Chapter 2
Systems Defined by
Differential or Difference
Equations

Linear 1/0 Differential Equations
with Constant Coefficients

» Consider the CT SISO system

X(t)

System ——— Y(t)

described by
y(N) + Za y(I) (t) Zb x® (t)

y(t) X9 (1) = 2222 d X(t)

aecRbeR Yy ()= gt




Initial Conditions

* In order to solve the previous equation for

t > 0, we have to know the N initial
conditions

y(0),y®(0),...,y"™(0)

Initial Conditions — Cont’d

* If the M-th derivative of the input x(t)
contains an impulse ko(t) or a derivative of
an impulse, the N initial conditions must be

takenattimet =0, i.e.,

y(07),y?(07),...,y"7(07)




First-Order Case

» Consider the following differential equation:
dy(t)

+ay(t) = bx(t)
 Its solution is

y(t) = y(0)e ™ + j e *“phx(r)dzr, t>0
0
or

y(t) = y(0)e™ + j e *“phx(r)dzr, t>0

if the initial time is taken to be -

Generalization of the First-Order Case

. Consider the equation:
ay(t) dx(t)
t) =b,——+Dbx(t
it ay(t) = it X(t)

* Define q(t) = y(t) —bx(t)
 Differentiating this equation, we obtain
da(t) _ dy(t) , ax®)
dt dt dt




Generalization of the First-Order
Case — Cont’d

dy(t) _ d7xﬁ
7%+ay(t)—bl b
_|_

da(t) _ dy@® _,, dx(t)
dt dt/dt

da(t) _ —ay(t) + b x(t)

dt

Generalization of the First-Order
Case — Cont’d
« Solving q(t) = y(t) —bx(t) for y(t) itis
y(t) =q(t) +bx(t)

which, plugged into dq(t) =—ay(t) +b,x(t) ,
yields at

aq(t) _ —a(q(t) +bx(t))+b,x(t) =

dt
=—aq(t) + (b, —ab)x(t)




Generalization of the First-Order
Case — Cont’d

If the solution of di;(t) +ay(t) = bx(t)
t

s y(t)=y(0)e ™+ j e *“phx(r)dz, t>0

then the solution of % =—aq(t) + (b, —ab)x(t)

t
IS

q(t) = q(0)e ™ + j e (b, —ab)x(z)dr, t>0
0

System Modeling — Electrical Circuits
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Figure 2.1 Basic circuit elements: (a) re-
(a) (b) () sistor; (b) capacitor; (¢) inductor.

resistor  Vv(t) =Ri(t)

capacitor dv(t):ii
dt C

: _, di(t) N

inductor v(f) =L=—= or i(t)=— j v(r)dr

) or v(t) :%ji(r)dr




Example: Bridged-T Circuit

(_-'-_ '
e
Input voltage = x(r) () R, § l i1 = ix(0) ¥{r) = output voltage

Figure 2.2 Bridged-T circuit.

Kirchhoff’s voltage law

loop (or mesh) —— |V, (t) + R, (il (t)—1, (t)) = X(t)
e V() +V, (1) + Ryl (1) =0

y(t) = x(t) + R,1,(t)

Mechanical Systems

* Newton’s second Law of Motion:

x(t) =m Y
dt
 Viscous friction:
dy(t)
Xx(t)=k, —=
(t) =k, it
» Elastic force:

X(t) =k.y(t)




Example: Automobile Suspension
System

: | xif) = input
7 Al
//////// ////////// o, Figure 2.5 Automobile suspension

i o

M, 99O ) —x@)] =k [y () - q(t)]+k{dfjf) d‘jjf’}

dt’
v 4O dy(t) dq(t)} 0
dt ot

2 dt?

+k [y(t) —a(O]+k, [

Rotational Mechanical Systems

* Inertia torque:

d?a(t)
X(t) =1
(t) e
» Damping torque:
dea)
X(t) =K,
x(t) = it

 Spring torque:
X(t) =k A(t)




Linear 1/0 Difference Equation With
Constant Coefficients

o Consider the DT SISO system

y[n]

x[n] System

described by
yInl+ > a,y[n-il=) bx[n-i]

a €R,b € R Nisthe order or dimension of the system

Solution by Recursion

» Unlike linear 1/O differential equations,
linear 1/O difference equations can be
solved by direct numerical procedure (N-th
order recursion)

yin ==Y ayln-il+Y bxn-i

(recursive DT system or recursive digital filter)




Solution by Recursion — Cont’d

 The solution by recursion for n > 0 requires
the knowledge of the N initial conditions

yI=NLy[-N+1],..., y[-1]
and of the M initial input values

X[-M ], Xx[-M +1],...,X[-1]

Analytical Solution

e Like the solution of a constant-coefficient
differential equation, the solution of

yin ==Y ayin-il+Y bxin-i

can be obtained analytically in a closed form
and expressed as

y[n] - yzi [n] + yzs[n]
(total response = zero-input response + zero-state response)

 Solution method presented in ECE 464/564




