Chapter 2
Systems Defined by
Differential or Difference
Equations



Linear 1/0O Differential Equations
with Constant Coefficients

e Consider the CT SISO system

X(t) +  System - y(t)

described by
yN Z ay®(t) Zb X" (t)

d'y (1) 0 = 40

| | (l)t ~
acR,beR Yy"(t)= m T



Initial Conditions

 In order to solve the previous equation for

t > 0, we have to know the N initial
conditions

y(0),y*(0),...,y"(0)



Initial Conditions — Cont’d

o |f the M-th derivative of the input x(t)
contains an impulse ko (t) or a derivative of
an impulse, the N initial conditions must be

taken attimet=0", i.e.,

y(07),y?(0),...,y"7(07)



First-Order Case

e Consider the following differential equation:

dy(t) _
it +ay(t) =bx(t)

e |ts solution is

v(t) = y(0)e ™ + j e Ihx(r)dzr, t>0
or ’

y(t) = y(0)e™ + j e Ibx(r)dz, t>0

If the Initial time 1s taken to be O~



Generalization of the First-Order Case

o Consider the equation:
dy(t) dx(t)
+ay(t)=Dhb
ot y(t) =b, "
 Define q(t) = y(t) —bx(t)
 Differentiating this equation, we obtain
da(t) _dy(t)  ax()
dt d  dt

+ Db, x(t)




Generalization of the First-Order
Case — Cont’d

dy(t) L dx(®)
2 ay (1) =B, =+ bx()

_|_
dact) _ dy() _, dx(®)
dt dt /dt

dq(t)
=y +bx(®)




Generalization of the First-Order
Case — Cont’d

e Solving q(t) = y(t) —bx(t) for y(t) itis
y(t) =q(t) +bx(t)

which, plugged into dq(t) =—ay(t) + b x(t) ,
yields at

90 __ 4y +bx) b0 -

=—aq(t) + (b, —ah,)x(t)




Generalization of the First-Order
Case — Cont’d

If the solution of di;(t) +ay(t) =bx(t)
t

s y(t)=y(0)e ™ + j e Ibx(r)dz, t>0

then the solution of dqdit) =—aq(t) + (b, —ab,)x(t)

IS

q(t) =q(0)e ™ + [e (b, —ab)x(r)dz, t>0



System Modeling — Electrical Circuits

i(f) i) i)

ey —— e
o Samm P
+ + -
v(t) R v(t) =Z=(C V(1) L
S TERTTEENEET T o Figure 2.1 Basic circuit elements: (a) re-
(a) (b) (c) sistor; (b) capacitor; (c) inductor.

resistor  V(t) = Ri(t)

capacitor d\(;it) :%i(t) or v(t):%j;i(r)dr
di(t) . 1
inductor v(t)=L=_= or i(t)== j v(r)dz



Example: Bridged-T Circuit
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Input voltage = x(¢) C) R, g 1 (1) — (1) y(f) = output voltage

Figure 2.2 Bridged-T circuit.

Kirchhoff’s voltage law

loop (or mesh) —— (V1 (t)+R (il (t)—1, (t)) = X(t)
T O+ O+ R, () =0

ky(t) — X(t) T Rziz (t)

.




Mechanical Systems

e Newton’s second Law of Motion:

g 90y
X(t) =M o

e Viscous friction:

0,
x(t) =Kk, "

e Elastic force:
x(t) =k, y(t)



Example: Automobile Suspension
System

f

Auto frame M, : y(r) = outpu

Figure 2.5 Automobile suspension
system.
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_ ~ dy(t) dq(t)
Y +k [a(t) —x(®)] =k, [y(t) q(t)]+k{ it it }

| a7y dy(t) dqct)]
M. +ks[y<t)—q(t)]+kd[ re-= }—0




Rotational Mechanical Systems

* |nertia torque:

d*o(t)
X(t)=1
(t) o
e Damping torque:
do(t)
X(t) =k
(t) =K, it

e Spring torque:
X(t) =k 6(t)



Linear /O Difference Equation With
Constant Coefficients

e Consider the DT SISO system

X[n] " System - y[n]

described by
y[n]+Za y[n—i] Zb x[n—i]

a €R,b € R  Nisthe order or dimension of the system



Solution by Recursion

Unlike linear 1/O differential equations,
linear 1/O difference equations can be
solved by direct numerical procedure (N-th

order recursion)

yInl ==Y ayln—il+Y bxin i

(recursive DT system or recursive digital filter)



Solution by Recursion — Cont’d

e The solution by recursion for n > 0 requires
the knowledge of the N Initial conditions

y[_N]1 y[_N +1]1---1 Y[_l]
and of the M initial input values

X[-M ], X[-M +1],..., X][-1]



Analytical Solution

e |ike the solution of a constant-coefficient
differential equation, the solution of

yInl == ayln—il+Y bxin i

can be obtained analytically in a closed form
and expressed as

y[n]=y,[n]+y,ln]

(total response = zero-input response + zero-state response)

« Solution method presented in ECE 464/564



