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Chapter 4
The Fourier Series and 

Fourier Transform

Chapter 4
The Fourier Series and 

Fourier Transform

• Consider the CT signal defined by

• The  frequencies `present in the signal’ are  the 
frequency       of the component sinusoids

• The signal x(t) is completely characterized by 
the set of frequencies      , the set of amplitudes    

, and the set of phases

Representation of Signals in Terms 
of Frequency Components

Representation of Signals in Terms 
of Frequency Components
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• Consider the CT signal given by

• The signal has only three frequency three frequency 
componentscomponents at 1,4, and 8 rad/sec, amplitudes 

and phases
• The shape of the signal x(t) depends on the 

relative magnitudes of the frequency 
components, specified  in terms of the 
amplitudes

Example: Sum of SinusoidsExample: Sum of Sinusoids
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Example: Sum of Sinusoids –Cont’dExample: Sum of Sinusoids –Cont’d
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Example: Sum of Sinusoids –Cont’dExample: Sum of Sinusoids –Cont’d
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• Plot of the amplitudes      of the sinusoids 
making up x(t) vs.

• Example:

Amplitude SpectrumAmplitude Spectrum
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• Plot of the phases      of the sinusoids 
making up x(t) vs.

• Example:

Phase SpectrumPhase Spectrum
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ω
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•• Euler formulaEuler formula:
• Thus

whence

Complex Exponential FormComplex Exponential Form
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• And, recalling that                                where 
, we can also write

• This signal contains both positive and 
negative frequencies

• The negative frequencies stem from 
writing the cosine in terms of  complex 
exponentials and have no physical meaning

Complex Exponential Form – Cont’dComplex Exponential Form – Cont’d
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• By  defining

it is also

Complex Exponential Form – Cont’dComplex Exponential Form – Cont’d
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complex exponential formcomplex exponential form
of the signal x(t)

• The amplitude spectrumamplitude spectrum of x(t) is defined as 
the plot of the magnitudes        versus 

• The phase spectrumphase spectrum of x(t) is defined as the 
plot of the angles                         versus

• This results in line spectraline spectra which are defined 
for both positive and negative frequencies

• Notice: for

Line SpectraLine Spectra
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Example: Line SpectraExample: Line Spectra
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• Let x(t) be a CT periodic signal with period 
T, i.e.,

• Example: the rectangular pulse trainrectangular pulse train

Fourier Series Representation of 
Periodic Signals

Fourier Series Representation of 
Periodic Signals
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• Then, x(t) can be expressed as

where                     is the fundamental fundamental 
frequencyfrequency (rad/sec) of the signal and 

The Fourier SeriesThe Fourier Series
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is called the constant or dc component of x(t)0c

• The frequencies         present in x(t) are 
integer multiples of the fundamental 
frequency

• Notice that, if the dc term is added to 

and we set             , the Fourier series is a 
special case of the above equation where all 
the frequencies are integer multiples of

The Fourier Series – Cont’dThe Fourier Series – Cont’d
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• A periodic signal x(t), has a Fourier series 
if it satisfies the following conditions:

1. x(t) is absolutely absolutely integrableintegrable over any 
period, namely 

2. x(t) has only a finite number of maxima finite number of maxima 
and minima and minima over any period

3. x(t) has only a finite number of finite number of 
discontinuities discontinuities over any period

Dirichlet ConditionsDirichlet Conditions
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a T

a
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• From figure,            whence

• Clearly x(t) satisfies the Dirichlet conditions and   
thus has a Fourier series representation

Example: The Rectangular Pulse TrainExample: The Rectangular Pulse Train
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Example: The Rectangular Pulse 
Train – Cont’d

Example: The Rectangular Pulse 
Train – Cont’d
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• By using Euler’s formula, we can rewrite

as

• This expression is called the trigonometric trigonometric 
Fourier seriesFourier series of x(t)

Trigonometric Fourier SeriesTrigonometric Fourier Series
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• The expression

can be rewritten as

Example: Trigonometric Fourier 
Series of the Rectangular Pulse Train

Example: Trigonometric Fourier 
Series of the Rectangular Pulse Train
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• Given an odd positive integer N, define the 
N-th partial sum of the previous series

• According to FourierFourier’’s theorems theorem, it should be

Gibbs PhenomenonGibbs Phenomenon
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Gibbs Phenomenon – Cont’dGibbs Phenomenon – Cont’d
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Gibbs Phenomenon – Cont’dGibbs Phenomenon – Cont’d

21( )x t 45 ( )x t

overshootovershoot: about 9 % of the signal magnitude 
(present even if               )N →∞

• Let x(t) be a periodic signal with period T
• The average poweraverage power P of the signal is defined 

as

• Expressing the signal as
it is also

Parseval’s TheoremParseval’s Theorem
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• We have seen that periodic signals can be 
represented with the Fourier series

• Can aperiodicaperiodic signalssignals be analyzed in terms of 
frequency components?

• Yes, and the Fourier transform provides the 
tool for this analysis

• The major difference w.r.t. the line spectra of 
periodic signals is that the spectra of spectra of 
aperiodicaperiodic signalssignals are defined for all real 
values of the frequency variable     not just 
for a discrete set of values

Fourier TransformFourier Transform

ω

Frequency Content of the 
Rectangular Pulse

Frequency Content of the 
Rectangular Pulse
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• Since          is periodic with period T, we 
can write 

Frequency Content of the 
Rectangular Pulse – Cont’d
Frequency Content of the 

Rectangular Pulse – Cont’d
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• What happens to the frequency components 
of          as             ? 

• For 

• For 

Frequency Content of the 
Rectangular Pulse – Cont’d
Frequency Content of the 

Rectangular Pulse – Cont’d
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Frequency Content of the 
Rectangular Pulse – Cont’d
Frequency Content of the 

Rectangular Pulse – Cont’d

plots of          
vs.               
for
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• It can be easily shown that

where

Frequency Content of the 
Rectangular Pulse – Cont’d
Frequency Content of the 

Rectangular Pulse – Cont’d
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• The Fourier transform of the rectangular 
pulse x(t) is defined to be the limit of        
as             , i.e.,

Fourier Transform of the 
Rectangular Pulse

Fourier Transform of the 
Rectangular Pulse
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• The Fourier transform            of the 
rectangular pulse x(t) can be expressed in 
terms of x(t) as follows:

Fourier Transform of the 
Rectangular Pulse – Cont’d
Fourier Transform of the 

Rectangular Pulse – Cont’d
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whence ( ) 0 for / 2 and / 2x t t T t T= < − >

• Now, by definition                            and, 
since

• The inverse Fourier transforminverse Fourier transform of            is

Fourier Transform of the 
Rectangular Pulse – Cont’d
Fourier Transform of the 

Rectangular Pulse – Cont’d
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• Given a signal x(t), its Fourier transform   Fourier transform   
is defined as

• A signal x(t) is said to have a Fourier 
transform in the ordinary sense if the above 
integral converges

The Fourier Transform in the 
General Case

The Fourier Transform in the 
General Case
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• The integral does converge if
1. the signal x(t) is “wellwell--behavedbehaved”
2. and x(t) is  absolutely absolutely integrableintegrable, namely,

• Note: well behavedwell behaved means that the signal 
has a finite number of discontinuities, 
maxima, and minima within any finite time 
interval

The Fourier Transform in the 
General Case – Cont’d

The Fourier Transform in the 
General Case – Cont’d

| ( ) |x t dt
∞
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• Consider the signal 
• Clearly x(t) does not satisfy the first 

requirement since

• Therefore, the constant signal does not have 
a Fourier transform in the ordinary senseFourier transform in the ordinary sense

• Later on, we’ll see that it has however a 
Fourier transform in a generalized senseFourier transform in a generalized sense

Example: The DC or Constant SignalExample: The DC or Constant Signal
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• Consider the signal
• Its Fourier transform is given by

Example: The Exponential SignalExample: The Exponential Signal
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• If           ,            does not exist
• If           ,                    and           does not 

exist either in the ordinary sense
• If           , it is

Example: The Exponential Signal –
Cont’d

Example: The Exponential Signal –
Cont’d
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Example: Amplitude and Phase 
Spectra of the Exponential Signal
Example: Amplitude and Phase 

Spectra of the Exponential Signal
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• Since           in general is a complex 
function, by using Euler’s formula

Rectangular Form of the Fourier 
Transform

Rectangular Form of the Fourier 
Transform
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( ) ( ) ( )X R jIω ω ω= +

• can be expressed in 
a polar form as

where

Polar Form of the Fourier TransformPolar Form of the Fourier Transform
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• If x(t) is real-valued, it is

• Moreover

whence

Fourier Transform of 
Real-Valued Signals
Fourier Transform of 
Real-Valued Signals

( ) ( )X Xω ω∗− =

( ) | ( ) | exp( arg( ( )))X X j Xω ω ω∗ = −

| ( ) | | ( ) | and
arg( ( )) arg( ( ))
X X

X X
ω ω

ω ω
− =

− = −

HermitianHermitian
symmetrysymmetry



8

•• Even signalEven signal:

•• Odd signal:Odd signal:

Fourier Transforms of 
Signals with Even or Odd Symmetry

Fourier Transforms of 
Signals with Even or Odd Symmetry
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• Consider the even signal

• It is

Example: Fourier Transform of the 
Rectangular Pulse

Example: Fourier Transform of the 
Rectangular Pulse
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Example: Fourier Transform of the 
Rectangular Pulse – Cont’d

Example: Fourier Transform of the 
Rectangular Pulse – Cont’d
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Example: Fourier Transform of the 
Rectangular Pulse – Cont’d

Example: Fourier Transform of the 
Rectangular Pulse – Cont’d

amplitude amplitude 
spectrumspectrum

phase phase 
spectrumspectrum

• A signal x(t) is said to be bandlimitedbandlimited if its 
Fourier transform           is zero for all  
where BB is some positive number, called 
the bandwidth of the signalbandwidth of the signal

• It turns out that any bandlimited signal must 
have an infinite duration in time, i.e., 
bandlimited signals cannot be time limited           

Bandlimited SignalsBandlimited Signals

( )X ω Bω >

• If a signal x(t) is not bandlimited, it is said 
to have infinite bandwidthinfinite bandwidth or an infinite infinite 
spectrumspectrum

• Time-limited signals cannot be 
bandlimited and thus all time-limited 
signals have infinite bandwidth

• However, for any well-behaved signal x(t) 
it can be proven that                           
whence it can be assumed that  

Bandlimited Signals – Cont’dBandlimited Signals – Cont’d
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ω

ω
→∞

=

| ( ) | 0X Bω ω≈ ∀ >
B being a convenient large number
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• Given a signal x(t) with Fourier transform      
, x(t) can be recomputed from           

by applying the inverse Fourier transforminverse Fourier transform
given by

•• Transform pairTransform pair

Inverse Fourier TransformInverse Fourier Transform

( )X ω ( )X ω
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( ) ( )x t X ω↔

Properties of the Fourier Transform Properties of the Fourier Transform 

•• Linearity:Linearity:

•• Left or Right Shift in Time:Left or Right Shift in Time:

•• Time Scaling:Time Scaling:

( ) ( )x t X ω↔ ( ) ( )y t Y ω↔

( ) ( ) ( ) ( )x t y t X Yα β α ω β ω+ ↔ +

0
0( ) ( ) j tx t t X e ωω −− ↔

1( )x at X
a a

ω⎛ ⎞↔ ⎜ ⎟
⎝ ⎠

Properties of the Fourier Transform Properties of the Fourier Transform 

•• Time Reversal:Time Reversal:

•• Multiplication by a Power of t:Multiplication by a Power of t:

•• Multiplication by a Complex Exponential:Multiplication by a Complex Exponential:
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Properties of the Fourier Transform Properties of the Fourier Transform 

•• Multiplication by a Sinusoid (Modulation):Multiplication by a Sinusoid (Modulation):

•• Differentiation in the Time Domain:Differentiation in the Time Domain:
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2
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Properties of the Fourier Transform Properties of the Fourier Transform 

•• Integration in the Time Domain:Integration in the Time Domain:

•• Convolution in the Time Domain:Convolution in the Time Domain:

•• Multiplication in the Time Domain:Multiplication in the Time Domain:
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t

x d X X
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( ) ( ) ( ) ( )x t y t X Yω ω∗ ↔
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Properties of the Fourier Transform Properties of the Fourier Transform 

•• ParsevalParseval’’ss Theorem:Theorem:

•• Duality:Duality:
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Properties of the Fourier Transform -
Summary 

Properties of the Fourier Transform -
Summary 

Example: LinearityExample: Linearity
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2( ) 4sinc 2sincX ω ωω
π π
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Example: Time ShiftExample: Time Shift
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Example: Time ScalingExample: Time Scaling
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2
ω
π
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time compression         frequency expansion↔
time expansion         frequency compression↔

1a >
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Example: Multiplication in TimeExample: Multiplication in Time
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Example: Multiplication in Time –
Cont’d

Example: Multiplication in Time –
Cont’d
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Example: Multiplication by a SinusoidExample: Multiplication by a Sinusoid

0( ) ( )cos( )x t p t tτ ω= sinusoidal 
burst

0 01 ( ) ( )( ) sinc sinc
2 2 2
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π π
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Example: Multiplication by a 
Sinusoid – Cont’d

Example: Multiplication by a 
Sinusoid – Cont’d
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Example: Integration in the Time 
Domain

Example: Integration in the Time 
Domain

2 | |( ) 1 ( )tv t p tττ
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( )( ) dv tx t
dt

=

Example: Integration in the Time 
Domain – Cont’d

Example: Integration in the Time 
Domain – Cont’d

• The Fourier transform of x(t) can be easily 
found to be

• Now, by using the integration property, it is

( ) sinc 2sin
4 4
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Example: Integration in the Time 
Domain – Cont’d

Example: Integration in the Time 
Domain – Cont’d

2( ) sinc
2 4

V τ τωω
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

• Fourier transform of

• Applying the duality property 

Generalized Fourier TransformGeneralized Fourier Transform

( )tδ

( ) 1j tt e dtωδ − =∫
\

( ) 1tδ ↔⇒

( ) 1, 2 ( )x t t πδ ω= ∈ ↔\ ��	�


generalized Fourier transformgeneralized Fourier transform
of the constant signal ( ) 1,x t t= ∈\
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Generalized Fourier Transform of 
Sinusoidal Signals

Generalized Fourier Transform of 
Sinusoidal Signals

[ ]0 0 0cos( ) ( ) ( )tω π δ ω ω δ ω ω↔ + + −

[ ]0 0 0sin( ) ( ) ( )t jω π δ ω ω δ ω ω↔ + − −

Fourier Transform of Periodic SignalsFourier Transform of Periodic Signals

• Let x(t) be a periodic signal with period T; 
as such, it can be represented with its 
Fourier transform

• Since                                    , it is0
02 ( )j te ω πδ ω ω↔ −

0( ) jk t
k

k
x t c e ω

∞

=−∞

= ∑ 0 2 /Tω π=

0( ) 2 ( )k
k

X c kω π δ ω ω
∞

=−∞

= −∑

• Since

using the integration property, it is

Fourier Transform of 
the Unit-Step Function
Fourier Transform of 

the Unit-Step Function

( ) ( )
t

u t dδ τ τ
−∞

= ∫

1( ) ( ) ( )
t

u t d
j

δ τ τ πδ ω
ω−∞

= ↔ +∫

Common Fourier Transform PairsCommon Fourier Transform Pairs


