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• Consider the CT SISO system

described by

Linear I/O Differential Equations 
with Constant Coefficients

Linear I/O Differential Equations 
with Constant Coefficients
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• In order to solve the previous equation for 
, we have to know the N initial 

conditions

Initial ConditionsInitial Conditions
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• If the M-th derivative of the input x(t) 
contains an impulse            or a derivative of 
an impulse, the N initial conditions must be 
taken at time          , i.e.,

Initial Conditions – Cont’dInitial Conditions – Cont’d
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• Consider the following differential equation:

• Its solution is

First-Order CaseFirst-Order Case
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• Consider the equation:

• Define
• Differentiating this equation, we obtain

Generalization of the First-Order CaseGeneralization of the First-Order Case
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• Solving                                 for          it is  

which, plugged into ,
yields
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Generalization of the First-Order 
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System Modeling – Electrical CircuitsSystem Modeling – Electrical Circuits
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Example: Bridged-T CircuitExample: Bridged-T Circuit
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Mechanical SystemsMechanical Systems

•• NewtonNewton’’s second Law of Motions second Law of Motion:

•• Viscous frictionViscous friction:

•• Elastic force:Elastic force:
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Example: Automobile Suspension 
System

Example: Automobile Suspension 
System
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Rotational Mechanical SystemsRotational Mechanical Systems

•• Inertia torqueInertia torque:

•• Damping torque:Damping torque:

•• Spring torque:Spring torque:
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• Consider the DT SISO system 

described by 

Linear I/O Difference Equation With 
Constant Coefficients

Linear I/O Difference Equation With 
Constant Coefficients
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N is the order or dimension of the system



Solution by RecursionSolution by Recursion

• Unlike linear I/O differential equations, 
linear I/O difference equations can be 
solved by direct numerical procedure (N-th
order recursion)
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• The solution by recursion for           requires 
the knowledge of the N initial conditions

and of the M initial input values

Solution by Recursion – Cont’dSolution by Recursion – Cont’d
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• Like the solution of a constant-coefficient 
differential equation, the solution of 

can be obtained analytically in a closed form 
and expressed as

• Solution method presented in ECE 464/564 

Analytical SolutionAnalytical Solution
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