Chapter 3
Convolution Representation



DT Unit-lmpulse Response

o Consider the DT SISO system:

X[n] 2 System - y[n]

o If the input signal is x[n] = o[n]and the
system has no energy at n = 0, the output
y[n] = h[n] is called the impulse response of
the system

5[“] " System > h[n]




Example

e Consider the DT system described by
y[n]+ay[n—-1] = bx|n]
e |Its Impulse response can be found to be

h[n] =
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Figure 3.1 Generation of the unit-pulse response.



Representing Signals in Terms of
Shifted and Scaled Impulses

o Let x[n] be an arbitrary input signal toa DT
LTI system

e Suppose that x[n]=0forn=-1,-2,...
» This signal can be represented as

x[n] = x[0]5[n] + X[LJS[n - 1]+ X[2]6[n — 2] +---

=Y x(ilsIn—i], n=0,12,..



Exploiting Time-Invariance
and Linearity

Input = d|n — i] Output = Aln — i]

—p System -

Figure 3.2 The shifted unit-pulse response a[n — i.

y[n] = ix[i]h[n i, n>0



The Convolution Sum

 This particular summation is called the
convolution sum

y[n]= > x[ilh[n-i]
1=0
X[n]* h[n]
» Equation y[n] = x[n]=*h[n] is called the
convolution representation of the system

 Remark: a DT LTI system is completely
described by its impulse response h[n]




Block Diagram Representation
of DT LTI Systems

 Since the impulse response h[n] provides
the complete description of a DT LTI
system, we write

X[n] 1 h[n] - y[n]




The Convolution Sum
for Noncausal Signals

e Suppose that we have two signals x[n] and
v[n] that are not zero for negative times
(noncausal signals)

e Then, their convolution is expressed by the
two-sided series

y[nl= ), x[ilv[n—i]



Example: Convolution of Two
Rectangular Pulses

o Suppose that both x[n] and v[n] are equal to
the rectangular pulse p[n] (causal signal)
depicted below
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Figure 3.3 The pulse p[x].



he Folded Pulse

« The signal v[—I] is equal to the pulse p[i]
folded about the vertical axis
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Figure 3.4 The folded pulse.



Sliding vin—1] over x|i]
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Figure 3.5 Plots of (a) x[i]; (b) v[n — i]; (c) x[i]v[n — {] for 0 =n = 9.



Sliding v[n—1] over x|i] - Cont’'d
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Figure 3.6 Plots of (a) x[i]; (b) v[n — i]; (¢) x[i]v[n — i] for 10 = n = 18.



Plot of x[n]*v[n}]
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Figure 3.7 Plot of x[n] = v|n].



Properties of the Convolution Sum

e Assoclativity

X[n]*(v[n]=w[n]) = (X[n]*Vv[n]) *win]
e Commutativity

X[n]=*v[n] =v[n]=* X|n]

e Distributivity w.r.t. addition

x[n]=* (v[n]+w[n]) = X[n]*Vv[n]+ x[n]*w[n]



Properties of the Convolution Sum - Cont’d

 Shift property: define

then

-

(X,[n]=x[n-q]
V,[n]=Vv[n—q]

\ w[n] = x[n]*Vv[n]

W —q] = X,[n]*v[n] = x[n]*v,[n]
e Convolution with the unit impulse

X[n]*o[n] = x[n]

e Convolution with the shifted unit impulse
X[n]*d,[n] = x[n-q]



Example: Computing Convolution
with Matlab

e Consider the DT LTI system

X[n] 1 hin] - y[n]

* Impulse response:
h[n]=sIin(0.5n), n=>0
e Input signal:
X[n]=sin(0.2n), n=>0



Example: Computing Convolution

with Matlab — Cont’d

oy vxo il

«[n] =sin(0.2n). n>0 - xl” M‘TLIHJ “rr\”l




Example: Computing Convolution
with Matlab — Cont’d

o Suppose we want to compute y[n] for
n=0,1...,40

« Matlab code:
n=0:40;
Xx=sin(0.2*n);
h=sin(0.5*n);
y=conv(x,h);

stem(n,y(1:length(n)))



Example: Computing Convolution
with Matlab — Cont’d

y[n] = x[n]*h[n]

Figure 3.9 Plot of output response in Example 3.5.



CT Unit-lmpulse Response

e Consider the CT SISO system:

X(t) +  System - y(1)

o If the input signal is x(t) = &(t) and the
system has no energy att = 0, the output
y(t) = h(t) is called the impulse response of
the system

o (1) ' System - h(t)




Exploiting Time-lnvariance

o Let x[n] be an arbitrary input signal with
X(t)=0, fort<0

 Using the sifting property of o(t), we may

Write

X(1) = T X(t)o(t—7)dr, t=>0

e Exploiting time-invariance, It is

o(t—1)

System

-h(t—17)



Exploiting Time-Invariance

Input = 6 (1)

Output = h(r)
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Figure 3.10 Generation of the impulse response.
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Figure 3.12 Time-shifted impulse response A(r — 1).



Exploiting Linearity

* Exploiting linearity, It Is
y(t) = j x(r)h(t-7)dz, t>0
>

o |If the integrand X(7)h(t —7) does not contain
an impulse located at = =0, the lower limit of
the integral can be taken to be 0O,l.e.,

o0

y(t) = j x(r)h(t-7)dz, t>0

0



The Convolution Integral

 This particular integration is called the
convolution integral

y(t) =jx(f)h(t—f)dr, t>0

J

X(t) * h(t)
 Equation y(t) = x(t) *h(t) Is called the
convolution representation of the system

 Remark: a CT LTI system is completely
described by its impulse response h(t)



Block Diagram Representation
of CT LTI Systems

 Since the impulse response h(t) provides the
complete description of a CT LTI system,
we write

X(t) 1 h(t) - Y()




Example: Analytical Computation of
the Convolution Integral

« Suppose that x(t) = h(t) = p(t), where p(t)
IS the rectangular pulse depicted in figure

p(t) 1




Example — Cont’d

 In order to compute the convolution integral

y(t) = TX(T)h(t —7)dr, t=>0

we have to consider four cases:



Example — Cont’d

e Casel: t<0

h(t—17) X(7)

y(t)=0



Example — Cont’d

e Case2: 0<t<T

h(t—7) L X(7)

t—T 0t T

y(t):jdrzt



Example — Cont’d

e Case3: 0<t-T<T —> T<LtL2T

X(7) h(t —7)

0 t—T T t T’

y(t) = ] dr=T —(t—T)=2T -t



Example — Cont’d

e Case 4: T<t-T — 2T <t

X(7) h(t—17)

0 Tt-T t

y(t)=0



Example — Cont’d

v y(t) = x(t) = h(t)




Properties of the Convolution Integral

e Assoclativity

X(t) * (v(t) = w(t)) = (x(t) = v(t)) *w(t)

e Commutativity

X(t) *#v(t) = v(t) *Xx(t)

e Distributivity w.r.t. addition

X(t) * (v(t) +w(t)) = x(t) *v(t) + X(t) * w(t)



Properties of the
Convolution Integral - Cont’d

Shif defi Xq(t) =x(t=0)

° ITt property: dertine

Property J v, (t) =v(t—q)
then \ w(t) = x(t) *v(t)

W(t —q) = X, (t) *Vv(t) = X(t) * Vv, (t)
e Convolution with the unit impulse

X(t) * 5 (t) = x(t)

e Convolution with the shifted unit impulse

X(t) * 0 (t) = x(t—q)



Properties of the
Convolution Integral - Cont’d

 Derivative property: If the signal x(t) Is
differentiable thenitis

—[x(t) «V(t)] =

o |If both x(t) and v(t) are differentiable, then it
IS also

d2 dx(t) dv(t
S xOv)- Xi) Zji)

dx(t)

V(1)




Properties of the
Convolution Integral - Cont’d

* |ntegration property: define
( t

XD (t) = j x(z)dz

then
(x#v) (1) = X7 (1) #v(t) = x(t) = v (1)



Representation of a CT LTI System
In Terms of the Unit-Step Response

o Let g(t) be the response of a system with
impulse response h(t) when x(t) = u(t) with
no initial energy attimet =0, i.e.,

u(t) 7 h(t) - g(t)

 Therefore, It IS
g(t) =h(t) *u(t)



Representation of a CT LTI System
In Terms of the Unit-Step Response
— Cont’d

 Differentiating both sides
dg(t) _ dh(t) Fu(t) = h(t) du(t)

dt dt at
 Recalling that
dl:jit) =o(t) and h(t) =h(t)*o(t)
itis ¢ |
%Et) =h(t) or g(t)= !h(r)df



