Chapter 2
Systems Defined by
Differential or Difference
Equations




Linear 1/0O Differential Equations
with Constant Coefficients

» Consider the CT SISO system

X(t)

described by

System

— y(t)

y(N)_'_Z“a y(l)(t) Zb X(')(t)

acRbeR y'()=

d' Y(t) X0 (1) = 222 d X(t)

d i




Initial Conditions

* In order to solve the previous equation for

t > 0, we have to know the N initial
conditions

y(0),y*(0),...,y"(0)




Initial Conditions — Cont’d

o If the M-th derivative of the input x(t)
contains an impulse ko'(t) or a derivative of
an impulse, the N initial conditions must be

taken attimet =0, i.e.,

y(07),y?(07),...,y" 7 (0)




First-Order Case

 Consider the following differential equation:
dy(t)
dt

+ay(t) = bx(t)
e Its solution is

y(t) = y(0)e ™ + j e *“Ipx(7)dz, t>0
or ’

y(t) = y(0 )e ™ + j e Ipx(7)dz, t>0

if the initial time is taken to be Q-




Generalization of the First-Order Case

» Consider the equation:

dy(t) _p 9
—o O =b— =+ bx()

« Define q(t) = y(t) —bx(t)
 Differentiating this equation, we obtain

dq(t) _ dy(t) b dx(t)
dt dt * dt




Generalization of the First-Order
Case — Cont’d

dy(t) . dx
7% +ay(t) =b, %tﬁ +b,x(t)
+

da(t) _ dy(® _, dx(t)
dt dt /dt

da®) _ _
T ay(t) +b,x(t)




Generalization of the First-Order
Case — Cont’d
* Solving q(t) = y(t) —bx(t) for y(t) itis
y(t) =q(t) + b x(t)

which, plugged into da(t) =—ay(t) +bx(t) .
yields at

9O _ () +bx()) + bx(t) =

dt
=—aq(t) + (b, —ab,)x(t)




Generalization of the First-Order
Case — Cont’d

If the solution of d);(t) +ay(t) = bx(t)
t

s y(t)=y(0)e ™ + j e px(7)dz, t>0
0

then the solution of % =—aq(t) + (b, —ab) x(t)
t
is

q(t) = q(0)e ™ + j e (b, —ab)x(r)dz, t=0




System Modeling — Electrical Circuits

ilf) i(r) i(f)
_

— _—
+ + i
':3
] = R v(r) C v(f) I
=
e o ° Figure 2.1 Basic circuit elements: (a) re-
(a) (b) (c) sistor; (b) capacitor; (c) inductor.

resistor  V(t) = Ri(t)

VO _ Ly or v(t):%ji(r)dr

capacitor =—
C

inductor v(t)=L% or i(t)=%j;v(r)dr
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Example: Bridged-T Circuit

Input voltage = x(r) ()

Kirchhoff’s voltage law

loop (or mesh) —
equations

N

Figure 2.2 Bridged-T circuit.

(v, (t) + R, (i, (1) —i, (1)) = x(t)
V,(t) +V, (1) + Ry, (t) = 0

y(t) = X(0)+ Ryi, (1)
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Mechanical Systems

* Newton’s second Law of Motion:

d*y(t)
X(t) =M
(®) dt®
e Viscous friction:
dy(t)
x(t) =k ——2
( ) d dt
e Elastic force:

X(1) =k y(b)
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Example: Automobile Suspension
System

I x

! &) = input
SIS, 1
///////// ////////// 7 — Figure 2.5 Automobile suspension

7 S syslem.

Mldd?(t)+k[Q(t) x(O1=k.[y(®) - Q(t)]+k[

d*y() dy(®) dq(v
v YOy - q(t)]+k[ A dt}

dy(t) dQ(t)}
dt dt




Rotational Mechanical Systems

* Inertia torque:

d*a(t)
X(t) =1
(® dt?
» Damping torque:
do(t)
X(t) =k, —=
( ) d dt

 Spring torque:
X(t) =k O(t)
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Linear 1/0 Difference Equation With
Constant Coefficients

» Consider the DT SISO system

X[n] y[n]

System

described by
yIn+ > ayln-i]=3 bx[n-i]

a €R,b e R Nisthe order or dimension of the system
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Solution by Recursion

Unlike linear 1/0O differential equations,
linear 1/0O difference equations can be
solved by direct numerical procedure (N-th
order recursion)

yin] = ayn-il+ bxin-i)

(recursive DT system or recursive digital filter)
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Solution by Recursion — Cont’d

» The solution by recursion for n > 0 requires
the knowledge of the N initial conditions

y[_N]1 y[_N +1]’---! Y[_l]
and of the M initial input values

X[-M 1], X[-M +1],...,x[-1]
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Analytical Solution

e Like the solution of a constant-coefficient
differential equation, the solution of

yin =Y ayn-il+> bl i)

can be obtained analytically in a closed form
and expressed as

y[n] - yzi [n] + yzs[n]
(total response = zero-input response + zero-state response)

 Solution method presented in ECE 464/564
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