Chapter 1 Fundamental Concepts

Signals

- A signal is a pattern of variation of a physical quantity as a *function* of time, space, distance, position, temperature, pressure, etc.
- These quantities are usually the independent variables of the function defining the signal
- A signal encodes information, which is the variation itself

Signal Processing

- Signal processing is the discipline concerned with extracting, analyzing, and manipulating the information carried by signals
- The processing method depends on the type of signal and on the nature of the information carried by the signal

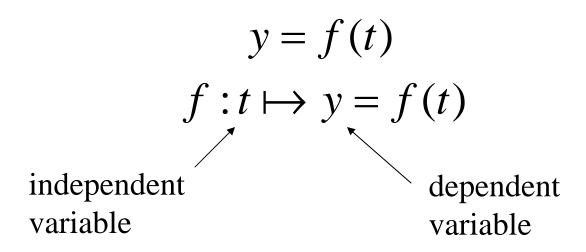
Characterization and Classification of Signals

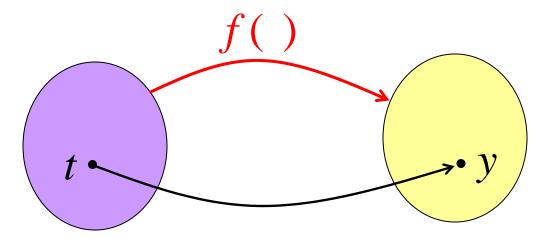
- The type of signal depends on the nature of the independent variables and on the value of the function defining the signal
- For example, the independent variables can be continuous or discrete
- Likewise, the signal can be a continuous or discrete function of the independent variables

Characterization and Classification of Signals – Cont'd

- Moreover, the signal can be either a realvalued function or a complex-valued function
- A signal consisting of a single component is called a scalar or one-dimensional (1-D) signal
- A signal consisting of multiple components is called a vector or multidimensional (M-D) signal

Definition of Function from Calculus

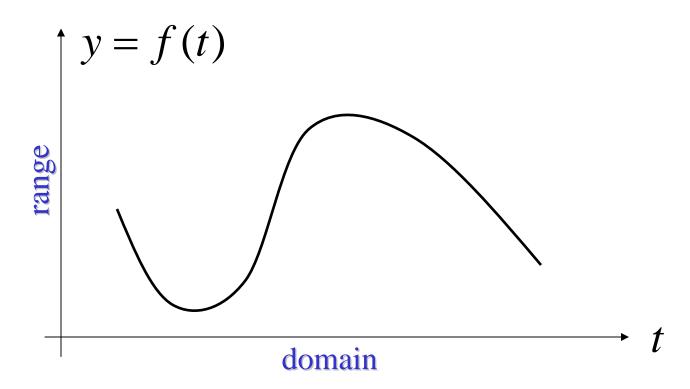




domain: set of values that *t* can take on

range: set of values spanned by *y*

Plot or Graph of a Function



Continuous-Time (CT) and Discrete-Time (DT) Signals

• A signal x(t) depending on a continuous temporal variable $t \in \mathbb{R}$ will be called a continuous-time (CT) signal

• A signal x[n] depending on a discrete temporal variable $n \in \mathbb{Z}$ will be called a discrete-time (DT) signal

Examples: CT vs. DT Signals

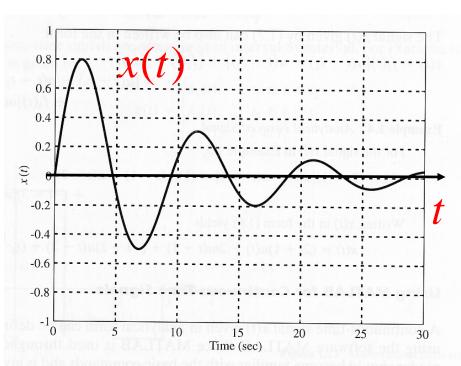
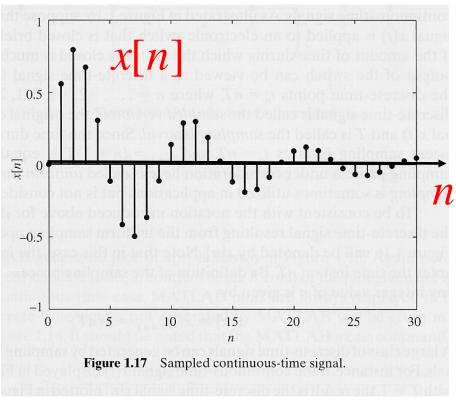


Figure 1.13 MATLAB plot of the signal $x(t) = e^{-0.1t} \sin \frac{2}{3} t$.



plot(t,x)

stem(n,x)

CT Signals: 1-D vs. N-D, Real vs. Complex

- ✓ 1-D, real-valued, CT signal: $x(t) \in \mathbb{R}, t \in \mathbb{R}$
 - N-D, real-valued, CT signal: $x(t) \in \mathbb{R}^N$, $t \in \mathbb{R}$
- 1-D, complex-valued, CT signal: $x(t) \in \mathbb{C}, t \in \mathbb{R}$
 - N-D, complex-valued, CT signal: $x(t) \in \mathbb{C}^N$, $t \in \mathbb{R}$

DT Signals: 1-D vs. N-D, Real vs. Complex

- ✓ 1-D, real-valued, DT signal: $x[n] \in \mathbb{R}, n \in \mathbb{Z}$
 - N-D, real-valued, DT signal: $x[n] \in \mathbb{R}^N$, $n \in \mathbb{Z}$
- 1-D, complex-valued, DT signal: $x[n] \in \mathbb{C}, n \in \mathbb{Z}$
 - N-D, complex-valued, DT signal: $x[n] \in \mathbb{C}^N$, $n \in \mathbb{Z}$

Digital Signals

- A DT signal whose values belong to a finite set or alphabet $A = \{\alpha_1, \alpha_2, ..., \alpha_N\}$ is called a digital signal
- Since computers work with finite-precision arithmetic, only digital signals can be numerically processed
- Digital Signal Processing (DSP): ECE 464/564 (Liu) and ECE 567 (Lucchese)

Digital Signals: 1-D vs. N-D

- 1-D, real-valued, digital signal: $x[n] \in A, n \in \mathbb{Z}$
- N-D, real-valued, digital signal: $x[n] \in A^N$, $n \in \mathbb{Z}$

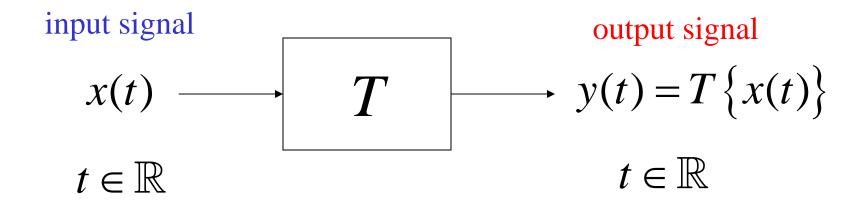
$$A = \{\alpha_1, \alpha_2, \dots, \alpha_N\}$$

If $\alpha_i \in \mathbb{R}$, the digital signal is real, if instead at least one of the $\alpha_i \in \mathbb{C}$, the digital signal is complex

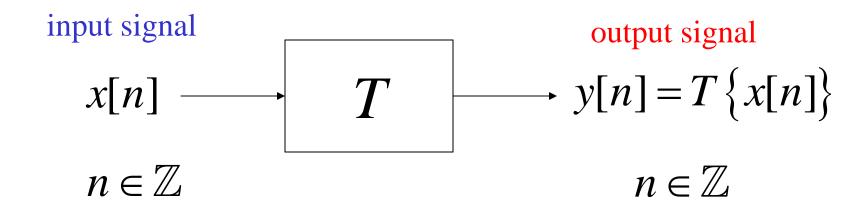
Systems

- A system is any device that can process signals for analysis, synthesis, enhancement, format conversion, recording, transmission, etc.
- A system is usually mathematically defined by the equation(s) relating input to output signals (I/O characterization)
- A system may have single or multiple inputs and single or multiple outputs

Block Diagram Representation of Single-Input Single-Output (SISO) CT Systems

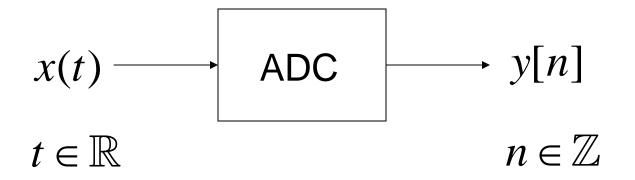


Block Diagram Representation of Single-Input Single-Output (SISO) DT Systems



A Hybrid SISO System: The Analog to Digital Converter (ADC)

Used to convert a CT (analog) signal into a digital signal



Block Diagram Representation of Multiple-Input Multiple-Output (MIMO) CT Systems

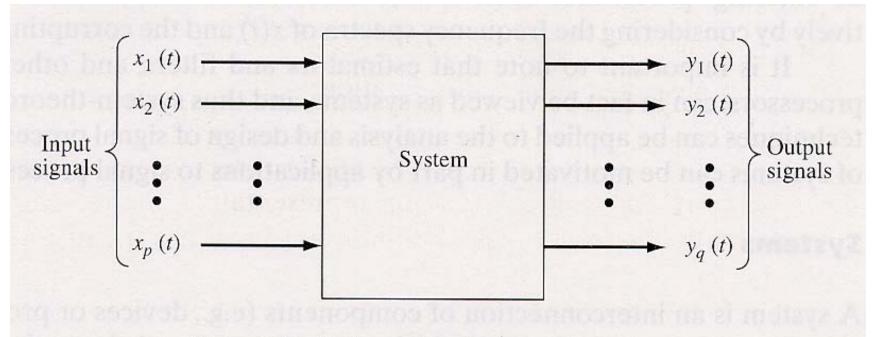
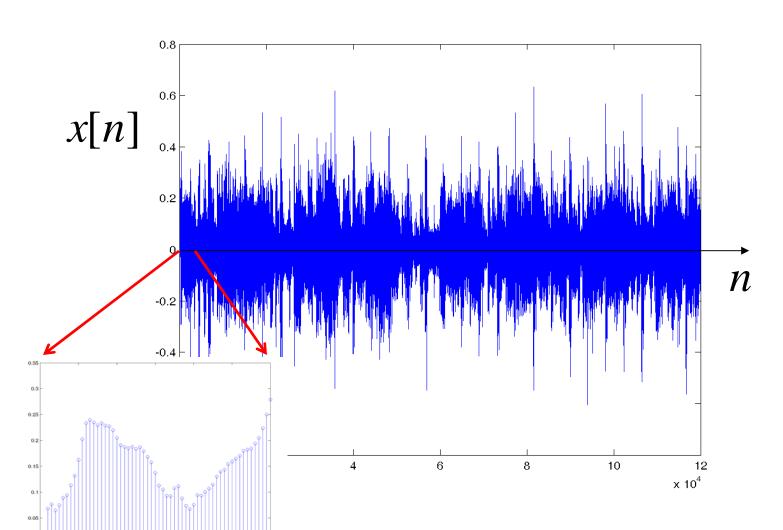
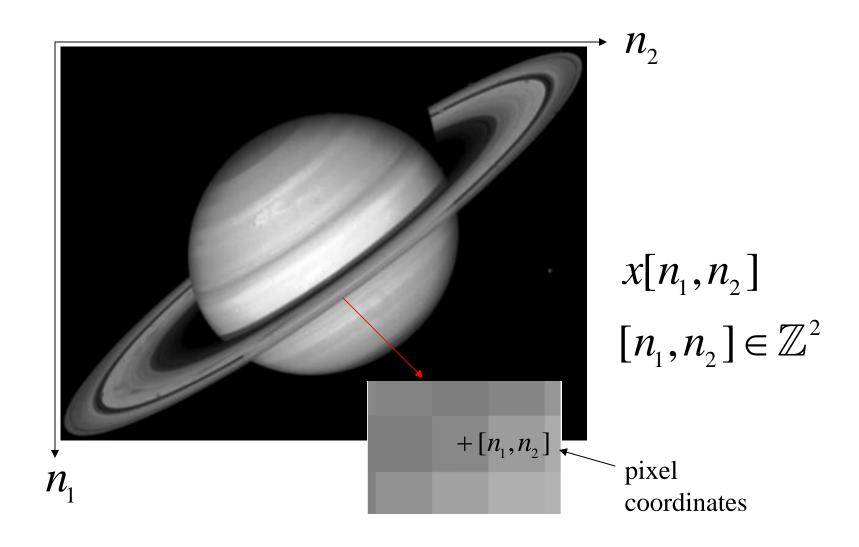


Figure 1.2 System with p inputs and q outputs.

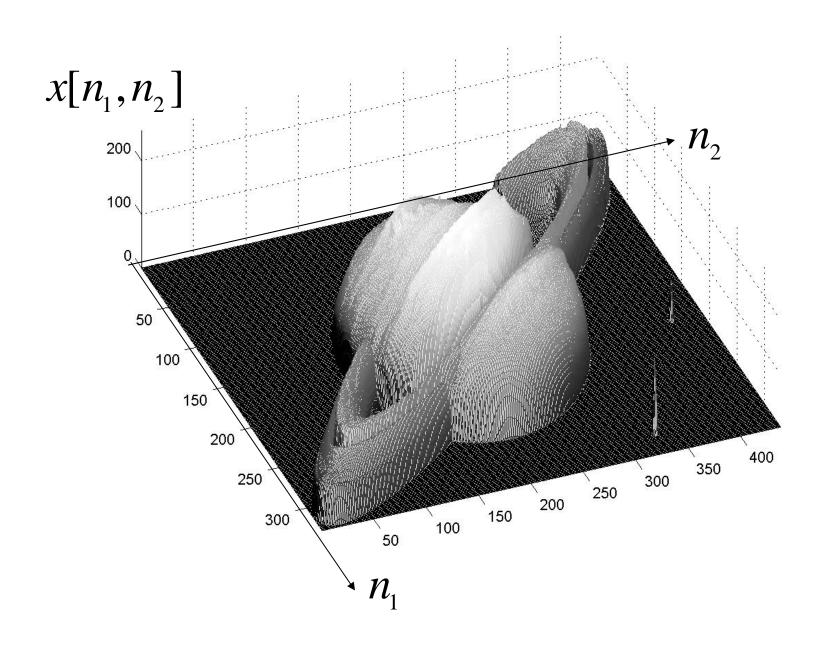
Example of 1-D, Real-Valued, Digital Signal: Digital Audio Signal



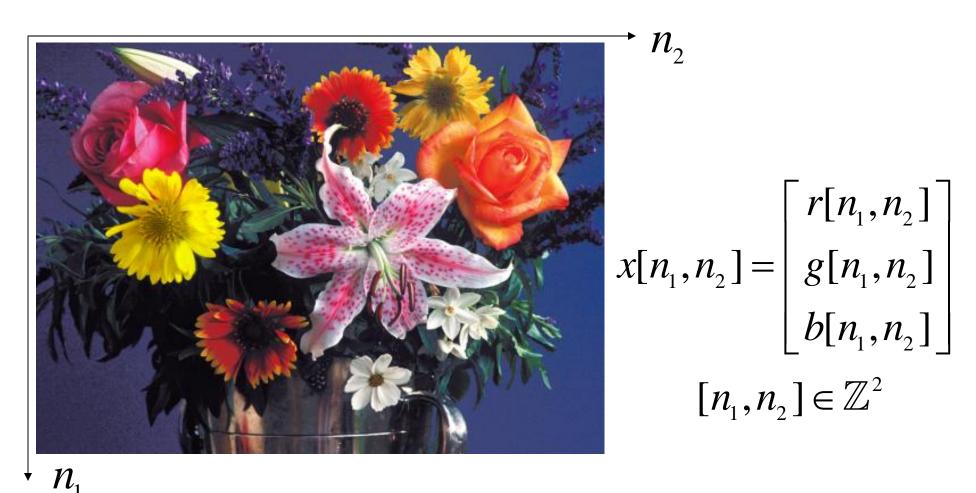
Example of 1-D, Real-Valued, Digital Signal with a 2-D Domain: A Digital Gray-Level Image



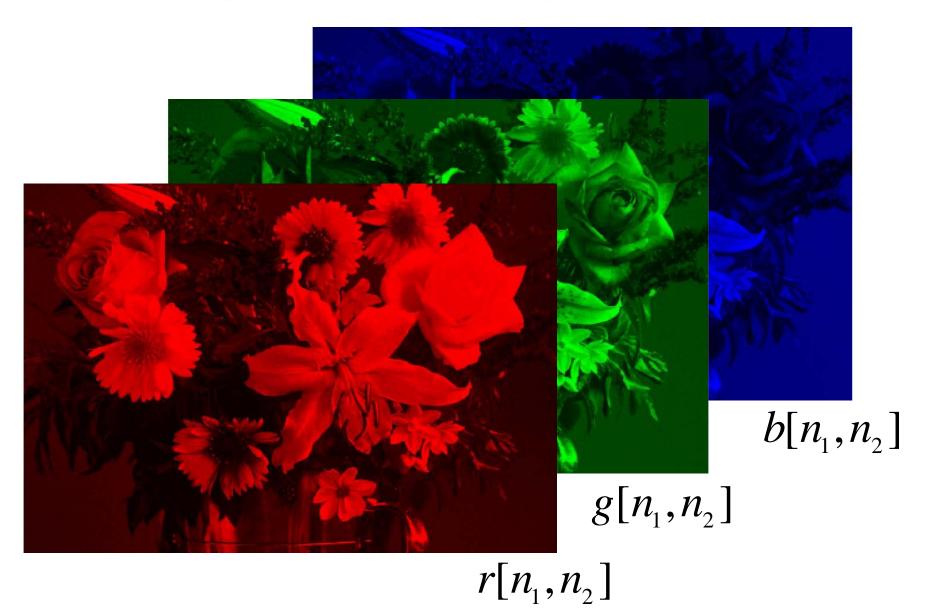
Digital Gray-Level Image: Cont'd



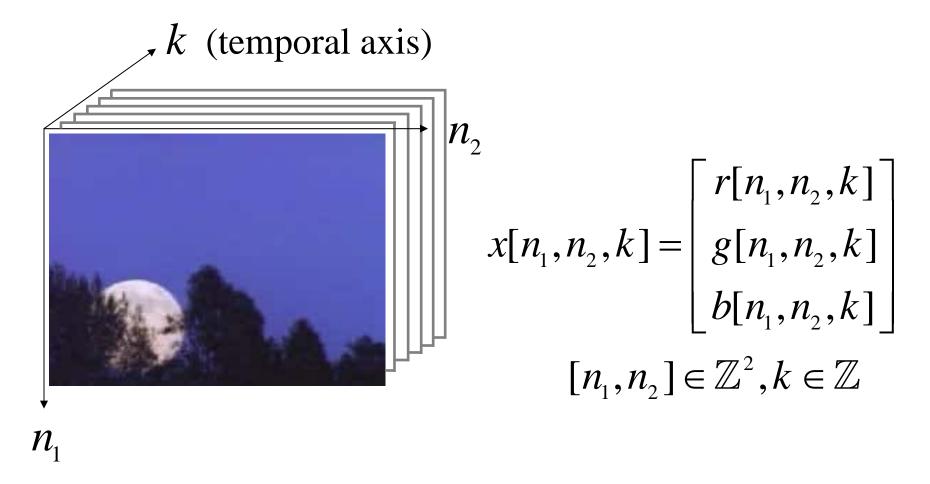
Example of 3-D, Real-Valued, Digital Signal with a 2-D Domain: A Digital Color Image



Digital Color Image: Cont'd



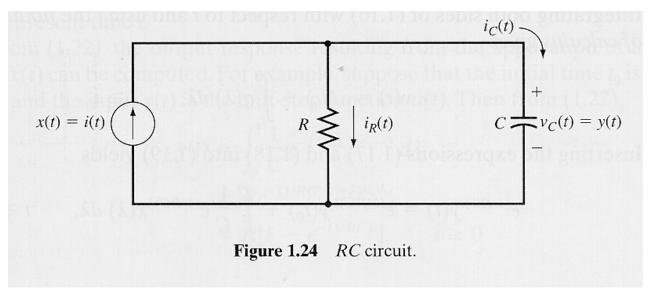
Example of 3-D, Real-Valued, Digital Signal with a 3-D Domain: A Digital Color Video Sequence

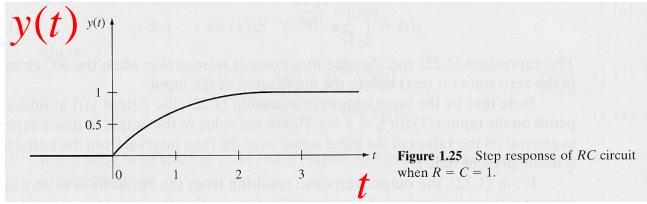


Types of input/output representations considered

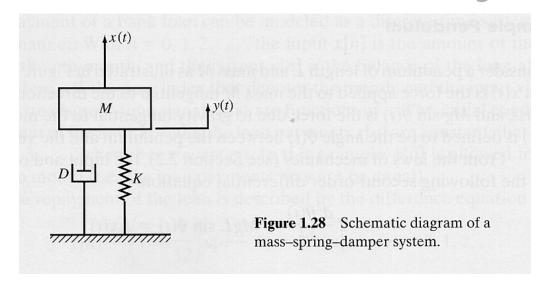
- Differential equation (or difference equation)
- The convolution model
- The transfer function representation (Fourier transform representation)

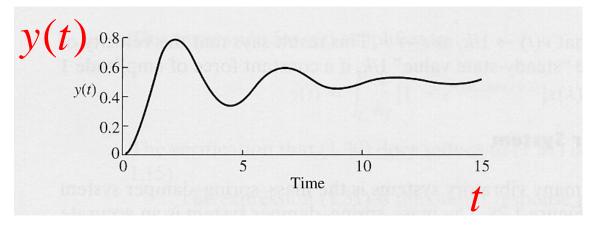
Examples of 1-D, Real-Valued, CT Signals: Temporal Evolution of Currents and Voltages in Electrical Circuits





Examples of 1-D, Real-Valued, CT Signals: Temporal Evolution of Some Physical Quantities in Mechanical Systems

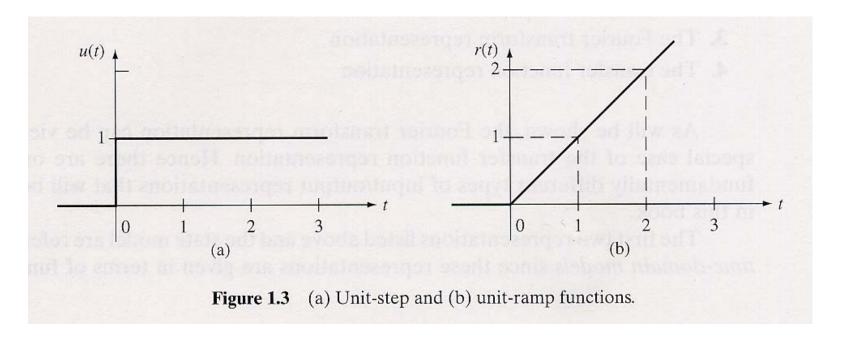




Continuous-Time (CT) Signals

• Unit-step function
$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$
• Unit-ramp function $r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$

• Unit-ramp function
$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$



Unit-Ramp and Unit-Step Functions: Some Properties

$$x(t)u(t) = \begin{cases} x(t), & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$r(t) = \int_{-\infty}^{t} u(\lambda) d\lambda$$

$$u(t) = \frac{dr(t)}{dt}$$
 (to the exception of $t = 0$)

The Unit Impulse

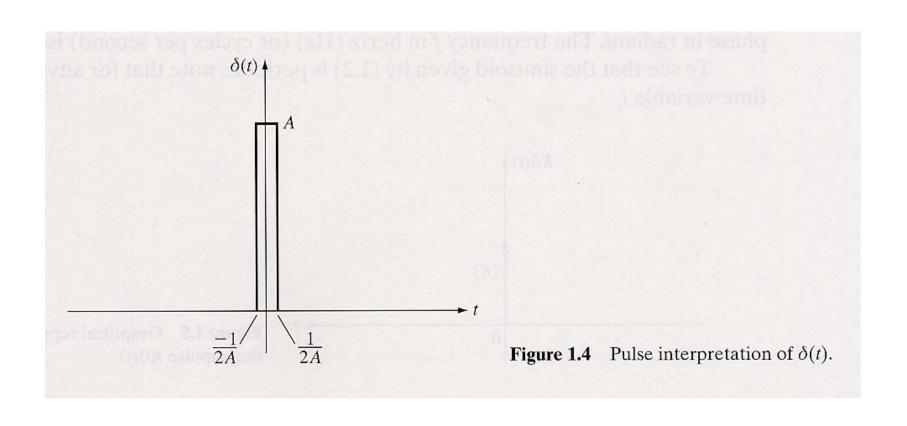
- A.k.a. the delta function or Dirac distribution
- It is defined by:

$$\delta(t) = 0, \quad t \neq 0$$

$$\int_{-\varepsilon}^{\varepsilon} \delta(\lambda) d\lambda = 1, \quad \forall \varepsilon > 0$$

• The value $\delta(0)$ is not defined, in particular $\delta(0) \neq \infty$

The Unit Impulse: Graphical Interpretation



A is a very large number

The Scaled Impulse $K\delta(t)$

• If $K \in \mathbb{R}$, $K\delta(t)$ is the impulse with area K, i.e.,

$$K(t) = 0, \quad t \neq 0$$

$$\int_{-\varepsilon}^{\varepsilon} K\delta(\lambda)d\lambda = K, \quad \forall \varepsilon > 0$$

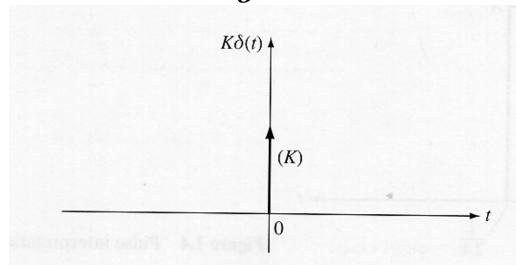


Figure 1.5 Graphical representation of the impulse $K\delta(t)$.

Properties of the Delta Function

1)
$$u(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda$$

$$\forall t \text{ except } t = 0$$

2)
$$\int_{t_0-\varepsilon}^{t_0+\varepsilon} x(t)\delta(t-t_0)dt = x(t_0) \quad \forall \varepsilon > 0$$
 (sifting property)

Periodic Signals

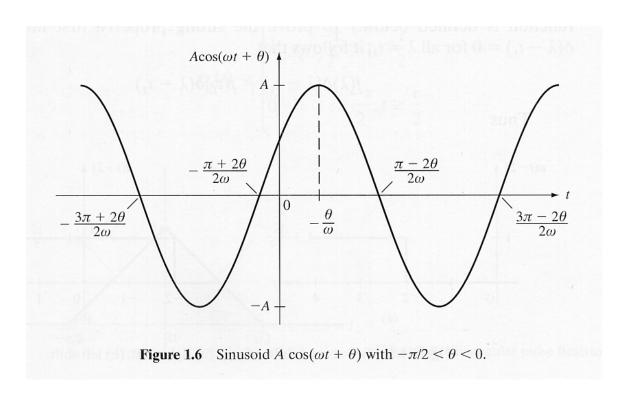
• Definition: a signal x(t) is said to be periodic with period T, if

$$x(t+T) = x(t) \quad \forall t \in \mathbb{R}$$

- Notice that x(t) is also periodic with period qT where q is any positive integer
- T is called the fundamental period

Example: The Sinusoid

$$x(t) = A\cos(\omega t + \theta), \quad t \in \mathbb{R}$$



$$\theta [rad / sec] = \frac{\omega}{2\pi} [1/sec] = [Hz]$$

Is the Sum of Periodic Signals Periodic?

• Let $x_1(t)$ and $x_2(t)$ be two periodic signals with periods T_1 and T_2 , respectively

• Then, the sum $x_1(t) + x_2(t)$ is periodic only if the ratio T_1/T_2 can be written as the ratio q/rof two integers q and r

• In addition, if r and q are coprime, then $T=rT_1$ is the fundamental period of $x_1(t) + x_2(t)$

Time-Shifted Signals

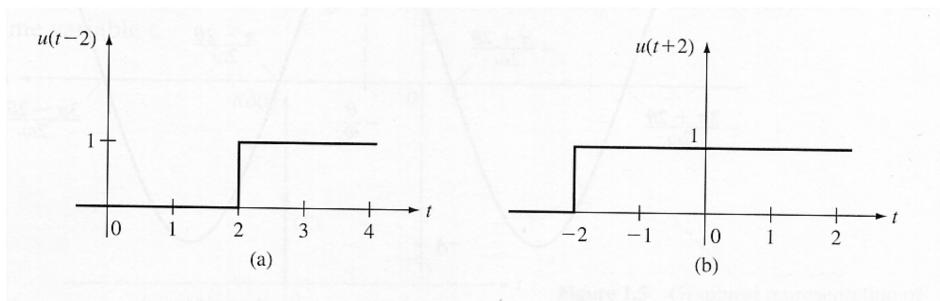
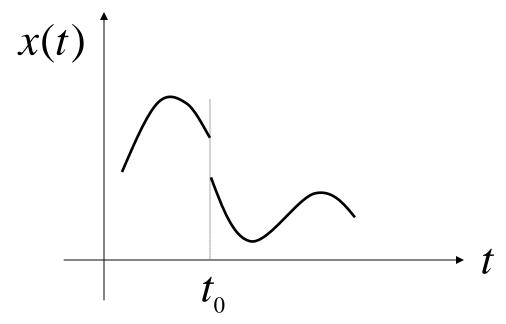


Figure 1.7 Two-second shifts of u(t): (a) right shift; (b) left shift.

Points of Discontinuity

• A continuous-time signal x(t) is said to be discontinuous at a point t_0 if $x(t_0^+) \neq x(t_0^-)$ where $t_0^+ = t_0^- + \varepsilon$ and $t_0^- = t_0^- - \varepsilon$, ε being a small positive number

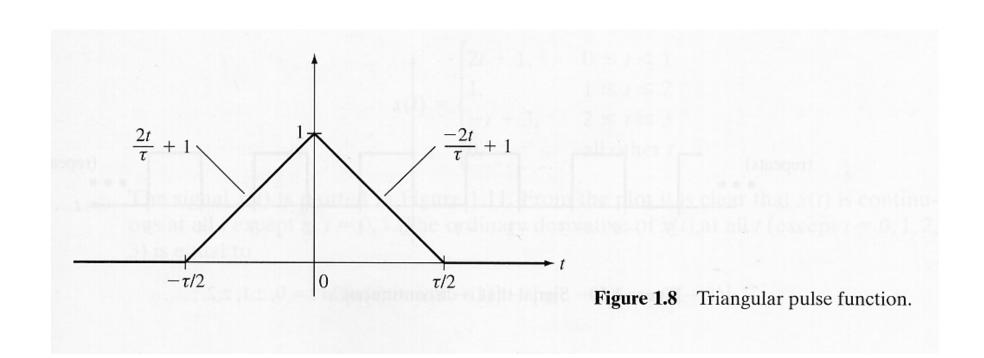


Continuous Signals

• A signal x(t) is continuous at the point t_0 if $x(t_0^+) = x(t_0^-)$

• If a signal x(t) is continuous at all points t, x(t) is said to be a continuous signal

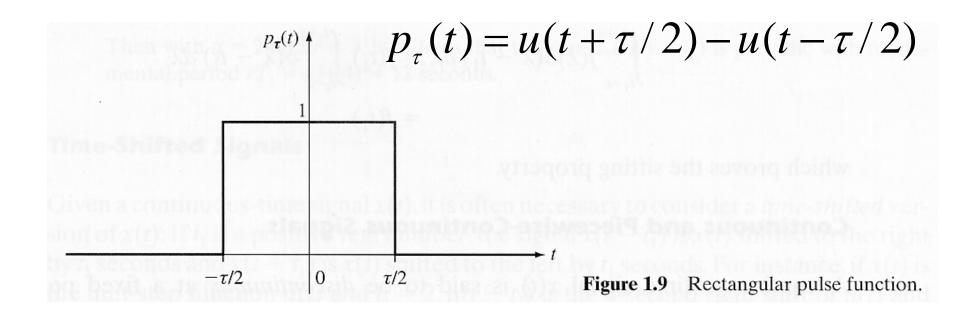
Example of Continuous Signal: The Triangular Pulse Function



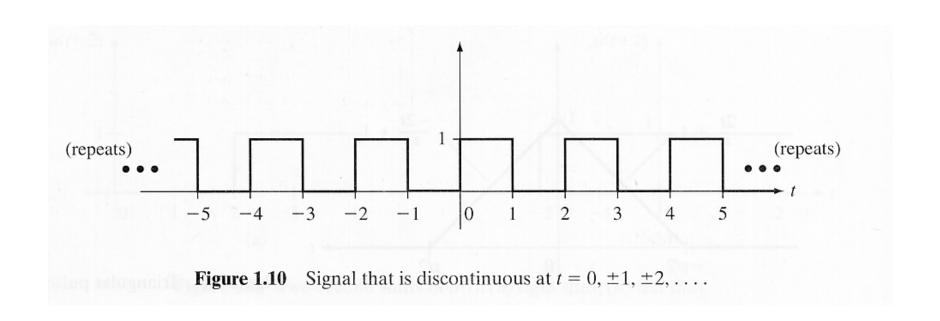
Piecewise-Continuous Signals

• A signal x(t) is said to be piecewise continuous if it is continuous at all t except a finite or countably infinite collection of points t_i , i = 1, 2, 3, ...

Example of Piecewise-Continuous Signal: The Rectangular Pulse Function



Another Example of Piecewise-Continuous Signal: The Pulse Train Function



Derivative of a Continuous-Time Signal

• A signal x(t) is said to be differentiable at a point t_0 if the quantity

$$\frac{x(t_0+h)-x(t_0)}{h}$$

has limit as $h \to 0$ independent of whether h approaches 0 from above (h > 0) or from below (h < 0)

• If the limit exists, x(t) has a derivative at t_0

$$\frac{dx(t)}{dt}\Big|_{t=t_0} = \lim_{h\to 0} \frac{x(t_0 + h) - x(t_0)}{h}$$

Continuity and Differentiability

• In order for x(t) to be differentiable at a point t_0 , it is necessary (but not sufficient) that x(t) be continuous at t_0

 Continuous-time signals that are not continuous at all points (piecewise continuity) cannot be differentiable at all points

Generalized Derivative

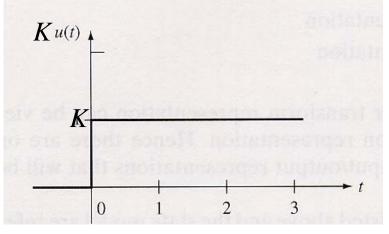
- However, piecewise-continuous signals may have a derivative in a generalized sense
- Suppose that x(t) is differentiable at all t except $t = t_0$
- The generalized derivative of x(t) is defined to be

$$\int \frac{dx(t)}{dt} + \left[x(t_0^+) - x(t_0^-)\right] \delta(t - t_0)$$

ordinary derivative of x(t) at all t except $t = t_0$

Example: Generalized Derivative of the Step Function

• Define x(t) = Ku(t)



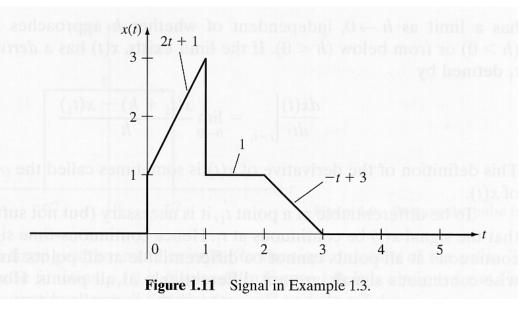
- The ordinary derivative of x(t) is 0 at all points except t = 0
- Therefore, the generalized derivative of x(t) is

$$K \left[u(0^{\scriptscriptstyle +}) - u(0^{\scriptscriptstyle -}) \right] \delta(t-0) = K \delta(t)$$

Another Example of Generalized Derivative

Consider the function defined as

$$x(t) = \begin{cases} 2t+1, & 0 \le t < 1 \\ 1, & 1 \le t < 2 \\ -t+3, & 2 \le t \le 3 \\ 0, & all \ other \ t \end{cases}$$



Another Example of Generalized Derivative: Cont'd

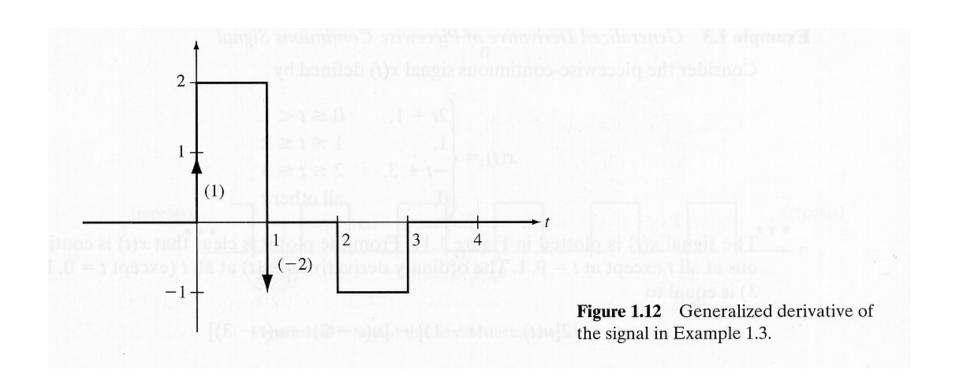
• The ordinary derivative of x(t), at all t except t = 0,1,2,3 is

$$\frac{dx(t)}{dt} = 2[u(t) - u(t-1)] - [u(t-2) - u(t-3)]$$

• Its generalized derivative is

$$\frac{dx(t)}{dt} + \underbrace{\left[x(0^{+}) - x(0^{-})\right]}_{1} \delta(t) + \underbrace{\left[x(1^{+}) - x(1^{-})\right]}_{-2} \delta(t-1)$$

Another Example of Generalized Derivative: Cont'd



Signals Defined Interval by Interval

Consider the signal

$$x(t) = \begin{cases} x_1(t), & t_1 \le t < t_2 \\ x_2(t), & t_2 \le t < t_3 \\ x_3(t), & t \ge t_3 \end{cases}$$

• This signal can be expressed in terms of the unit-step function u(t) and its time-shifts as

$$x(t) = x_1(t) \left[u(t - t_1) - u(t - t_2) \right] +$$

$$+ x_2(t) \left[u(t - t_2) - u(t - t_3) \right] +$$

$$+ x_3(t) u(t - t_3), \quad t \ge t_1$$

Signals Defined Interval by Interval: Cont'd

• By rearranging the terms, we can write

$$x(t) = f_1(t)u(t - t_1) + f_2(t)u(t - t_2) + f_3(t)u(t - t_3)$$

where

$$f_1(t) = x_1(t)$$

$$f_2(t) = x_2(t) - x_1(t)$$

$$f_3(t) = x_3(t) - x_2(t)$$

Discrete-Time (DT) Signals

- A discrete-time signal is defined only over integer values
- We denote such a signal by

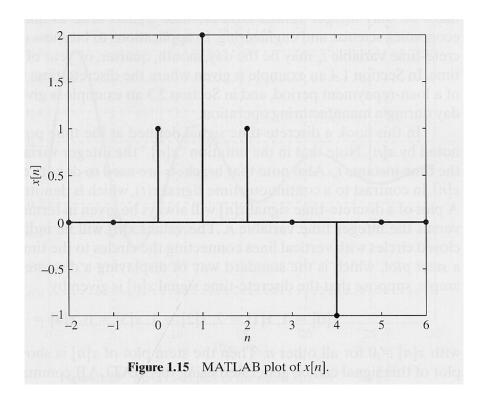
$$x[n], n \in \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

Example: A Discrete-Time Signal Plotted with Matlab

• Suppose that

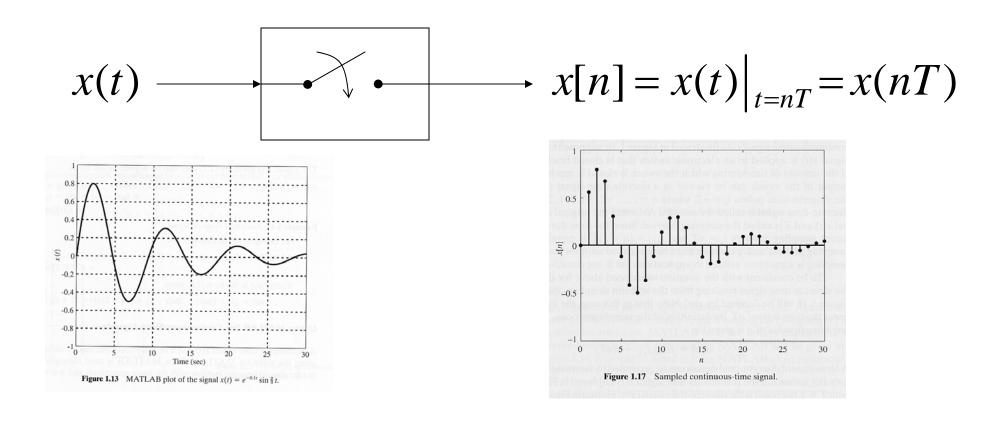
$$x[0] = 1$$
, $x[1] = 2$, $x[2] = 1$, $x[3] = 0$, $x[4] = -1$

```
n=-2:6;
x=[0\ 0\ 1\ 2\ 1\ 0\ -1\ 0\ 0];
stem(n,x)
xlabel('n')
ylabel('x[n]')
```

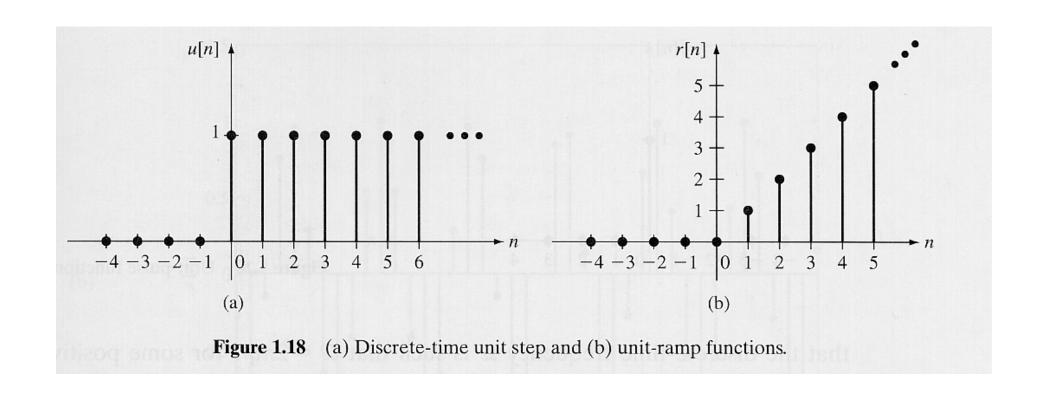


Sampling

• Discrete-time signals are usually obtained by sampling continuous-time signals

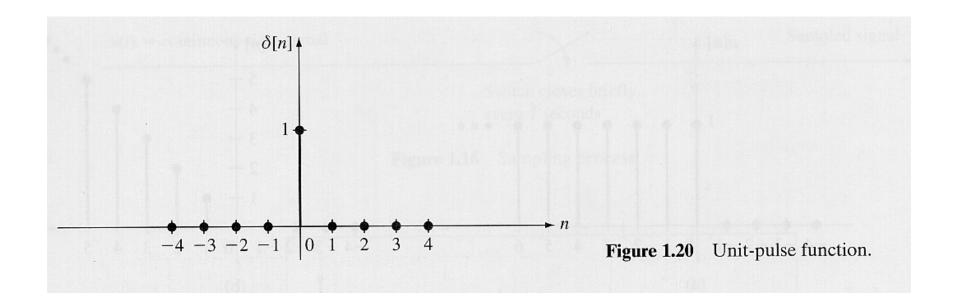


DT Step and Ramp Functions



DT Unit Pulse

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$



Periodic DT Signals

• A DT signal x[n] is periodic if there exists a positive integer r such that

$$x[n+r] = x[n] \quad \forall n \in \mathbb{Z}$$

- r is called the period of the signal
- The fundamental period is the smallest value of *r* for which the signal repeats

Example: Periodic DT Signals

- Consider the signal $x[n] = A\cos(\Omega n + \theta)$
- The signal is periodic if

$$A\cos(\Omega(n+r)+\theta) = A\cos(\Omega n + \theta)$$

Recalling the periodicity of the cosine

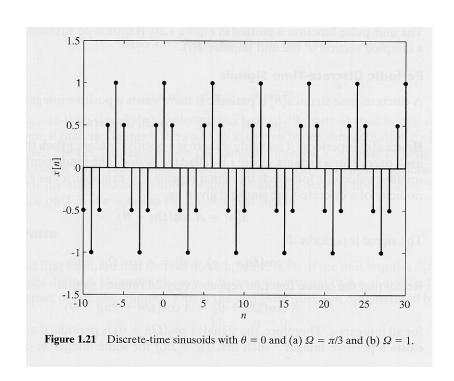
$$\cos(\alpha) = \cos(\alpha + 2k\pi)$$

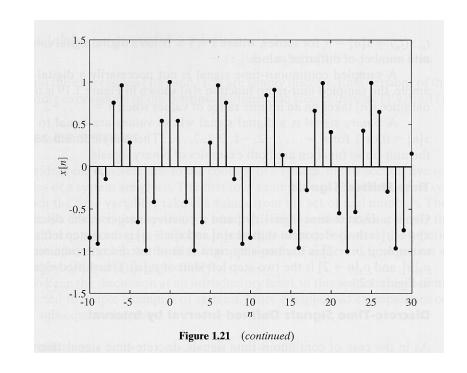
x[n] is periodic if and only if there exists a positive integer r such that $\Omega r = 2k\pi$ for some integer k or, equivalently, that the DT frequency Ω is such that $\Omega = 2k\pi/r$ for some positive integers k and r

Example: $x[n] = A\cos(\Omega n + \theta)$ for different values of Ω

$$\Omega = \pi/3, \theta = 0$$

$$\Omega = 1, \theta = 0$$





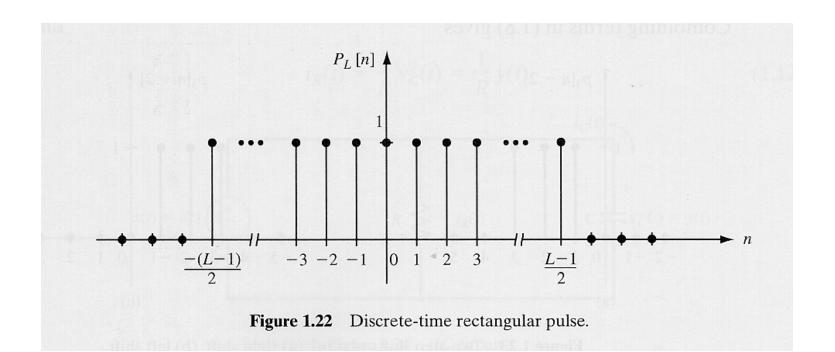
periodic signal with period r = 6

aperiodic signal(with periodic envelope)

DT Rectangular Pulse

$$p_{L}[n] = \begin{cases} 1, & n = -(L-1)/2, ..., -1, 0, 1, ..., (L-1)/2 \\ 0, & all \ other \ n \end{cases}$$

(L must be an odd integer)



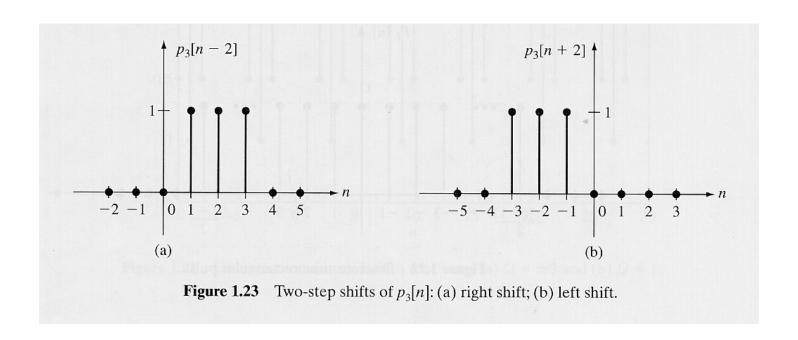
Digital Signals

- A digital signal x[n] is a DT signal whose values belong to a finite set or alphabet $\{a_1, a_2, ..., a_N\}$
- A CT signal can be converted into a digital signal by cascading the ideal sampler with a quantizer

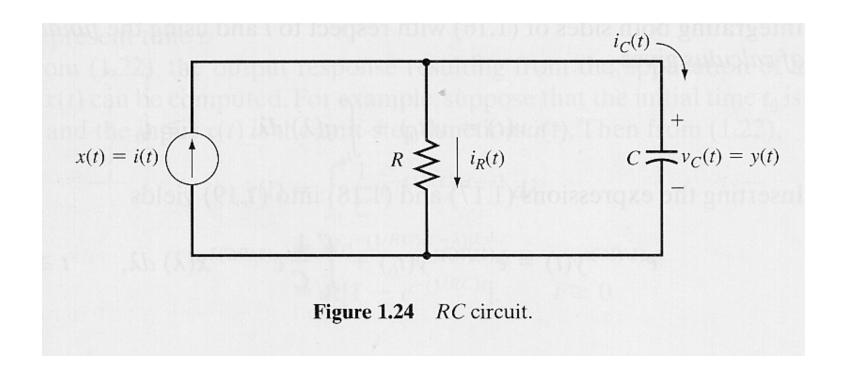
Time-Shifted Signals

• If x[n] is a DT signal and q is a positive integer

x[n-q] is the q-step right shift of x[n]x[n+q] is the q-step left shift of x[n]



Example of CT System: An RC Circuit



Kirchhoff's current law: $i_C(t) + i_R(t) = i(t)$

RC Circuit: Cont'd

• The v-i law for the capacitor is

$$i_{C}(t) = C \frac{dv_{C}(t)}{dt} = C \frac{dy(t)}{dt}$$

Whereas for the resistor it is

$$i_R(t) = \frac{1}{R} v_C(t) = \frac{1}{R} y(t)$$

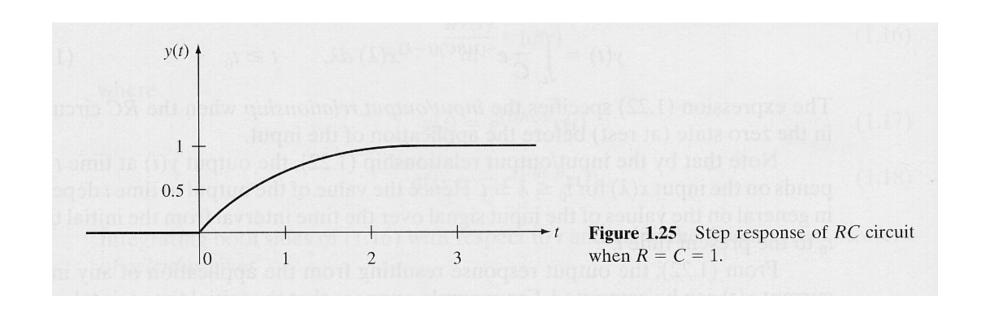
RC Circuit: Cont'd

 Constant-coefficient linear differential equation describing the I/O relationship if the circuit

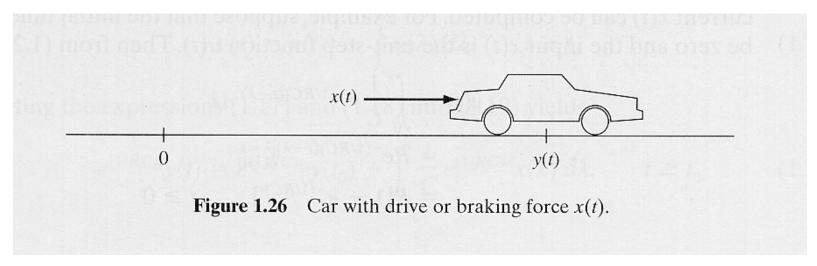
$$C\frac{dy(t)}{dt} + \frac{1}{R}y(t) = i(t) = x(t)$$

RC Circuit: Cont'd

• Step response when R=C=1



Example of CT System: Car on a Level Surface



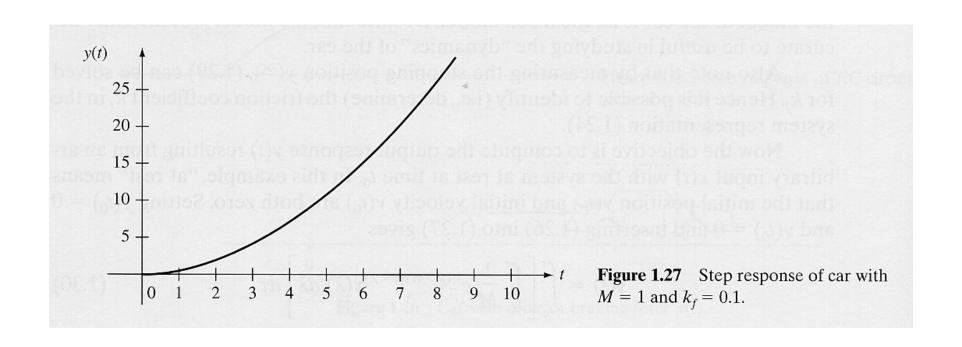
Newton's second law of motion:

$$M\frac{d^2y(t)}{dt^2} + k_f \frac{dy(t)}{dt} = x(t)$$

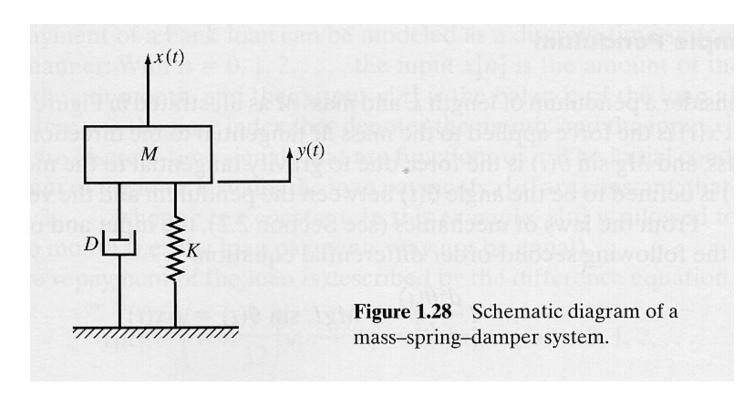
where x(t) is the drive or braking force applied to the car at time t and y(t) is the car's position at time t

Car on a Level Surface: Cont'd

• Step response when M=1 and $k_f = 0.1$



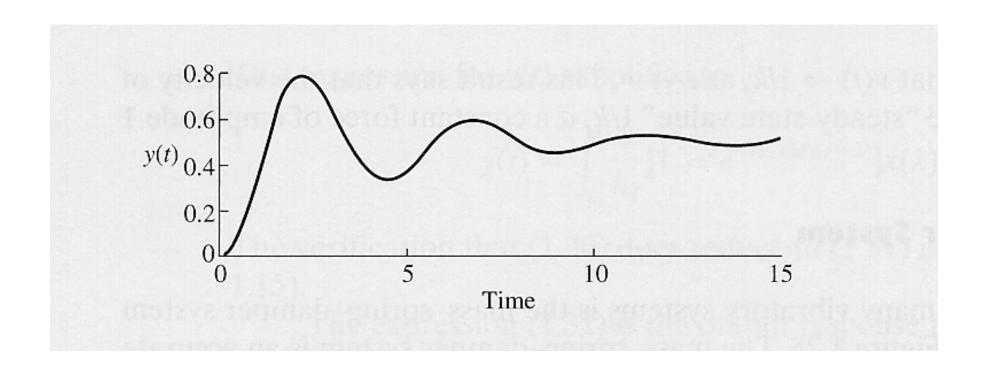
Example of CT System: Mass-Spring-Damper System



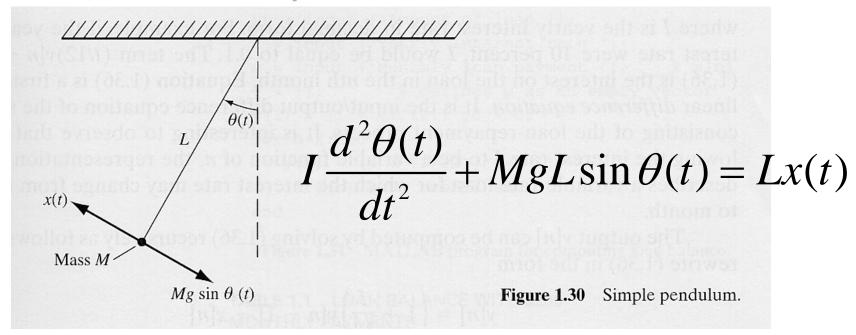
$$M\frac{d^2y(t)}{dt^2} + D\frac{dy(t)}{dt} + Ky(t) = x(t)$$

Mass-Spring-Damper System: Cont'd

• Step response when M=1, K=2, and D=0.5



Example of CT System: Simple Pendulum



If
$$\sin \theta(t) \approx \theta(t)$$

$$I\frac{d^{2}\theta(t)}{dt^{2}} + MgL \theta(t) = Lx(t)$$

Basic System Properties: Causality

- A system is said to be causal if, for any time t_1 , the output response at time t_1 resulting from input x(t) does not depend on values of the input for $t > t_1$.
- A system is said to be noncausal if it is not causal

Example: The Ideal Predictor

$$y(t) = x(t+1)$$

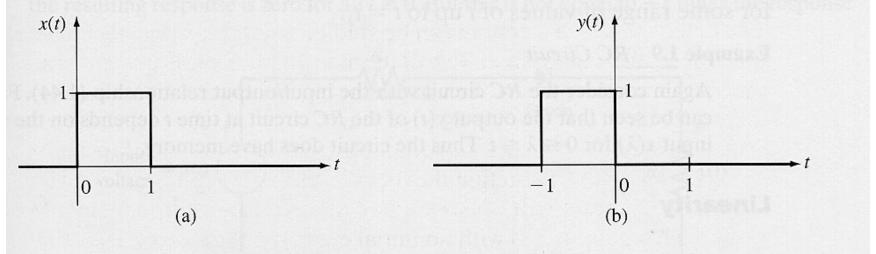
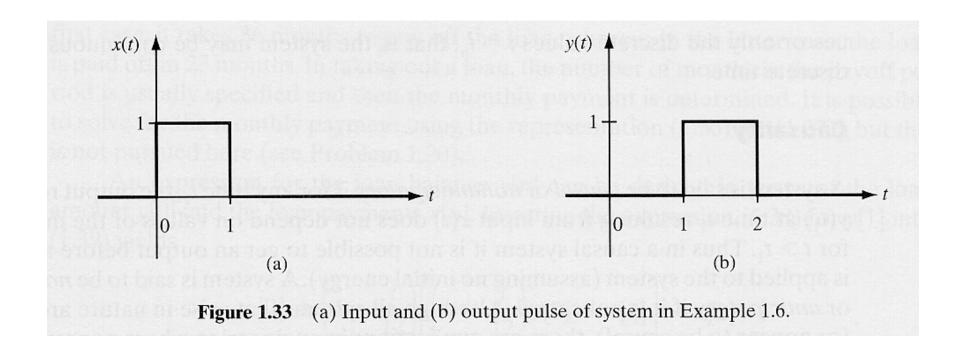


Figure 1.32 (a) Input and (b) output pulse of system in Example 1.5.

Example: The Ideal Delay

$$y(t) = x(t-1)$$



Memoryless Systems and Systems with Memory

- A causal system is memoryless or static if, for any time t_1 , the value of the output at time t_1 depends only on the value of the input at time t_1
- A causal system that is not memoryless is said to have memory. A system has memory if the output at time t_1 depends in general on the past values of the input x(t) for some range of values of t up to $t = t_1$

Examples

Ideal Amplifier/Attenuator

$$y(t) = Kx(t)$$

RC Circuit

$$y(t) = \frac{1}{C} \int_{0}^{t} e^{-(1/RC)(t-\tau)} x(\tau) d\tau, \quad t \ge 0$$

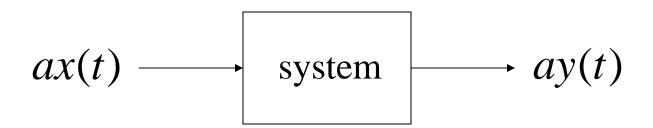
Basic System Properties: Additive Systems

• A system is said to be additive if, for any two inputs $x_1(t)$ and $x_2(t)$, the response to the sum of inputs $x_1(t) + x_2(t)$ is equal to the sum of the responses to the inputs, assuming no initial energy before the application of the inputs

$$x_1(t) + x_2(t)$$
 system $y_1(t) + y_2(t)$

Basic System Properties: Homogeneous Systems

• A system is said to be homogeneous if, for any input x(t) and any scalar a, the response to the input ax(t) is equal to a times the response to x(t), assuming no energy before the application of the input



Basic System Properties: Linearity

• A system is said to be linear if it is both additive and homogeneous

$$ax_1(t) + bx_2(t) \longrightarrow system \longrightarrow ay_1(t) + by_2(t)$$

 A system that is not linear is said to be nonlinear

Example of Nonlinear System: Circuit with a Diode

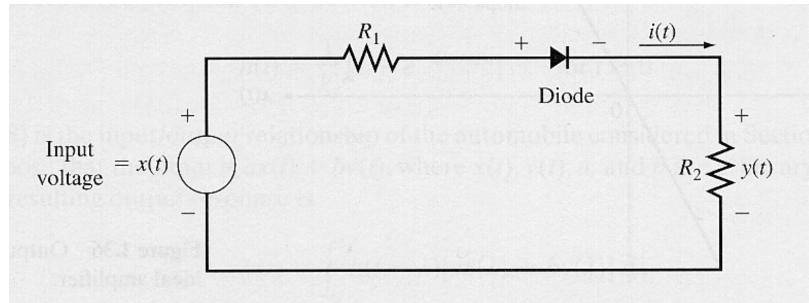
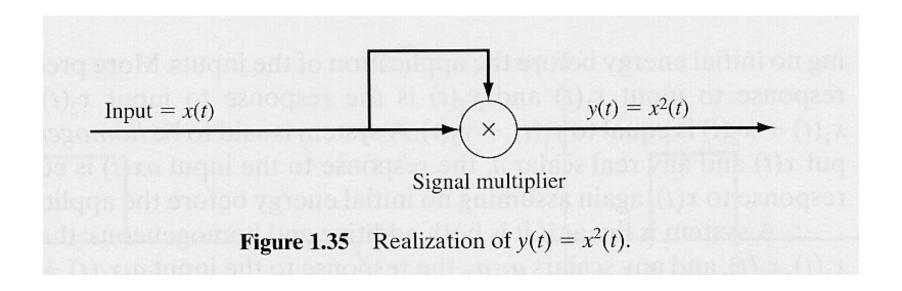


Figure 1.34 Resistive circuit with an ideal diode.

$$y(t) = \begin{cases} \frac{R_2}{R_1 + R_2} x(t), & \text{when } x(t) \ge 0\\ 0, & \text{when } x(t) \le 0 \end{cases}$$

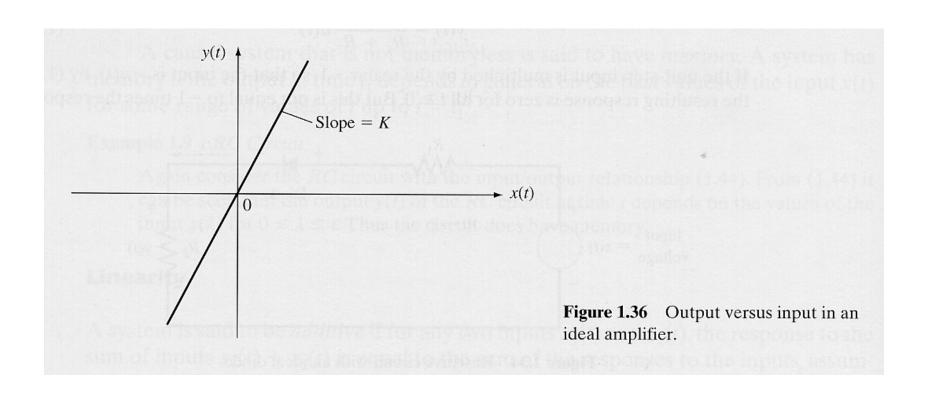
Example of Nonlinear System: Square-Law Device

$$y(t) = x^2(t)$$

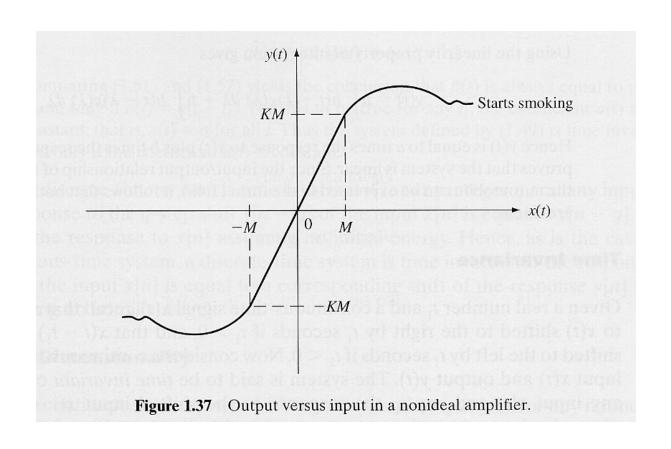


Example of Linear System: The Ideal Amplifier

$$y(t) = Kx(t)$$

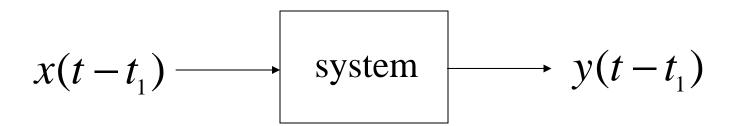


Example of Linear System: A Real Amplifier



Basic System Properties: Time Invariance

• A system is said to be time invariant if, for any input x(t) and any time t_1 , the response to the shifted input $x(t - t_1)$ is equal to $y(t - t_1)$ where y(t) is the response to x(t) with zero initial energy



 A system that is not time invariant is said to be time varying or time variant

Examples of Time Varying Systems

Amplifier with Time-Varying Gain

$$y(t) = tx(t)$$

First-Order System

$$\dot{y}(t) + a(t)y(t) = bx(t)$$

Basic System Properties: Finite Dimensionality

- Let x(t) and y(t) be the input and output of a CT system
- Let $x^{(i)}(t)$ and $y^{(i)}(t)$ denote their *i*-th derivatives
- The system is said to be finite dimensional or lumped if, for some positive integer N the N-th derivative of the output at time t is equal to a function of $x^{(i)}(t)$ and $y^{(i)}(t)$ at time t for $0 \le i \le N-1$

Basic System Properties: Finite Dimensionality – Cont'd

• The N-th derivative of the output at time t may also depend on the i-th derivative of the input at time t for $i \ge N$

$$y^{(N)}(t) = f(y(t), y^{(1)}(t), \dots, y^{(N-1)}(t),$$
$$x(t), x^{(1)}(t), \dots, x^{(M)}(t), t)$$

• The integer N is called the order of the above I/O differential equation as well as the order or dimension of the system described by such equation

Basic System Properties: Finite Dimensionality – Cont'd

- A CT system with memory is infinite dimensional if it is not finite dimensional, *i.e.*, if it is not possible to express the *N*-th derivative of the output in the form indicated above for some positive integer *N*
- Example: System with Delay

$$\frac{dy(t)}{dt} + ay(t-1) = x(t)$$

DT Finite-Dimensional Systems

- Let x[n] and y[n] be the input and output of a DT system.
- The system is finite dimensional if, for some positive integer *N* and nonnegative integer *M*, y[n] can be written in the form

$$y[n] = f(y[n-1], y[n-2], ..., y[n-N],$$

 $x[n], x[n-1], ..., x[n-M], n)$

• N is called the order of the I/O difference equation as well as the order or dimension of the system described by such equation

Basic System Properties: CT Linear Finite-Dimensional Systems

• If the N-th derivative of a CT system can be written in the form

$$y^{(N)}(t) = -\sum_{i=0}^{N-1} a_i(t)y^{(i)}(t) + \sum_{i=0}^{M} b_i(t)x^{(i)}(t)$$

then the system is both linear and finite dimensional

Basic System Properties: DT Linear Finite-Dimensional Systems

• If the output of a DT system can be written in the form

$$y[n] = -\sum_{i=0}^{N-1} a_i(n) y[n-i] + \sum_{i=0}^{M} b_i(n) x[n-i]$$

then the system is both linear and finite dimensional

Basic System Properties: Linear Time-Invariant Finite-Dimensional Systems

For a CT system it must be

$$a_i(t) = a_i$$
 and $b_i(t) = b_i$ $\forall i \text{ and } t \in \mathbb{R}$

And, similarly, for a DT system

$$a_i(n) = a_i$$
 and $b_i(n) = b_i$ $\forall i \text{ and } n \in \mathbb{Z}$

About the Order of Differential and Difference Equations

✓ • Some authors define the order as *N*

• Some as (M, N)

• Some others as $\max(M, N)$