Chapter 2
Systems Defined by
Differential or Difference
Equations

Linear 1/0 Differential Equations
with Constant Coefficients

 Consider the CT SISO system

X(t)

System ——— Y(t)

described by
y®™ + Za y(t) Zb x® ()

Y o= IXO

(')t =
aGR,bIER y () d, dtl

Initial Conditions

« In order to solve the previous equation for

t > 0, we have to know the N initial
conditions

y(0),y®(0),...,y"™(0)

Initial Conditions — Cont’d

« If the M-th derivative of the input x(t)
contains an impulse ko'(t) or a derivative of
an impulse, the N initial conditions must be
taken attimet =0, i.e,,

y(07),y®?(0),...,y"™(0)

First-Order Case

* Consider the following differential equation:

YO | vty =bx()
dt
* Its solution is 1
y(t) = y(0)e * + [e *"bx(r)dr, t>0
or °t
y()=y(0)e*+ e bx(z)dr, t=0

if the initial time is taken to be Q-

Generalization of the First-Order Case

« Consider the equation:

dy(t) dx(t)
dt

—=+ay(t)=h

+b,x(t)

« Define q(t) = y(t) —blx(t)
« Differentiating this equation, we obtain
da(t) _dy(®) _, dx(®)
dt dt dt




Generalization of the First-Order
Case — Cont’'d

dy(t) _ax(t)
7dt£+ ay(t) = bl%tﬁ-i- b, X(t)
+

da(t) _ dy(®) ,, dx(t)
dt dt " /dt

d‘zjgt) — _ay(t) +bx(t)

Generalization of the First-Order
Case — Cont’d

« Solving q(t) = y(t) —bx(t) for y(t) itis

y(®) =q(t) +bx(t)

which, plugged into ﬂ —ay(t) +b,x(t) .
yields
d‘;?) — —a(q(t) + bx(t)) + byx(t) =

= _aq(t) + (bo - ab1)x(t)

Generalization of the First-Order
Case — Cont’d

If the solution of ¥+ ay(t) = bx(t)
t
is  y(t)=y(0)e ™ + j e px(r)dr, t>0

then the solution of q( ) —aq(t) + (b, —ab)x(t)
is

00 = GO * + [ (b, ~ab)x()dz, t>0

System Modeling — Electrical Circuits

resistor  v(t) = Ri(t)
() 1|(t) or v(t)——J.l(r)dr

inductor v(t) = Ldl(t)
dt

capacitor

or i(t)= j v(r)dr

-0

Example: Bridged-T Circuit

I = It
s il =
€ [
Input voltage = xif) B I..-. i) wir) = output vollage
i circuil

Kirchhoff’s voltage law

loop (or mesh) — |V, (t) + R, (il t)-i, (t)) =Xx(t)
e W+, + R, (=0
y(t) = x(t) + Rziz ®)

Mechanical Systems

* Newton’s second Law of Motion:

R RY0)
x(t)=M pre

 Viscous friction:

x(t) =k,
 Elastic force:
x(t) =k, y(t)

dy(t)




Example: Automobile Suspension
System

Figure 15 Autamobile suspesmion

M, 390y ra) - xO1= K [y® -] +k, [?—%}

1 dtZ
dy(t) _ daq(t)

dy(0) ) dy() da)]
M, 930 4y q(t)]+kd[ 0 }

Rotational Mechanical Systems

* Inertia torque:

d’o(t)
x(t) =1
(t) ve
« Damping torque:
da(t)
x(t) =k, —=
) =k, ot

« Spring torque:
x(t) =k 6(t)

Linear 1/0 Difference Equation With
Constant Coefficients

 Consider the DT SISO system

y[n]

System

x[n]

described by
yIn]+ Y ayln—i1=> bx[n~i]

a e R, bi e R Nisthe order or dimension of the system

Solution by Recursion

« Unlike linear /O differential equations,
linear 1/O difference equations can be
solved by direct numerical procedure (N-th

order recursion)

yinl =~ ayin i1+ bin-i

(recursive DT system or recursive digital filter)

Solution by Recursion — Cont’d

* The solution by recursion for n > 0 requires
the knowledge of the N initial conditions

y[—N], y[_N +l],..., y[_l]
and of the M initial input values

X[-M1,x[-M +1],..., X[-1]

Analytical Solution

« Like the solution of a constant-coefficient
differential equation, the solution of

yinl=-3"ayin-i1+> bx(n-i

can be obtained analytically in a closed form
and expressed as

y[nl=y,[n]+y,[n]
(total response = zero-input response + zero-state response)

« Solution method presented in ECE 464/564




