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• A signalsignal is a pattern of variation of a pattern of variation of a 
physical quantityphysical quantity as a function of time, 
space, distance, position, temperature, 
pressure, etc.

• These quantities are usually the independent independent 
variablesvariables of the function defining the signal

• A signal encodes informationinformation, which is the 
variation itself

SignalsSignals
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• Signal processing is the discipline concerned 
with extracting, analyzing, and manipulating extracting, analyzing, and manipulating 
the informationthe information carried by signals

• The processing method depends on the type 
of signal and on the nature of the information 
carried by the signal

Signal ProcessingSignal Processing
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• The type of signaltype of signal depends on the nature of 
the independent variables and on the value 
of the function defining the signal

• For example, the independent variables can 
be continuous or discretecontinuous or discrete

• Likewise, the signal can be a continuous or continuous or 
discrete functiondiscrete function of the independent 
variables

Characterization and Classification 
of Signals

Characterization and Classification 
of Signals
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• Moreover, the signal can be either a realreal--
valued functionvalued function or a complexcomplex--valued functionvalued function

• A signal consisting of a single component is 
called a scalar or onescalar or one--dimensional (1dimensional (1--D) D) 
signalsignal

• A signal consisting of multiple components is 
called a vector or multidimensional (Mvector or multidimensional (M--D) D) 
signalsignal

Characterization and Classification 
of Signals – Cont’d

Characterization and Classification 
of Signals – Cont’d
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Definition of Function from CalculusDefinition of Function from Calculus

( )y f t=
: ( )f t y f t=6

domaindomain: set of values 
that t can take on

range: range: set of values 
spanned by y

independent 
variable

dependent 
variable

t y

( )f
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Plot or Graph of a FunctionPlot or Graph of a Function
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• A signal x(t) depending on a continuous 
temporal variable           will be called a 
continuouscontinuous--time (CT) signaltime (CT) signal

• A signal x[n] depending on a discrete 
temporal variable           will be called a 
discretediscrete--time (DT) signaltime (DT) signal

Continuous-Time (CT) 
and Discrete-Time (DT) Signals

Continuous-Time (CT) 
and Discrete-Time (DT) Signals

t∈\

n∈]
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Examples: CT vs. DT SignalsExamples: CT vs. DT Signals

( )x t [ ]x n

nt

stem(n,x)plot(t,x)
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•• 11--D, realD, real--valued, CT signalvalued, CT signal: 

•• NN--D, realD, real--valued, CT signal:valued, CT signal:

•• 11--D, complexD, complex--valued, CT signal:valued, CT signal:

• N-D, complex-valued, CT signal:

CT Signals: 
1-D vs. N-D, Real vs. Complex 

CT Signals: 
1-D vs. N-D, Real vs. Complex 

( ) ,x t t∈ ∈\ \
( ) ,Nx t t∈ ∈\ \

( ) ,x t t∈ ∈^ \
( ) ,Nx t t∈ ∈^ \
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DT Signals: 
1-D vs. N-D, Real vs. Complex 

DT Signals: 
1-D vs. N-D, Real vs. Complex 

[ ] ,x n n∈ ∈\ ]
[ ] ,Nx n n∈ ∈\ ]

[ ] ,x n n∈ ∈^ ]
[ ] ,Nx n n∈ ∈^ ]

•• 11--D, realD, real--valued, DT signalvalued, DT signal: 

•• NN--D, realD, real--valued, DT signal:valued, DT signal:

•• 11--D, complexD, complex--valued, DT signal:valued, DT signal:

• N-D, complex-valued, DT signal:
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• A DT signal whose values belong to a finite 
set or alphabet                                 is called 
a digital signaldigital signal

• Since computers work with finitefinite--precision precision 
arithmeticarithmetic, only digital signals can be 
numerically processed

•• Digital Signal ProcessingDigital Signal Processing (DSP):  ECE 
464/564 (Liu) and ECE 567 (Lucchese)

Digital SignalsDigital Signals

{ }1 2, , , Nα α αΑ = …
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Digital Signals: 1-D vs. N-DDigital Signals: 1-D vs. N-D

•• 11--D, realD, real--valued, digital signalvalued, digital signal: 

•• NN--D, realD, real--valued, digital signal:valued, digital signal:

[ ] ,x n n∈Α ∈]
[ ] ,Nx n n∈Α ∈]

If               , the digital signal is real, if instead at 
least one of the              , the digital signal is 
complex

iα ∈\
iα ∈^

{ }1 2, , , Nα α αΑ = …
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• A systemsystem is any device that can process process 
signalssignals for analysis, synthesis, enhancement, 
format conversion, recording, transmission, 
etc.

• A system is usually mathematically defined 
by the equation(s) relating input to output 
signals (I/O characterizationI/O characterization)

• A system may have single or multiple inputs 
and single or multiple outputs 

SystemsSystems
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Block Diagram Representation 
of Single-Input Single-Output 

(SISO) CT Systems

Block Diagram Representation 
of Single-Input Single-Output 

(SISO) CT Systems

{ }( ) ( )y t T x t=( )x t
input signal output signal

t∈\ t∈\
T



16

Block Diagram Representation 
of Single-Input Single-Output 

(SISO) DT Systems

Block Diagram Representation 
of Single-Input Single-Output 

(SISO) DT Systems

{ }[ ] [ ]y n T x n=[ ]x n
input signal output signal

n∈] n∈]

T
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A Hybrid SISO System: The Analog 
to Digital Converter (ADC)

A Hybrid SISO System: The Analog 
to Digital Converter (ADC)

[ ]y n( )x t

Used to convert a CT (analog) signal into a 
digital signal

ADC

n∈]t∈\
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Block Diagram Representation 
of Multiple-Input Multiple-Output 

(MIMO) CT Systems

Block Diagram Representation 
of Multiple-Input Multiple-Output 

(MIMO) CT Systems
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Example of 1-D, Real-Valued, Digital 
Signal: Digital Audio Signal

Example of 1-D, Real-Valued, Digital 
Signal: Digital Audio Signal

[ ]x n

n
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Example of 1-D, Real-Valued, Digital 
Signal with a 2-D Domain: 
A Digital Gray-Level Image

Example of 1-D, Real-Valued, Digital 
Signal with a 2-D Domain: 
A Digital Gray-Level Image

1 2

2
1 2

[ , ]
[ , ]
x n n
n n ∈]

1n

2n

1 2[ , ]n n+
pixel 
coordinates
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Digital Gray-Level Image: Cont’dDigital Gray-Level Image: Cont’d

1 2[ , ]x n n

1n

2n
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Example of 3-D, Real-Valued, Digital 
Signal with a 2-D Domain: 

A Digital Color Image

Example of 3-D, Real-Valued, Digital 
Signal with a 2-D Domain: 

A Digital Color Image

1 2

1 2 1 2

1 2

2
1 2

[ , ]
[ , ] [ , ]

[ , ]

[ , ]

r n n
x n n g n n

b n n

n n

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∈]

2n

1n
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Digital Color Image: Cont’dDigital Color Image: Cont’d

1 2[ , ]r n n
1 2[ , ]g n n

1 2[ , ]b n n
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Example of 3-D, Real-Valued, Digital 
Signal with a 3-D Domain: 

A Digital Color Video Sequence

Example of 3-D, Real-Valued, Digital 
Signal with a 3-D Domain: 

A Digital Color Video Sequence

2n

1n

k (temporal axis)

1 2

1 2 1 2

1 2

2
1 2

[ , , ]
[ , , ] [ , , ]

[ , , ]

[ , ] ,

r n n k
x n n k g n n k

b n n k

n n k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∈ ∈] ]
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• Differential equation (or difference 
equation)

• The convolution model
• The transfer function representation 

(Fourier transform representation)

Types of input/output 
representations considered

Types of input/output 
representations considered
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Examples of 1-D, Real-Valued, CT Signals: 
Temporal Evolution of Currents and 

Voltages in Electrical Circuits

Examples of 1-D, Real-Valued, CT Signals: 
Temporal Evolution of Currents and 

Voltages in Electrical Circuits

( )y t

t
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Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Some Physical 

Quantities in Mechanical Systems

Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Some Physical 

Quantities in Mechanical Systems

( )y t

t
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•• UnitUnit--step functionstep function

•• UnitUnit--ramp functionramp function

Continuous-Time (CT) SignalsContinuous-Time (CT) Signals

1, 0
( )

0, 0
t

u t
t
≥⎧

= ⎨ <⎩
, 0

( )
0, 0
t t

r t
t
≥⎧

= ⎨ <⎩
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Unit-Ramp and Unit-Step Functions: 
Some Properties

Unit-Ramp and Unit-Step Functions: 
Some Properties

( ), 0
( ) ( )

0, 0
x t t

x t u t
t
≥⎧

= ⎨ <⎩

( ) ( )
t

r t u dλ λ
−∞

= ∫

( )( ) dr tu t
dt

= (to the exception of           )0t =
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• A.k.a. the delta functiondelta function or DiracDirac distributiondistribution
•• It is defined by:It is defined by:

•• The value          is not defined, in particular The value          is not defined, in particular 

The Unit ImpulseThe Unit Impulse

( ) 0, 0

( ) 1, 0

t t

d
ε

ε

δ

δ λ λ ε
−

= ≠

= ∀ >∫

(0)δ
(0)δ ≠ ∞
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The Unit Impulse: 
Graphical Interpretation

The Unit Impulse: 
Graphical Interpretation

A is a very large number
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• If            ,             is the impulse with area    ,      
i.e.,       

The Scaled Impulse Kδ(t)The Scaled Impulse Kδ(t)

( ) 0, 0

( ) , 0

K t t

K d K
ε

ε

δ λ λ ε
−

= ≠

= ∀ >∫

K ∈\ ( )K tδ K
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Properties of the Delta FunctionProperties of the Delta Function

( ) ( )
t

u t dδ λ λ
−∞

= ∫
0t =t∀ except

0

0

0 0( ) ( ) ( ) 0
t

t

x t t t dt x t
ε

ε

δ ε
+

−

− = ∀ >∫

1)

2)
(sifting propertysifting property)
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• Definition: a signal        is said to be periodic 
with period    , if

• Notice that        is also periodic  with period     
where     is any positive integer

• is called the fundamental periodfundamental period

Periodic SignalsPeriodic Signals

( )x t
T

( ) ( )x t T x t t+ = ∀ ∈\

qT q
( )x t

T
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Example: The SinusoidExample: The Sinusoid

( ) cos( ),x t A t tω θ= + ∈\

[1/ sec] [ ]
2

Hzf ω
π

==
[ / sec]

[ ]

rad

rad

ω
θ
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• Let           and           be two periodic signals 
with periods  T1 and T2, respectively  

• Then, the sum                     is periodic only if 
the ratio T1/T2 can be written as the ratio q/r
of two integers q and r

• In addition, if r and q are coprime, then T=rT1 
is the fundamental period of 

Is the Sum of Periodic Signals Periodic?Is the Sum of Periodic Signals Periodic?

1( )x t 2 ( )x t

1 2( ) ( )x t x t+

1 2( ) ( )x t x t+
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Time-Shifted SignalsTime-Shifted Signals
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• A continuous-time signal        is said to be 
discontinuous at a point    if                                  
where                  and                 ,     being a 
small positive number

Points of DiscontinuityPoints of Discontinuity

( )x t
0t 0 0( ) ( )x t x t+ −≠

0 0t t ε+ = + 0 0t t ε− = − ε

( )x t

0t
t
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• A signal        is continuous at the point    if 

• If a signal        is continuous at all points t,           
is said to be a continuous signalcontinuous signal

Continuous SignalsContinuous Signals

( )x t
0 0( ) ( )x t x t+ −=

0t

( )x t
( )x t
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Example of Continuous Signal: 
The Triangular Pulse Function

Example of Continuous Signal: 
The Triangular Pulse Function
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• A signal         is said to be piecewise 
continuous if it is continuous at all        
except a finite or countably infinite 
collection of points  

Piecewise-Continuous SignalsPiecewise-Continuous Signals

( )x t
t

, 1,2,3,it i = …
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Example of Piecewise-Continuous 
Signal: The Rectangular Pulse Function

Example of Piecewise-Continuous 
Signal: The Rectangular Pulse Function

( ) ( / 2) ( / 2)p t u t u tτ τ τ= + − −
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Another Example of Piecewise-
Continuous Signal: 

The Pulse Train Function

Another Example of Piecewise-
Continuous Signal: 

The Pulse Train Function



44

• A signal         is said to be differentiabledifferentiable at a 
point    if the quantity

has limit as            independent of whether    
approaches 0 from above             or from 
below

• If the limit exists,         has a derivativederivative at        

Derivative of a Continuous-Time SignalDerivative of a Continuous-Time Signal

( )x t
0t

0 0( ) ( )x t h x t
h

+ −

0h → h
( 0)h >

( 0)h <

0

0 0

0

( ) ( ) ( )
h

dx t x t h x tlimt tdt h→

+ −
==

( )x t 0t
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• In order for         to be differentiable at a 
point    , it is necessary (but not sufficient) 
that        be continuous at    

• Continuous-time signals that are not 
continuous at all points  (piecewise 
continuity) cannot be differentiable at all 
points

Continuity and DifferentiabilityContinuity and Differentiability

( )x t
0t

( )x t 0t
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• However, piecewise-continuous signals 
may have a derivative in a generalized sense

• Suppose that        is differentiable at all    
except  

• The generalized derivativegeneralized derivative of         is 
defined to be

Generalized DerivativeGeneralized Derivative

( )x t

0 0 0

( ) ( ) ( ) ( )dx t x t x t t t
dt

δ+ −+ − −⎡ ⎤⎣ ⎦

t
0t t=

( )x t

ordinary derivative of        at all   except 0t t=t( )x t
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• Define

• The ordinary derivative of         is 0 at all 
points except

• Therefore, the generalized derivative of        is

Example: Generalized Derivative 
of the Step Function

Example: Generalized Derivative 
of the Step Function

( ) ( )x t Ku t=

0t =
( )x t

( )x t

(0 ) (0 ) ( 0) ( )K u u t K tδ δ+ −− − =⎡ ⎤⎣ ⎦

K

K
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• Consider the function defined as

Another Example 
of Generalized Derivative 

Another Example 
of Generalized Derivative 

2 1, 0 1
1, 1 2

( )
3, 2 3

0,

t t
t

x t
t t

all other t

+ ≤ <⎧
⎪ ≤ <⎪= ⎨− + ≤ ≤⎪
⎪⎩
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• The ordinary derivative of        , at all   
except                   is 

• Its generalized derivative is

Another Example 
of Generalized Derivative: Cont’d 

Another Example 
of Generalized Derivative: Cont’d 

( )x t

[ ] [ ]( ) 2 ( ) ( 1) ( 2) ( 3)dx t u t u t u t u t
dt

= − − − − − −

t
0,1,2,3t =

( ) (0 ) (0 ) ( ) (1 ) (1 ) ( 1)

1 2

dx t x x t x x t
dt

δ δ+ − + −+ − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
−

���	��
 ���	��




50

Another Example 
of Generalized Derivative: Cont’d 

Another Example 
of Generalized Derivative: Cont’d 
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• Consider the signal

• This signal can be expressed in terms of the 
unit-step function        and its time-shifts as 

Signals Defined Interval by IntervalSignals Defined Interval by Interval

1 1 2

2 2 3

3 3

( ),
( ) ( ),

( ),

x t t t t
x t x t t t t

x t t t

≤ <⎧
⎪= ≤ <⎨
⎪ ≥⎩

( )u t
[ ]
[ ]

1 1 2

2 2 3

3 3 1

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ),

x t x t u t t u t t

x t u t t u t t
x t u t t t t

= − − − +

+ − − − +

+ − ≥
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• By rearranging the terms, we can write

where

Signals Defined Interval by Interval: 
Cont’d

Signals Defined Interval by Interval: 
Cont’d

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( )x t f t u t t f t u t t f t u t t= − + − + −

1 1

2 2 1

3 3 2

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

f t x t
f t x t x t
f t x t x t

=
= −
= −
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• A discrete-time signal is defined only over 
integer values

• We denote such a signal by

Discrete-Time (DT) SignalsDiscrete-Time (DT) Signals

[ ], { , 2, 1,0,1,2, }x n n∈ = − −] … …
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• Suppose that

Example: A Discrete-Time Signal 
Plotted with Matlab

Example: A Discrete-Time Signal 
Plotted with Matlab

[0] 1, [1] 2, [2] 1, [3] 0, [4] 1x x x x x= = = = = −

n=-2:6;

x=[0 0 1 2 1 0 –1 0 0];

stem(n,x)

xlabel(‘n’)

ylabel(‘x[n]’)


����
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• Discrete-time signals are usually obtained 
by sampling continuous-time signals

SamplingSampling

( )x t [ ] ( ) ( )t nTx n x t x nT== =. .
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DT Step and Ramp FunctionsDT Step and Ramp Functions
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DT Unit PulseDT Unit Pulse

1, 0
[ ]

0, 0
n

n
n

δ
=⎧

= ⎨ ≠⎩
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• A  DT signal         is periodic if there exists 
a positive integer r such that

• r is called the period of the signal
• The fundamental period is the smallest 

value of r for which the signal repeats

Periodic DT SignalsPeriodic DT Signals

[ ]x n

[ ] [ ]x n r x n n+ = ∀ ∈]
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• Consider the signal
• The signal is periodic if

• Recalling the periodicity of the cosine

is periodic if and only if there exists a 
positive integer r such that                   for 
some integer k or, equivalently, that the DT 
frequency      is such that                     for 
some positive integers k and r

Example: Periodic DT SignalsExample: Periodic DT Signals

[ ] cos( )x n A n θ= Ω +

cos( ( ) ) cos( )A n r A nθ θΩ + + = Ω +

cos( ) cos( 2 )kα α π= +
[ ]x n

2r kπΩ =

2 /k rπΩ =Ω
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Example:
for different values of

Example:
for different values of

/ 3, 0π θΩ = = 1, 0θΩ = =

periodic signal with period

[ ] cos( )x n A n θ= Ω +[ ] cos( )x n A n θ= Ω +
ΩΩ

6r =
aperiodic signal 
(with periodic envelope)
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DT Rectangular PulseDT Rectangular Pulse

1, ( 1) / 2, , 1,0,1, ,( 1) / 2
[ ]

0,L

n L L
p n

all other n
= − − − −⎧

= ⎨
⎩

… …

(L must be an odd integer)
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• A digital signaldigital signal is a DT signal whose 
values belong to a finite set or alphabet  

• A CT signal can be converted into a digital 
signal by cascading the ideal sampler with a 
quantizer

Digital SignalsDigital Signals

[ ]x n

{ }1 2, , , Na a a…
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• If         is a DT signal and q is a positive 
integer

Time-Shifted SignalsTime-Shifted Signals

[ ]x n

[ ]
[ ]

x n q
x n q

−
+

is the q-step right shift of

is the  q-step left shift of [ ]x n
[ ]x n
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Example of CT System: 
An RC Circuit

Example of CT System: 
An RC Circuit

( ) ( ) ( )C Ri t i t i t+ =KirchhoffKirchhoff’’ss current law:current law:
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• The v-i law for the capacitor is

• Whereas for the resistor it is

RC Circuit: Cont’dRC Circuit: Cont’d

( ) ( )( ) C
C

dv t dy ti t C C
dt dt

= =

1 1( ) ( ) ( )R Ci t v t y t
R R

= =
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•• ConstantConstant--coefficient linear differential coefficient linear differential 
equationequation describing the I/O relationship if 
the circuit

RC Circuit: Cont’dRC Circuit: Cont’d

( ) 1 ( ) ( ) ( )dy tC y t i t x t
dt R

+ = =
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• Step response when R=C=1

RC Circuit: Cont’dRC Circuit: Cont’d
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where         is the drive or braking force applied to the 
car at time t and          is the car’s position at time t

Example of CT System: 
Car on a Level Surface
Example of CT System: 
Car on a Level Surface

NewtonNewton’’s second law of motion:s second law of motion:
2

2

( ) ( ) ( )f

d y t dy tM k x t
dt dt

+ =

( )x t
( )y t
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Car on a Level Surface: Cont’dCar on a Level Surface: Cont’d

• Step response when M=1 and 0.1fk =
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Example of CT System: 
Mass-Spring-Damper System

Example of CT System: 
Mass-Spring-Damper System

2

2

( ) ( ) ( ) ( )d y t dy tM D Ky t x t
dt dt

+ + =
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Mass-Spring-Damper System: Cont’dMass-Spring-Damper System: Cont’d

• Step response when M=1, K=2, and D=0.5 
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Example of CT System: 
Simple Pendulum

Example of CT System: 
Simple Pendulum

2

2

( ) sin ( ) ( )d tI MgL t Lx t
dt
θ θ+ =

2

2

( ) ( ) ( )d tI MgL t Lx t
dt
θ θ+ =

sin ( ) ( )t tθ θ≈If 
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• A system is said to be causalcausal if, for any time 
t1, the output response at time t1 resulting 
from input x(t) does not depend on values of 
the input for t > t1.

• A system is said to be noncausalnoncausal if it is not 
causal

Basic System Properties: CausalityBasic System Properties: Causality
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Example: The Ideal PredictorExample: The Ideal Predictor

( ) ( 1)y t x t= +
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Example: The Ideal DelayExample: The Ideal Delay

( ) ( 1)y t x t= −
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• A causal system is memorylessmemoryless or staticstatic if, 
for any time t1, the value of the output at 
time t1 depends only on the value of the input 
at time t1

• A causal system that is not memoryless is 
said to have memorymemory. A system has memory 
if the output at time t1 depends in general on 
the past values of the input x(t) for some 
range of values of t up to t = t1

Memoryless Systems 
and Systems with Memory

Memoryless Systems 
and Systems with Memory
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•• Ideal Amplifier/AttenuatorIdeal Amplifier/Attenuator

•• RC CircuitRC Circuit

( ) ( )y t K x t=

(1/ )( )

0

1( ) ( ) , 0
t

RC ty t e x d t
C

τ τ τ− −= ≥∫

ExamplesExamples
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• A system is said to be additive additive if, for any 
two inputs x1(t) and x2(t), the response to the 
sum of inputs x1(t) + x 2(t)  is equal to the 
sum of the responses to the inputs, 
assuming no initial energy before the 
application of the inputs

Basic System Properties: 
Additive Systems

Basic System Properties: 
Additive Systems

1 2( ) ( )y t y t+1 2( ) ( )x t x t+ system
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• A system is said to be homogeneoushomogeneous if, for 
any input x(t) and any scalar a, the response 
to the input ax(t) is equal to a times the 
response to x(t), assuming no energy before 
the application of the input

Basic System Properties: 
Homogeneous Systems

Basic System Properties: 
Homogeneous Systems

( )ax t ( )ay tsystem
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• A system is said to be linear linear if it is both 
additive and homogeneous

• A system that is not linear is said to be 
nonlinearnonlinear

Basic System Properties: LinearityBasic System Properties: Linearity

system1 2( ) ( )ax t bx t+ 1 2( ) ( )ay t by t+
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Example of Nonlinear System: 
Circuit with a Diode

Example of Nonlinear System: 
Circuit with a Diode

2

1 2

( ), ( ) 0
( )

0, ( ) 0

R x t when x t
R Ry t

when x t

⎧ ≥⎪ += ⎨
⎪ ≤⎩



82

Example of Nonlinear System: 
Square-Law Device

Example of Nonlinear System: 
Square-Law Device

2( ) ( )y t x t=
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Example of Linear System: 
The Ideal Amplifier

Example of Linear System: 
The Ideal Amplifier

( ) ( )y t K x t=
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Example of Linear System: 
A Real Amplifier

Example of Linear System: 
A Real Amplifier
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• A system is said to be time invarianttime invariant if, for any 
input x(t) and any time t1, the response to the 
shifted input x(t – t1)  is equal to y(t – t1) where 
y(t) is the response to x(t) with zero initial 
energy

• A system that is not time invariant is said to be 
time varyingtime varying or time varianttime variant

Basic System Properties:
Time Invariance

Basic System Properties:
Time Invariance

system
1( )x t t− 1( )y t t−
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•• Amplifier with TimeAmplifier with Time--Varying GainVarying Gain

•• FirstFirst--Order SystemOrder System

Examples of Time Varying SystemsExamples of Time Varying Systems

( ) ( )y t tx t=

( ) ( ) ( ) ( )y t a t y t bx t+ =�
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• Let x(t) and y(t) be the input and output of a 
CT system

• Let x(i)(t)  and y(i)(t) denote their i-th
derivatives

• The system is said to be finite dimensionalfinite dimensional
or lumpedlumped if, for some positive integer N the 
N-th derivative of the output at time t is 
equal to a function of x(i)(t)  and y(i)(t) at time 
t for  

Basic System Properties: 
Finite Dimensionality

Basic System Properties: 
Finite Dimensionality

0 1i N≤ ≤ −
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• The N-th derivative of  the output at time t 
may also depend on the i-th derivative of the 
input at time t for

• The integer N is called the orderorder of the above 
I/O differential equationI/O differential equation as well as the order order 
or dimension of the systemor dimension of the system described by such 
equation 

Basic System Properties: 
Finite Dimensionality – Cont’d

Basic System Properties: 
Finite Dimensionality – Cont’d

i N≥
( ) (1) ( 1)

(1) ( )

( ) ( ( ), ( ), , ( ),
( ), ( ), , ( ), )

N N

M

y t f y t y t y t
x t x t x t t

−= …
…
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• A CT system with memory is infinite infinite 
dimensionaldimensional if it is not finite dimensional, 
i.e., if it is not possible to express the N-th
derivative of the output in the form 
indicated above for some positive integer N

•• Example: System with DelayExample: System with Delay

Basic System Properties: 
Finite Dimensionality – Cont’d

Basic System Properties: 
Finite Dimensionality – Cont’d

( ) ( 1) ( )dy t ay t x t
dt

+ − =
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• Let x[n] and y[n] be the input and output of a 
DT system.

• The system is finite dimensional finite dimensional if, for some 
positive integer N and nonnegative integer M, 
y[n] can be written in the form

• N is called the order of the I/O difference I/O difference 
equationequation as well as the order or dimension of order or dimension of 
the systemthe system described by such equation

DT Finite-Dimensional SystemsDT Finite-Dimensional Systems

[ ] ( [ 1], [ 2], , [ ],
[ ], [ 1], , [ ], )

y n f y n y n y n N
x n x n x n M n

= − − −
− −

…
…
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• If the N-th derivative of a CT system can be 
written in the form

then the system is both linear and finite 
dimensional

Basic System Properties: 
CT Linear Finite-Dimensional Systems

Basic System Properties: 
CT Linear Finite-Dimensional Systems

1
( ) ( ) ( )

0 0

( ) ( ) ( ) ( ) ( )
N M

N i i
i i

i i

y t a t y t b t x t
−

= =

= − +∑ ∑
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Basic System Properties: 
DT Linear Finite-Dimensional Systems

Basic System Properties: 
DT Linear Finite-Dimensional Systems

• If the output of a DT system can be written 
in the form

then the system is both linear and finite 
dimensional

1

0 0

[ ] ( ) [ ] ( ) [ ]
N M

i i
i i

y n a n y n i b n x n i
−

= =

= − − + −∑ ∑
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• For a CT system it must be

• And, similarly, for a DT system

Basic System Properties: 
Linear Time-Invariant 

Finite-Dimensional Systems

Basic System Properties: 
Linear Time-Invariant 

Finite-Dimensional Systems

( ) ( )i i i ia t a and b t b i and t= = ∀ ∈\

( ) ( )i i i ia n a and b n b i and n= = ∀ ∈]
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• Some authors define the order as N

• Some as 

• Some others as

About the Order of Differential and 
Difference Equations

About the Order of Differential and 
Difference Equations

( , )M N

max( , )M N


