely integrable over any period, namely

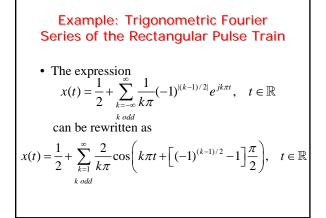
$$\int_{a}^{a+1} |x(t)| \, dt < \infty, \quad \forall a \in \mathbb{R}$$

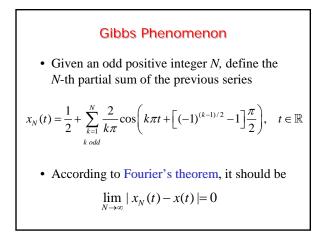
- 2. x(t) has only a finite number of maxima and minima over any period
- *3. x*(*t*) has only a finite number of discontinuities over any period

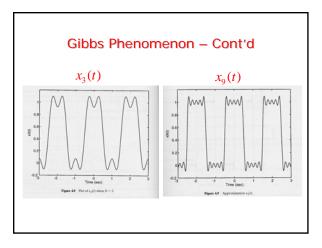


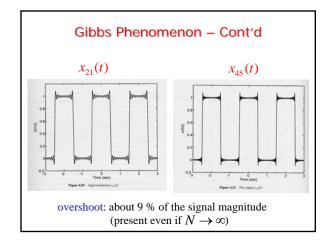


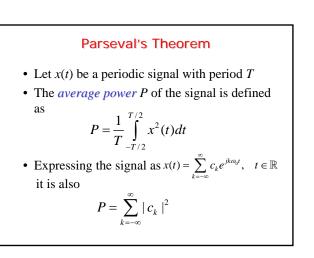






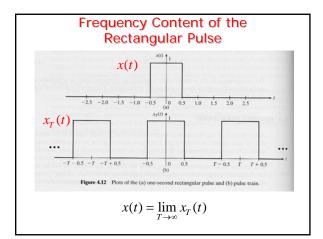


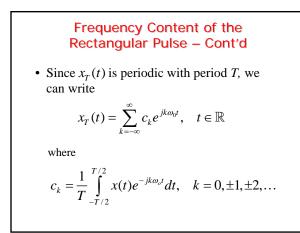


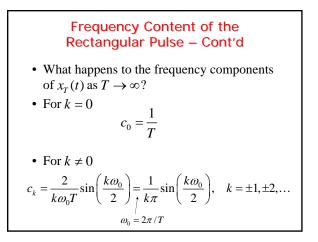


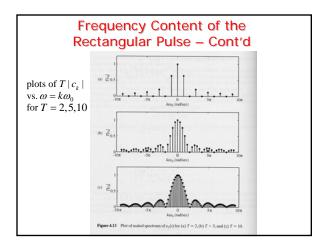
Fourier Transform

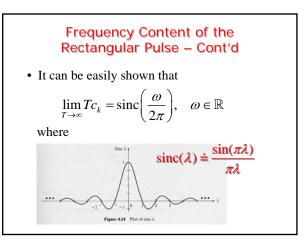
- We have seen that periodic signals can be represented with the Fourier series
- Can aperiodic signals be analyzed in terms of frequency components?
- Yes, and the Fourier transform provides the tool for this analysis
- The major difference w.r.t. the line spectra of periodic signals is that the spectra of aperiodic signals are defined for all real values of the frequency variable ω not just for a discrete set of values

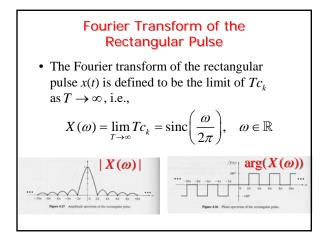












Fourier Transform of the Rectangular Pulse – Cont'd

 The Fourier transform X (\omega) of the rectangular pulse x(t) can be expressed in terms of x(t) as follows:

$$c_{k} = \frac{1}{T} \int_{-\infty}^{\infty} x(t)e^{-jk\omega_{o}t} dt, \quad k = 0, \pm 1, \pm 2, \dots$$

whence
$$Tc_{k} = \int_{-\infty}^{\infty} x(t)e^{-jk\omega_{o}t} dt, \quad k = 0, \pm 1, \pm 2, \dots$$

Fourier Transform of the
Rectangular Pulse – Cont'd
• Now, by definition
$$X(\omega) = \lim_{T \to \infty} Tc_k$$
 and,
since $k\omega_0 \to \omega$ as $T \to \infty$
 $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt, \quad \omega \in \mathbb{R}$
• The *inverse Fourier transform* of $X(\omega)$ is
 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega, \quad t \in \mathbb{R}$

The Fourier Transform in the General Case

• Given a signal x(t), its *Fourier transform* $X(\omega)$ is defined as

$$X(\omega) = \int_{0}^{\infty} x(t)e^{-j\omega t}dt, \quad \omega \in \mathbb{R}$$

• A signal *x*(*t*) is said to have a *Fourier transform in the ordinary sense* if the above integral converges

The Fourier Transform in the General Case – Cont'd

- The integral does converge if 1. the signal *x*(*t*) is "*well-behaved*"
 - 2. and *x*(*t*) is *absolutely integrable*, namely,

$$\int_{-\infty}^{\infty} |x(t)| \, dt < \infty$$

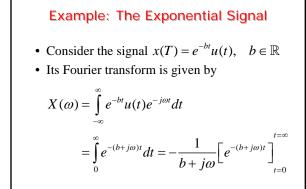
• Note: *well behaved* means that the signal has a finite number of discontinuities, maxima, and minima within any finite time interval

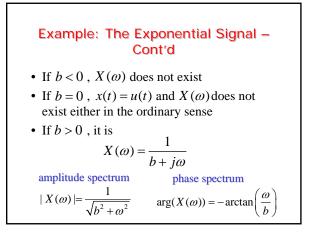
Example: The DC or Constant Signal

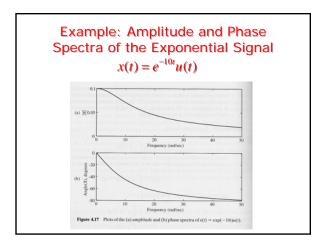
- Consider the signal $x(t) = 1, t \in \mathbb{R}$
- Clearly *x*(*t*) does not satisfy the first requirement since

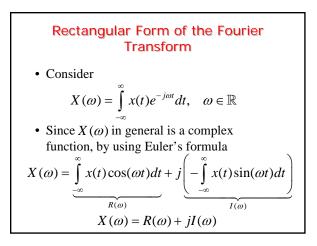
$$\int_{\infty}^{\infty} |x(t)| dt = \int_{-\infty}^{\infty} dt = \infty$$

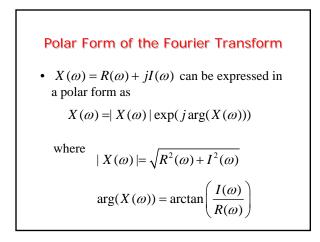
- Therefore, the constant signal does not have a *Fourier transform in the ordinary sense*
- Later on, we'll see that it has however a *Fourier transform in a generalized sense*

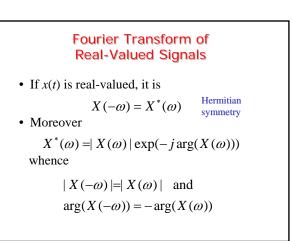


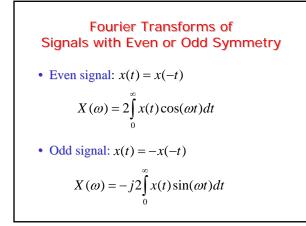


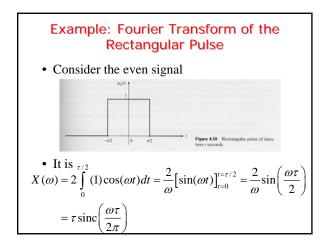


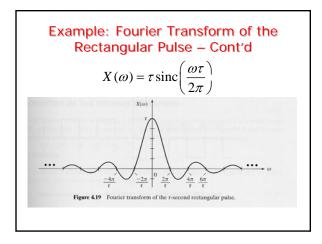


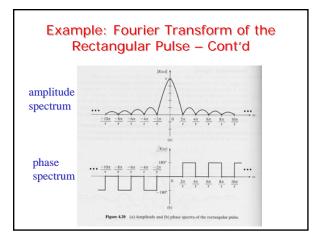












Bandlimited Signals

- A signal x(t) is said to be *bandlimited* if its Fourier transform $X(\omega)$ is zero for all $\omega > B$ where *B* is some positive number, called the *bandwidth of the signal*
- It turns out that any bandlimited signal must have an infinite duration in time, i.e., bandlimited signals cannot be time limited

- If a signal *x*(*t*) is not bandlimited, it is said to have *infinite bandwidth* or an *infinite spectrum*
- Time-limited signals cannot be bandlimited and thus all time-limited signals have infinite bandwidth
- However, for any well-behaved signal x(t)it can be proven that $\lim_{\omega \to \infty} X(\omega) = 0$ whence it can be assumed that

 $|X(\omega)| \approx 0 \quad \forall \omega > B$ B being a convenient large number

Inverse Fourier Transform

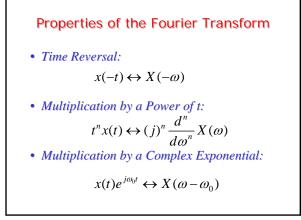
Given a signal x(t) with Fourier transform X (ω), x(t) can be recomputed from X (ω) by applying the inverse Fourier transform given by

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega, \quad t \in \mathbb{R}$$

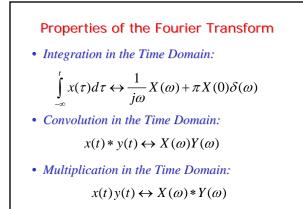
• Transform pair

$$x(t) \leftrightarrow X(\omega)$$

Properties of the Fourier Transform $x(t) \leftrightarrow X(\omega) \quad y(t) \leftrightarrow Y(\omega)$ • Linearity: $\alpha x(t) + \beta y(t) \leftrightarrow \alpha X(\omega) + \beta Y(\omega)$ • Left or Right Shift in Time: $x(t-t_0) \leftrightarrow X(\omega)e^{-j\omega t_0}$ • Time Scaling: $x(at) \leftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right)$

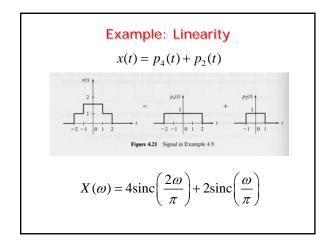


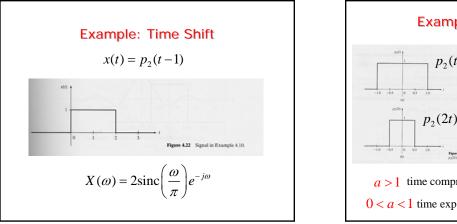
Properties of the Fourier Transform • Multiplication by a Sinusoid (Modulation): $x(t)\sin(\omega_0 t) \leftrightarrow \frac{j}{2} [X(\omega + \omega_0) - X(\omega - \omega_0)]$ $x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2} [X(\omega + \omega_0) + X(\omega - \omega_0)]$ • Differentiation in the Time Domain: $\frac{d^n}{dt^n} x(t) \leftrightarrow (j\omega)^n X(\omega)$

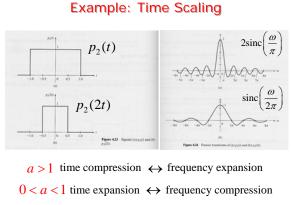


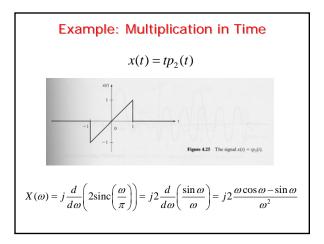
Properties of the Fourier Transform • Parseval's Theorem: $\int_{\mathbb{R}} x(t)y(t)dt \leftrightarrow \frac{1}{2\pi} \int_{\mathbb{R}} X^{*}(\omega)Y(\omega)d\omega$ if $y(t) = x(t) \int_{\mathbb{R}} |x(t)|^{2} dt \leftrightarrow \frac{1}{2\pi} \int_{\mathbb{R}} |X(\omega)|^{2} d\omega$ • Duality: $X(t) \leftrightarrow 2\pi x(-\omega)$

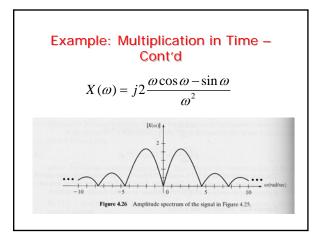
Summary				
00	in the y			
TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM				
Property	Transform Pair/Property			
Linearity Right or left shift in time	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$ $x(t - c) \leftrightarrow X(\omega)e^{-j\omega c}$			
Time scaling	$x(ar) \leftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right) a > 0$			
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$			
Multiplication by a power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2,$			
Multiplication by a complex exponential	$x(t)e^{i\omega t} \leftrightarrow X(\omega - \omega_0) \omega_0 \text{ real}$			
Multiplication by sin out	$x(t) \sin \omega_0 t \leftrightarrow \frac{j}{2} [X(\omega + \omega_0) - X(\omega - \omega_0)]$			
Multiplication by cos out	$x(t) \cos \omega_0 t \leftrightarrow \frac{1}{2} [X(\omega + \omega_0) + X(\omega - \omega_0)]$			
Differentiation in the time domain	$\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega) n = 1, 2,$			
Integration	$\int_{0}^{0} x(\lambda) d\lambda \leftrightarrow \frac{1}{i\omega} X(\omega) + \pi X(0)\delta(\omega)$			
Convolution in the time domain	$x(t) = v(t) \leftrightarrow X(\omega)V(\omega)$			
Multiplication in the time domain	$x(t)w(t) \leftrightarrow \frac{1}{2\pi} X(\omega) * V(\omega)$			
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)w(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(w)}V(w) dw$			
Special case of Parseval's theorem	$\int_{-\infty}^{\infty} x^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$			
Duality	$J_{-\infty} = 2\pi J_{-\infty}$ $X(t) \leftrightarrow 2\pi x(-\omega)$			

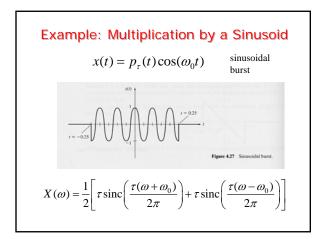


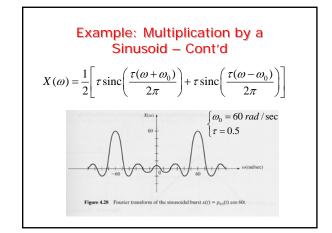


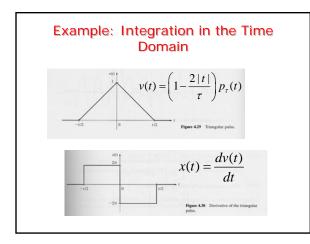


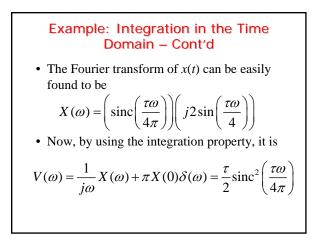


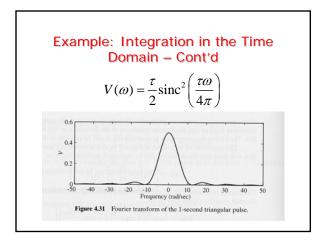


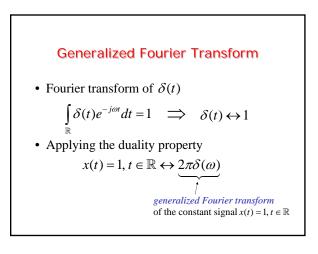


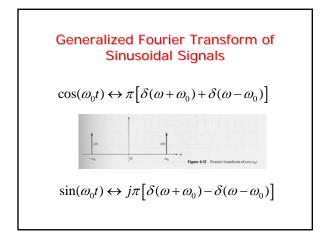












Fourier Transform of Periodic Signals

• Let *x*(*t*) be a periodic signal with period *T*; as such, it can be represented with its Fourier transform

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad \omega_0 = 2\pi / T$$

• Since
$$e^{j\omega_0 t} \leftrightarrow 2\pi\delta(\omega - \omega_0)$$
, it is

$$X(\omega) = \sum_{k=-\infty}^{\infty} 2\pi c_k \delta(\omega - k\omega_0)$$

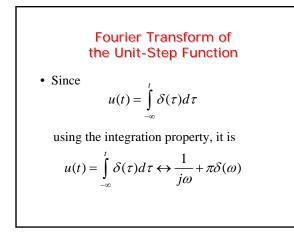


TABLE 4.2 C	OMMON FOURIER T	RANSFORM PAI	RS	
$1, -\infty < t < \infty$	$c \leftrightarrow 2\pi\delta(\omega)$	mir (4,791 cha)	transform t	
$-0.5 + u(t) \leftrightarrow$	1			
	20102.101			
$u(t) \leftrightarrow \pi \delta(\omega) +$	ico			
$\delta(t) \leftrightarrow 1$				
	c, c any real number			
$e^{-bt}u(t) \leftrightarrow \frac{1}{im}$	\overline{b} , $b > 0$			
	- ω ₀), ω ₀ any real num	ber		
$p_{\tau}(t) \leftrightarrow \tau \operatorname{sinc} \frac{\tau}{2}$				
-				
$\tau \operatorname{sinc} \frac{\tau t}{2\pi} \leftrightarrow 2\pi \eta$	$p_i(\omega)$			
(24)	T (Ter)			
$\left(1 - \frac{r}{\tau}\right) p_r(t) \in$	$\rightarrow \frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\tau \omega}{4\pi} \right) \\ 2\pi \left(1 - \frac{2 \omega }{\tau} \right) p_t(\omega)$			
$\frac{\tau}{\tau} \sin^2\left(\frac{\tau t}{\tau}\right)$	$2\pi\left(1-\frac{2}{\omega}\right)$			
$\frac{1}{2}$ sinc $\left(\frac{1}{4\pi}\right)$	$2\pi \left(1 - \frac{\tau}{\tau}\right) p_t(\omega)$			
	$(\omega + \omega_0) + \delta(\omega - \omega_0)]$			
	$=\pi[e^{-j\theta}\delta(\omega + \omega_0) + e^j$ $\omega + \omega_0) - \delta(\omega - \omega_0)]$			
$\sin(\omega_0 t + \theta) \leftrightarrow$	$j\pi[e^{-j\theta}\delta(\omega + \omega_0) - e^{-j\theta}\delta(\omega + \omega_0)]$	$p_{\delta(m-m)}$		