Chapter 4
The Fourier Series and
Fourier Transform

Representation of Signals in Terms
of Frequency Components

« Consider the CT signal defined by
N
x(t) =Y Acos(ot+6,), teR
k=1

e The frequencies “present in the signal’ are the
frequency @, of the component sinusoids

 The signal x(t) is completely characterized by
the set of frequencies w, , the set of amplitudes
A, and the set of phases 6,

Example: Sum of Sinusoids

 Consider the CT signal given by
X(t) = A cos(t) + A, cos(4t + z /3) + A, cos(8t + 1 2),
teR

» The signal has only three frequency
components at 1,4, and 8 rad/sec, amplitudes
A, A, A and phases 0,7 /3,7 /2

 The shape of the signal x(t) depends on the
relative magnitudes of the frequency
components, specified in terms of the

amplitudes A, A, A,

Example: Sum of Sinusoids —Cont’d
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Amplitude Spectrum

* Plot of the amplitudes A, of the sinusoids
making up x(t) vs. @

* Example: | | s




Phase Spectrum

* Plot of the phases g, of the sinusoids
making up x(t) vs. @

* Example:
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Figure 44 Phase spectrum of signal xf

Complex Exponential Form

« Euler formula: e/ = cos(a) + jsin(a)
e Thus
A cos(m,t+6,) = 9{|:Akej(wkt+9k):|
/

real part
whence b

X(t) = ZN:m[Ake“WU], teR
k=1

Complex Exponential Form — Cont’d

* And, recalling that R(z) = (z+z")/2 where
z=a+ jb, we can also write

N . .
X(t):Z%[AkeJ(wngk)+Ake*1((0kt+'9k):|’ teR
k=1

* This signal contains both positive and
negative frequencies

* The negative frequencies —w, stem from
writing the cosine in terms of complex
exponentials and have no physical meaning

Complex Exponential Form — Cont’d

» By defining
Ck = iej&k C_k — ie*jﬁk
2 2
it is also
N . ) N )
x(t) = Z[Ckejwkt +Cike—1wktJ _ Z e, teR
k=1 k=—N

k=0

S
complex exponential form
of the signal x(t)

Line Spectra

The amplitude spectrum of x(t) is defined as
the plot of the magnitudes| c, | versus @

The phase spectrum of x(t) is defined as the
plot of the angles Zc, =arg(c, ) versus @
This results in line spectra which are defined
for both positive and negative frequencies

Notice: for k =1,2,...

lc = cy | £o =—£C,
arg(c,) = —arg(c )

Example: Line Spectra

X(t) = cos(t) + 0.5cos(4t + z / 3) + cos(8t + z / 2)
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Figure 4.5  Line spectra for the signal in Example 4.2,




Fourier Series Representation of
Periodic Signals

* Let x(t) be a CT periodic signal with period
T ie, x(t+T)=x(t), VteR

» Example: the rectangular pulse train
|-.f|lI
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Figure 46 Periodic signal with fundsmental period T = 2.

The Fourier Series

 Then, x(t) can be expressed as
xt)= Y ce, teR
k=—00
where @, = 27 /T is the fundamental
frequency (rad/sec) of the signal and

1T/2
_4 ~ Jkagt _
6= [ x@e *'dt, k=0+1+2,..

-T/2

C, is called the constant or dc component of x(t)

The Fourier Series — Cont’d

* The frequencies ka, present in x(t) are
integer multiples of the fundamental
frequency o,

* Notice that, if the dc term ¢, is added to
N B
x(t)= > ce'™
K=—N

k=0
and we set N = oo, the Fourier series is a
special case of the above equation where all
the frequencies are integer multiples of @,

Dirichlet Conditions

» A periodic signal x(t), has a Fourier series
if it satisfies the following conditions:

1. x(t) is absolutely integrable over any
period, namely

a+T
j |x(t)|dt <o, VaeR
a
2. X(t) has only a finite number of maxima
and minima over any period

3. x(t) has only a finite number of
discontinuities over any period

Example: The Rectangular Pulse Train
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Figure 4.6  Periodic signal with fundamental period T = 2.

« From figure, T = 2whence w, =27/2 =7

* Clearly x(t) satisfies the Dirichlet conditions and
thus has a Fourier series representation

Example: The Rectangular Pulse
Train — Cont’d
1 &1 .
X(t) ==+ = (-1 I(k—l)/zlejkm, teR
© 2 kZ—DC k7r( )

k odd

Figure 47 Line spectra for the rectangular pulse train.




Trigonometric Fourier Series

* By using Euler’s formula, we can rewrite
xt)= Y ce’, teR
k=—w

as
X(t) =C, + Y 2| ¢, |cos(kapt + £c,), teR
/ k=1 ~~
dc component k-th harmonic

« This expression is called the trigonometric
Fourier series of x(t)

Example: Trigonometric Fourier
Series of the Rectangular Pulse Train

 The expression

1 &1 ;
XO) ==+ Y —(pkDAgka  { R
® 2 k;;o kir( )
K odd
can be rewritten as

1 & 2 T
t)== = kzt+| (D*D2_11Z | teR
x(t) 2+;k”cos(n+[( ) ]2] €

k odd

Gibbs Phenomenon

 Given an odd positive integer N, define the
N-th partial sum of the previous series

X (t):l+iicos(km{(—l)(k’l”z—1]£j teR
N2 Hka 2)

k odd

 According to Fourier’s theorem, it should be
lim [xy () -x(®) =0

Gibbs Phenomenon — Cont’d

X3 (t) % (t)

T (ps)

Gibbs Phenomenon — Cont’d

Xo1(t) X45(1)

overshoot: about 9 % of the signal magnitude
(present even if N — o0)

Parseval’s Theorem

o Let x(t) be a periodic signal with period T

» The average power P of the signal is defined

as
1 TI2

P=— [IRYOL:

-T/2

« Expressing the signal asx(t)= Y_ ¢, e’*, teR

it is also o
P= z |Ck |2
k=—00




Fourier Transform

» We have seen that periodic signals can be
represented with the Fourier series

* Can aperiodic signals be analyzed in terms of
frequency components?

* Yes, and the Fourier transform provides the
tool for this analysis

» The major difference w.r.t. the line spectra of
periodic signals is that the spectra of
aperiodic signals are defined for all real
values of the frequency variable @ not just
for a discrete set of values

Frequency Content of the
Rectangular Pulse

X(t) B
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Figure 412 Plots of the (a) ane-second rectangular pulse and (b) pulse train.

X(t) = 1im x; (1

Frequency Content of the
Rectangular Pulse — Cont’'d

* Since X; (t) is periodic with period T, we
can write
M) => ce’, teR
k=—0

where

C, =

1 T/2 )
= [ x@e *'dt, k=0,+1+2,..
-T/2

Frequency Content of the
Rectangular Pulse — Cont’d

» What happens to the frequency components
of x; (t)as T — 0?

e Fork=0

e Fork #0

C, = 2 sin(ﬂjzisin[ﬂ} k=+1%2,...
ko, T 2

Frequency Content of the
Rectangular Pulse — Cont’d

plotsof T |, | ’ l
vs. o = ka, e et | JELE, Tl
forT =2,510 : ioa N,

radiee

Frequency Content of the
Rectangular Pulse — Cont’d

* It can be easily shown that
limTc, :sinc(ﬂj, welR
T—>wo 272'

where

Figuee 414 Plot o sine i




Fourier Transform of the
Rectangular Pulse

 The Fourier transform of the rectangular
pulse x(t) is defined to be the limit of Tc,
asT >, i.e,

X(w)=1limTc, =sinc @2 , weR
Towo k 272'

Tl -, arg(X (@)

[T S —— Pl A P g i e g ol

Fourier Transform of the
Rectangular Pulse — Cont’d

« The Fourier transform X (w) of the
rectangular pulse x(t) can be expressed in
terms of x(t) as follows:

LT e ko _
C, _?J x(t)e etdt, k=0,+142,...

whence X(t)=0 fort<-T/2andt>T/2

Te, = [ x(®e ¥ dt, k=0+L%2,...

—0

Fourier Transform of the
Rectangular Pulse — Cont’d

* Now, by definition X (@) = I|mTck and,
sincekw, > wasT — oo

X (@) = j x()e dt, weR
« The inverse Fourier transform of X(w) is

X(t) _ L j X (w)edw, teR
2 7,

The Fourier Transform in the
General Case

» Given a signal x(t), its Fourier transform
X (@) is defined as

X (@) = j x(t)e 'dt, weR
 Asignal x(t)_is said to have a Fourier
transform in the ordinary sense if the above
integral converges

The Fourier Transform in the
General Case — Cont’d

» The integral does converge if
1. the signal x(t) is “well-behaved”
2. and x(t) is absolutely integrable, namely,

T|x(t)|dt<oo

* Note: well behaved means that the signal
has a finite number of discontinuities,
maxima, and minima within any finite time
interval

Example: The DC or Constant Signal

Consider the signal x(t)=1, teR

Clearly x(t) does not satisfy the first
requwement since

j|x(t)|dt J-dtzoo

Therefore the constant 5|gnal does not have
a Fourier transform in the ordinary sense

« Later on, we’ll see that it has however a
Fourier transform in a generalized sense




Example: The Exponential Signal

« Consider the signal x(T) =e™u(t), beR
* Its Fourier transform is given by

X () = j e Pu(t)e dt

t=w0

:w ~O+iolt g — _ 1 —(b+ jeo)t
Jetmam—g ole

Example: The Exponential Signal —
Cont’d

« If b<0, X(w) does not exist
* Ifb=0, x(t) =u(t) and X (w)does not
exist either in the ordinary sense

s Ifb>0,itis
X(0) = —
b+ jo
amplitude spectrum phase spectrum

| X(0) = J[)Z1+—2 arg(X (@)) = —arctan (%)
[0

Example: Amplitude and Phase
Spectra of the Exponential Signal

x(t) =e™%u(t)

Rectangular Form of the Fourier
Transform

» Consider

X (@) = j x()e dt, weR
« Since X (@) in general is a complex
function, by using Euler’s formula

X(w) = T X(t) cos(wt)dt + j[—T x(t)sin(wt)dt]

—00 —0

R(w) 1 (@)

X (@) =R(w)+ jl(®)

Polar Form of the Fourier Transform

+ X(®)=R(w)+ jl(w) can be expressed in
a polar form as

X (@) = X (o) |exp(jarg(X ()

" X (@) - R @)+ (@)

_ @)
arg(X (w)) = arctan [ R(a))]

Fourier Transform of
Real-Valued Signals
o If x(t) is real-valued, it is
* Hermitian
X(-0) = X" (@) symmetry
e Moreover

X" (@) =| X (@) | exp(-jarg(X (@)))
whence

| X (=) |5 X(@)| and
arg(X (-w)) = —arg(X ()




Fourier Transforms of
Signals with Even or Odd Symmetry

 Evensignal: x(t) = x(-t)

X (@) = 2T x(t) cos(et)dt

* Odd signal: x(t) = —x(-t)

X (@) = - jZTx(t)sin(a)t)dt

Example: Fourier Transform of the
Rectangular Pulse

* Consider the even signal

" Figure 418 Rectangulas pulse of durs
tion ¢ seconds

e It iS 712 2 2
X(w) =2 j () cos(at)dt = = [sin(wt)[ " = Zsin [ﬂj
0 [0) w

t=0 2
. T
=zsInC| —
LZE)

Example: Fourier Transform of the
Rectangular Pulse — Cont’d

X(w) = rsinc(%)

B0
N

Figure 19 Fourker transform of the r-second rectangular

Example: Fourier Transform of the
Rectangular Pulse — Cont’d

amplitude
spectrum

phase
spectrum

Figure 430 () Amplituds snd (%) phass spocts of the recrangela pube

Bandlimited Signals

 Assignal x(t) is said to be bandlimited if its
Fourier transform X (@) is zero for all@ > B
where B is some positive number, called
the bandwidth of the signal

* It turns out that any bandlimited signal must
have an infinite duration in time, i.e.,
bandlimited signals cannot be time limited

Bandlimited Signals — Cont’d

« If a signal x(t) is not bandlimited, it is said
to have infinite bandwidth or an infinite
spectrum

 Time-limited signals cannot be
bandlimited and thus all time-limited
signals have infinite bandwidth

» However, for any well-behaved signal x(t)
it can be proven that lim X (w) =0
whence it can be asstiniéd that

| X(@)|*0 VYo>B

B being a convenient large number




Inverse Fourier Transform

* Given a signal x(t) with Fourier transform
X (w), x(t) can be recomputed from X (@)
by applying the inverse Fourier transform
given by

X(t) L j X(w)edw, teR
2r 2,
* Transform pair
X(t) & X (@)

Properties of the Fourier Transform
Xt) o X(w) yt)eY(w)
* Linearity:
ax(t)+ py(t) & aX (o) + pY (@)
* Left or Right Shift in Time:
X(t—t,) > X (w)e "
* Time Scaling:

x(at) & 1 X (2]
a

a

Properties of the Fourier Transform

* Time Reversal:
X(-t) & X(-w)

* Multiplication by a Power of t:
n \n dn
t'x(t) < (J) X()

do"
* Multiplication by a Complex Exponential:

x(t)e' " < X (o —w,)

Properties of the Fourier Transform
* Multiplication by a Sinusoid (Modulation):

X(t) sin(eogt) <—>%[X(a)+a)0)— X (- )]
X(t) cos(w,t) (—)%[X (0+w,)+ X (a)—a)o)]

« Differentiation in the Time Domain:
n

dt"

X(t) < (jo)" X (@)

Properties of the Fourier Transform
« Integration in the Time Domain:

j X(2)d7 > - X (@) + 7X (0)5 ()
jo

—0

 Convolution in the Time Domain:
x()*y(t) & X()Y (o)
¢ Multiplication in the Time Domain:
x®)y(t) & X(@)*Y (o)

Properties of the Fourier Transform

e Parseval’s Theorem:

[x® vt Hi [X* (@) (@)do

if y(t) = x(t) i | x(t) [? dt ei E{ | X (@) Pdw

* Duality:
X(t)  27x(-w)




Properties of the Fourier Transform -
Summary

TABLE 41 PAOPERTIES OF THE FOURKER TRANSFORM

Example: Linearity
X(t) = p(t) + p,(t)

Figure 4.21  Signal in Example 4.9,

X(w) = 4sinc£2—wj + 25inc(2j
T

T

Example: Time Shift
X(t) = p(t-1)

Figure 422 Signal in Example 4.101

X (w) = Zsinc(gje"‘”
T

Example: Time Scaling

e fEen)

a >1 time compression <> frequency expansion

0 < a <1 time expansion <> frequency compression

Example: Multiplication in Time

X(t) =tp, (t)

l Figure 425 The signal s(7) = ip.r)

X(w):ji Zsinc(gj :jzi(sme:jszOSwz—smw
do V.4 do\ o 10}

Example: Multiplication in Time —
Cont'd

wCOSw—Sinw
a)Z

X () = j2

- — e e LT
—10 75 lo s 10

Figure 4.26  Amplitude spectrum of the signal in Figure 4.25.
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Example: Multiplication by a Sinusoid

sinusoidal

X(t) = p.()cos(apt)  Fns

Figuee 427 Sasmsoidal burst

X(w) = ;{rsinc(r(w;%)j+ rsinc[r(wz_w")ﬂ
T T

Example: Multiplication by a
Sinusoid — Cont’d

X(w) = ;{rsinc(f(w;%)}r rsinc(r(wz_w")ﬂ

T T

R y , =60 rad /sec
=05

S

g
)
z

Example: Integration in the Time
Domain

Nl—w] b.(t)
7%

Example: Integration in the Time
Domain — Cont’d

 The Fourier transform of x(t) can be easily
found to be

i) )

» Now, by using the integration property, it is

V(w) = i X(w)+ 72X (0)o(w) = zsincz (2)
Jo 2 4r

Example: Integration in the Time
Domain — Cont’d

V(o) :%sinc2 (%)

0.6

04
=

0.2

e

50, 140, =30, | -20), =10/ 0 10 20 30 40, 50
Frequency (radisec)

Figure 4.31  Fourier transform of the 1-second triangular pulse.

Generalized Fourier Transform

« Fourier transform of &(t)
[ome™dt=1 = 5@ 1
R

* Applying the duality property
X(t)=LteR <> 276 (w)
%,_J

generalized Fourier transform
of the constant signal x(t) =1,te R

11



Generalized Fourier Transform of
Sinusoidal Signals

cos(apt) <> 7[5 (@ + @) + 5 (0~ ;)]

- SERE

Figmre 403 Foutier samsdorm of con s

sin(agt) > j7[6(0+m) - 5(0 - ay)]

Fourier Transform of Periodic Signals

* Let x(t) be a periodic signal with period T;
as such, it can be represented with its
Fourier transform

xt)= D ce™ g =27/T

k=—o0

» Since e/ > 275 (w — wy), itis

X (@)=Y 276,6(w—kay)

k=—o0

Fourier Transform of
the Unit-Step Function

* Since ¢
ut) = [ 5(x)dr

using the integration property, it is

u(t) = j 5(r)dr o jiwma(w)

Common Fourier Transform Pairs

TABLE 4.2 COMMON FOURIER TRANSFORM PAIRS

I, = i D)
1

05 + ufr) & —
jou

1

wlf) > adfar) + —
Jeo

At 1
Bt = c) 4+ e, ¢ any real number

+ b
e 2w = ey), oy any real number

e Minfr) ¢4 — b=0
e

sin angt o (o + eny) "
sin (ot + ) fale P + o) — e®die = an)]
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