Chapter 3
Convolution Representation




DT Unit-lmpulse Response

» Consider the DT SISO system:

y[n]

System

X[n]

o |If the input signal is X[n] = d[n] and the
system has no energy at n =0, the output
y[n] = h[n] is called the impulse response of

the system

h[n]

System

o[n]




Example

» Consider the DT system described by
y[n]+ay[n—1] = bx[n]
* Its impulse response can be found to be
-a)'b, n=0,12,...

0, n=-1-2,-3,...
Input = d[n] Qutput = h[n]
1
n n
0 0
> System

Figure 3.1 Generation of the unit-pulse response.




Representing Signals in Terms of
Shifted and Scaled Impulses

 Let x[n] be an arbitrary input signal toa DT
LTI system

 Suppose that x[n] =0 forn=-1,-2,...
 This signal can be represented as

x[n] = x[0]o[n] + X[1]S[n —1] + x[2]o[n — 2] +- --

= il -il, n=012...




Exploiting Time-Invariance
and Linearity

Input = d[n = i| Qutput = hln — i]
1
. n —sesee *:on
5 ;

— - System

Figure 3.2 The shifted unit-pulse response h[n — i].

yInl= 3 x(ilhln—i], n=0




The Convolution Sum

 This particular summation is called the
convolution sum

yin] = Y X{ilh{n - ]

X[n]* hin]
 Equation y[n] = x[n]*h[n] is called the
convolution representation of the system

* Remark: a DT LTI system is completely
described by its impulse response h[n]




Block Diagram Representation

of DT LTI Systems

» Since the impulse response h[n] provides
the complete description of a DT LTI

system, we write

X[n]

h[n]

y[n]




The Convolution Sum
for Noncausal Signals

» Suppose that we have two signals x[n] and
v[n] that are not zero for negative times
(noncausal signals)

* Then, their convolution is expressed by the
two-sided series

y[n]= 2 X[ivn-i]

|=—00




Example: Convolution of Two
Rectangular Pulses

 Suppose that both x[n] and v[n] are equal to
the rectangular pulse p[n] (causal signal)
depicted below

pln]

.
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Figure 3.3  The pulse p[n].




The Folded Pulse

 The signal v[—i1] is equal to the pulse p[i]
folded about the vertical axis

|||||||

9 0

Figure 3.4 The folded pulsc.

10



Sliding v[n—i] over x{i]

vin = i]

11

Figure 3.5  Plots of (a) x[i]; (b) v[n — i]; (¢} x[i]v[n = {]for 0 =n = 9.
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Sliding v[n—1i] over x[i] - Cont'd

Figure 3.6  Plots of (a) x[i]; (b) v[n — i]; () x[i]v[n — i] for 10 = n = 18,
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Plot of x[n]*v[n]

x[n]*v[nJ1
10 [ ]
; 11 [
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Figure 3.7 Plot of x[#] + v[n].
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Properties of the Convolution Sum

» Associativity

X[n]= (v[n]*=w[n]) = (x[n]*v[n]) * win]
o Commutativity

X[n]*v[n] = v[n]*x[n]

e Distributivity w.r.t. addition

X[n]*(v[n]+w[n]) = x[n]*v[n]+ x[n] *w{n]
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Properties of the Convolution Sum - Cont’d
Xq[n]=x[n—q]
Vg[n]=v[n—q]

then win] = x[n]*v[n]

wn—q] = x,[n]*vin] = x[n]*v,[n]
 Convolution with the unit impulse

X[n]*o[n] = x[n]
» Convolution with the shifted unit impulse
X[n]*6,4[n]=x[n—-q]

« Shift property: define
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Example: Computing Convolution
with Matlab

» Consider the DT LTI system

X[n] h[n]

» impulse response:

h[n] =sin(0.5n), n>0
* input signal:

X[n]=sin(0.2n), n>0
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Example: Computing Convolution

with Matlab — Cont’d

h[n]=sin(0.5n), n>0 -

0%
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x[n]=sin(0.2n), n>0 - -::

Figare 38 Plots of (a) k{n] and (b) s]a] in Example 1.5
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Example: Computing Convolution
with Matlab — Cont’d

» Suppose we want to compute y[n] for
n=0,1...,40
» Matlab code:
n=0:40;
x=sin(0.2*n);
h=sin(0.5*n);
y=conv(x,h);

stem(n,y(1:length(n)))
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Example: Computing Convolution
with Matlab — Cont’d

y[n]= x[n]*h[n]
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8
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CT Unit-lmpulse Response

» Consider the CT SISO system:

X(t) —— System ——— y(t)

« If the input signal is x(t) = 6(t) and the
system has no energy att =07, the output
y(t) = h(t) is called the impulse response of
the system

o(t) —— system ——— h(t)
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Exploiting Time-Invariance

 Let x[n] be an arbitrary input signal with
X(t)=0, fort<0

« Using the sifting property of o (t), we may
write

X(t) = T X(r)o(t—7)dr, t>0

» Exploiting time-invariance, it is

o(t—17)

System |—— h(t — Z')

21



Exploiting Time-Invariance

Input = & (1) Qutput = hir)

(1)

A

System

Figure 3.10  Generation of the impulse response.

Input = dr — 1) Output = h(r — 4)

5 System

Figure 3.12 Time-shifted impulse response h(r — 1).




Exploiting Linearity

» Exploiting linearity, it is
y(t) = jx(r)h(t—r)dr, t>0
g

« If the integrand X(7)h(t —7) does not contain
an impulse located at 7 =0, the lower limit of
the integral can be taken to be 0,i.e.,

0

y(t) :jx(r)h(t—r)dz—, t>0

0
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The Convolution Integral

 This particular integration is called the
convolution integral

y(t) :jx(r)h(t—r)dr, t>0

N

X(t) *h(t)
 Equation y(t) = x(t) = h(t) is called the
convolution representation of the system

* Remark: a CT LTI system is completely
described by its impulse response h(t)
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Block Diagram Representation
of CT LTI Systems

* Since the impulse response h(t) provides the
complete description of a CT LTI system,
we write

X(t) —— ht) —— y()




Example: Analytical Computation of
the Convolution Integral

 Suppose that x(t) = h(t) = p(t), where p(t)
IS the rectangular pulse depicted in figure

p(t)
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Example — Cont’d
* In order to compute the convolution integral

y(t) = Tx(r)h(t—r)df, >0

we have to consider four cases:
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Example — Cont’d

e Casel: t<0

h(t—17)

X(7)

t—T t

y(t)=0
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Example — Cont’d

e Case2: 0<t<T

h(t—17)

X(z)

t—T

0t

T

y(t)=jdr=t
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Example — Cont’d

e Case3: O0Lt-T<T —> T<LtL2T

X(7) h(t—7)

O t-T T t

y(t) = ] dr=T —(t-T)=2T —t

t-T
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Example — Cont’d

e Case 4: T<t-T — 2T <t
X(7) h(t—17)
0 Tt-T

y(t)=0
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Example — Cont’d

y(t) = x(t) *h(t)
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Properties of the Convolution Integral

» Associativity

X(£) * (v(t) = w(t)) = (x(t) *v(t)) = w(t)

o Commutativity

x(t) = v(t) = v(t) *x(t)
e Distributivity w.r.t. addition

X(£) * (v(t) + w(t)) = x(t) *v(t) + x(t) * w(t)
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Properties of the
Convolution Integral - Cont’d

X, (1) =x(t—q)
v, (1) =v(t—Qq)
then w(t) = x(t) *v(t)

W(t —q) = X, (t) = v(t) = X(t) * v, (t)
 Convolution with the unit impulse

X(t)*5(t) = x(t)
» Convolution with the shifted unit impulse
X(t) * 5, (t) = x(t-q)

« Shift property: define
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Properties of the
Convolution Integral - Cont’d

 Derivative property: if the signal x(t) is
differentiable then it is

D =vo)] =S v

* If both x(t) and v(t) are differentiable, then it
is also

% (x(t) v (t)]_dx(t) dv(t)

dt
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Properties of the
Convolution Integral - Cont’d

e Integration property: define

( t
X = [ x(z)dr
% —00
t

v (M) = [ v(r)de

L —00

then
(x# V)T (t) = XV (R) #v(t) = x(2) * v (t)
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Representation of a CT LTI System
in Terms of the Unit-Step Response

» Let g(t) be the response of a system with
iImpulse response h(t) when x(t) = u(t) with
no initial energy attimet =0, i.e.,

u®) —— h) —— 9@

e Therefore, it is
g(t) =h(t) *u(t)
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Representation of a CT LTI System
in Terms of the Unit-Step Response
— Cont’d

« Differentiating both sides
dg(t) _ dh(t) “u(t) = h(t) * du(t)

dt dt St
» Recalling that
dl;it) =o(t) and h(t)=h(t)*o(t)
itis t
% =h(t) o g(t)= I h(r)dz
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