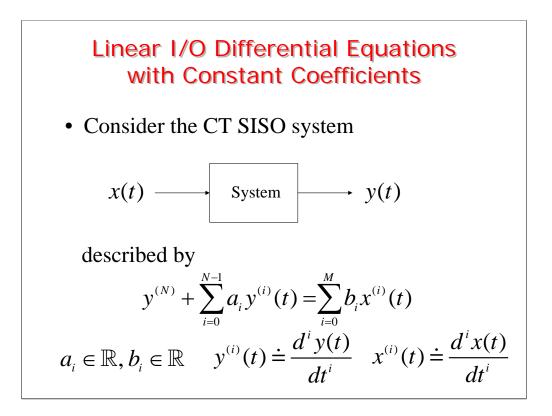
Chapter 2 Systems Defined by Differential or Difference Equations



Initial Conditions

 In order to solve the previous equation for t > 0, we have to know the N initial conditions

 $y(0), y^{(1)}(0), \dots, y^{(N-1)}(0)$

Initial Conditions – Cont'd

• If the *M*-th derivative of the input x(t) contains an impulse $k\delta(t)$ or a derivative of an impulse, the N initial conditions must be taken at time $t = 0^-$, i.e.,

$$y(0^{-}), y^{(1)}(0^{-}), \dots, y^{(N-1)}(0^{-})$$

First-Order Case

• Consider the following differential equation:

$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$

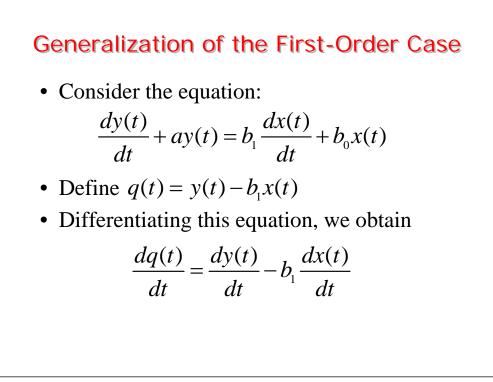
• Its solution is

$$y(t) = y(0)e^{-at} + \int_{0}^{t} e^{-a(t-\tau)}bx(\tau)d\tau, \quad t \ge 0$$

or

$$y(t) = y(0^{-})e^{-at} + \int_{0^{-}}^{t} e^{-a(t-\tau)}bx(\tau)d\tau, \quad t \ge 0$$

if the initial time is taken to be 0^-



Generalization of the First-Order
Case – Cont'd

$$\frac{dy(t)}{dt} + ay(t) = b_1 \frac{dx(t)}{dt} + b_0 x(t)$$

$$+$$

$$\frac{dq(t)}{dt} = \frac{dy(t)}{dt} - b_1 \frac{dx(t)}{dt}$$

$$=$$

$$\frac{dq(t)}{dt} = -ay(t) + b_0 x(t)$$

Generalization of the First-Order Case - Cont'd

• Solving $q(t) = y(t) - b_1 x(t)$ for y(t) it is

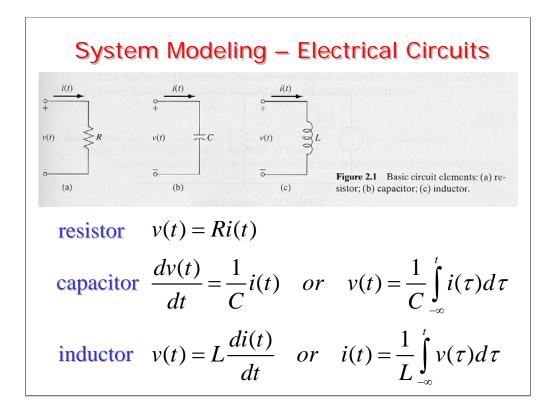
$$y(t) = q(t) + b_1 x(t)$$

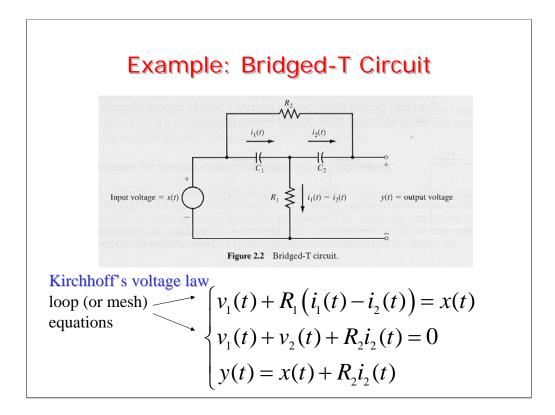
which, plugged into $\frac{dq(t)}{dt} = -ay(t) + b_0 x(t)$, yields

$$\frac{dq(t)}{dt} = -a(q(t) + b_1 x(t)) + b_0 x(t) =$$
$$= -aq(t) + (b_0 - ab_1)x(t)$$

Generalization of the First-Order
Case – Cont'd
If the solution of
$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$

is $y(t) = y(0)e^{-at} + \int_{0}^{t} e^{-a(t-\tau)}bx(\tau)d\tau, \quad t \ge 0$
then the solution of $\frac{dq(t)}{dt} = -aq(t) + (b_0 - ab_1)x(t)$
is
 $q(t) = q(0)e^{-at} + \int_{0}^{t} e^{-a(t-\tau)}(b_0 - ab_1)x(\tau)d\tau, \quad t \ge 0$





Mechanical Systems

• Newton's second Law of Motion:

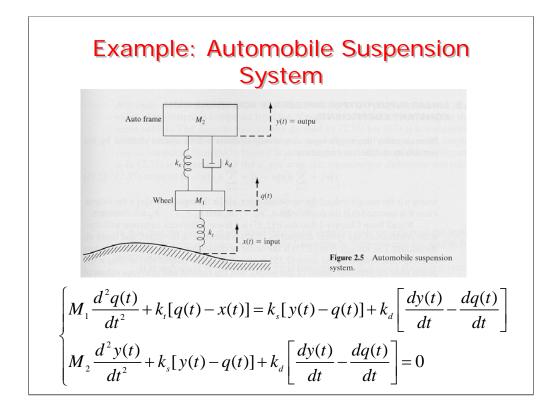
$$x(t) = M \, \frac{d^2 y(t)}{dt^2}$$

• Viscous friction:

$$x(t) = k_d \frac{dy(t)}{dt}$$

• Elastic force:

$$x(t) = k_s y(t)$$



Rotational Mechanical Systems

• Inertia torque:

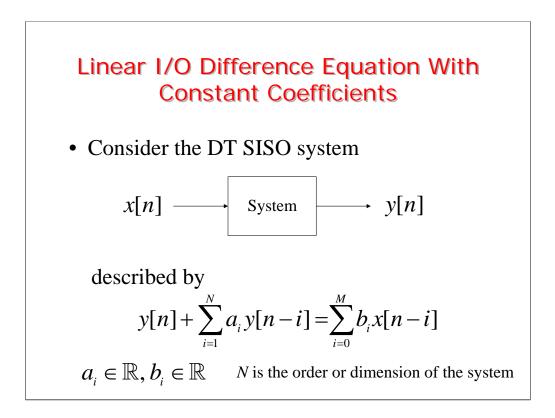
$$x(t) = I \frac{d^2 \theta(t)}{dt^2}$$

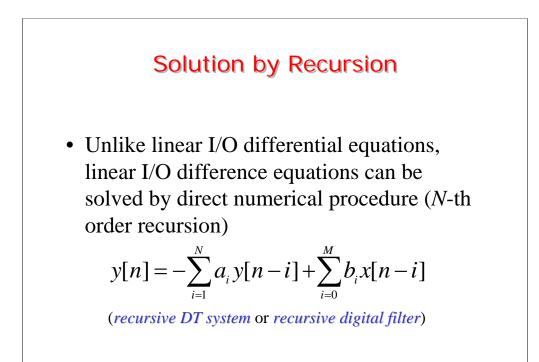
• Damping torque:

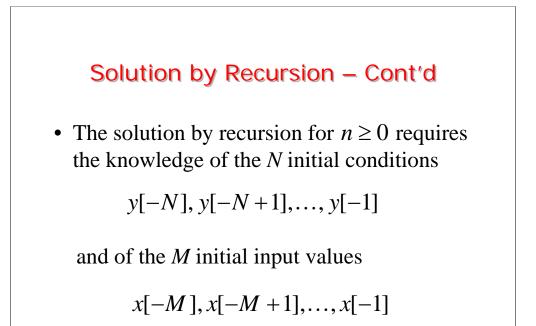
$$x(t) = k_d \frac{d\theta(t)}{dt}$$

• Spring torque:

$$x(t) = k_s \theta(t)$$







Analytical Solution

• Like the solution of a constant-coefficient differential equation, the solution of

$$y[n] = -\sum_{i=1}^{N} a_{i} y[n-i] + \sum_{i=0}^{M} b_{i} x[n-i]$$

can be obtained analytically in a closed form and expressed as

$$y[n] = y_{zi}[n] + y_{zs}[n]$$

(total response = zero-input response + zero-state response)

• Solution method presented in ECE 464/564