Chapter 1
Fundamental Concepts




Signals

» Asignal is a pattern of variation of a
physical quantity as a function of time,
space, distance, position, temperature,

pressure, etc.

» These quantities are usually the independent
variables of the function defining the signal

» Asignal encodes information, which is the

variation itself




Signal Processing

« Signal processing is the discipline concerned
with extracting, analyzing, and manipulating
the information carried by signals

* The processing method depends on the type
of signal and on the nature of the information
carried by the signal




Characterization and Classification
of Signals

» The type of signal depends on the nature of
the independent variables and on the value
of the function defining the signal

» For example, the independent variables can
be continuous or discrete

 Likewise, the signal can be a continuous or
discrete function of the independent
variables




Characterization and Classification
of Signals — Cont’d

» Moreover, the signal can be either a real-
valued function or a complex-valued function

A signal consisting of a single component is
called a scalar or one-dimensional (1-D)
signal

A signal consisting of multiple components is
called a vector or multidimensional (M-D)
signal




Definition of Function from Calculus

y=f(t)
fit>y=1(t)
independent dependent
variable variable
f()
domain: set of values range: set of values

that t can take on spanned by y




Plot or Graph of a Function

ry=1(t)

range

domain




Continuous-Time (CT)
and Discrete-Time (DT) Signals

» Asignal x(t) depending on a continuous
temporal variable t € R will be called a
continuous-time (CT) signal

» Assignal x[n] depending on a discrete
temporal variable n € Z will be called a
discrete-time (DT) signal




Examples: CT vs. DT Signals
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CT Signals:
1-D vs. N-D, Real vs. Complex

v « 1-D, real-valued, CT signal: X(t) e R,teR

« N-D, real-valued, CT signal: X(t) € RN teR
v« 1-D, complex-valued, CT signal: X(t)eC,teR

* N-D, complex-valued, CT signal: X(t) € cN teR
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DT Signals:
1-D vs. N-D, Real vs. Complex

v « 1-D, real-valued, DT signal: X[n]eR,neZ

« N-D, real-valued, DT signal: X[n] e RN ,neZ
v« 1-D, complex-valued, DT signal: X[n]e C,neZ

« N-D, complex-valued, DT signal: X[n] € CN neZ
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Digital Signals

» A DT signal whose values belong to a finite
set or alphabet A ={e,,@,,...,a, } is called
a digital signal

* Since computers work with finite-precision
arithmetic, only digital signals can be
numerically processed

 Digital Signal Processing (DSP): ECE
464/564 (Liu) and ECE 567 (Lucchese)
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Digital Signhals: 1-D vs. N-D

« 1-D, real-valued, digital signal: X[n]e A,neZ
« N-D, real-valued, digital signal: X[n] € AN neZ
A={a, a,,...,a,}
If ¢, € R, the digital signal is real, if instead at

least one of the ¢, € C, the digital signal is
complex
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Systems

» A system is any device that can process
signals for analysis, synthesis, enhancement,
format conversion, recording, transmission,
etc.

» A system is usually mathematically defined
by the equation(s) relating input to output
signals (1/O characterization)

» A system may have single or multiple inputs
and single or multiple outputs
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Block Diagram Representation
of Single-Input Single-Output
(S1S0) CT Systems

input signal output signal
X(t) T —— yO)=T{x);
teR teR
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Block Diagram Representation
of Single-Input Single-Output
(S1S0) DT Systems

input signal output signal
x[n] T y[n]=T {x[n]}
nez nez
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A Hybrid SISO System: The Analog
to Digital Converter (ADC)

Used to convert a CT (analog) signal into a
digital signal

X(t) y[n]
teR nez

ADC
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Block Diagram Representation

of Multiple-Input Multiple-Output
(MIMQO) CT Systems

Input ¢

signals

X () ————

X () —

e 27

X, () —

System

LRSS

— ), (1)

T )
1 =

Figure 1.2 System with p inputs and ¢ outputs.

Output
signals
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Example of 1-D, Real-Valued, Digital
Signal: Digital Audio Signal

X[n] ..
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Example of 1-D, Real-Valued, Digital
Signal with a 2-D Domain:
A Digital Gray-Level Image

1Y il

n,

X[nl’ nZ]
[n,n,]eZ’

pixel
coordinates
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Digital Gray-Level Image: Cont’'d

x[n;,n,]
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Example of 3-D, Real-Valued, Digital
Signhal with a 2-D Domain:
A Digital Color Image

n2
r[nl’ nz]
X[nl’ nz] = g[nl’ nz]
b[n;,n, ]
[n,n]eZ’
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Digital Color Image: Cont’d
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Example of 3-D, Real-Valued, Digital
Signal with a 3-D Domain:
A Digital Color Video Sequence

K (temporal axis)

r[n,,n,,k]
X[n,n,,k]=| g[n,n,,Kk]
b[n,,n,,k]
: [n,n]eZ’ keZ
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Types of input/output
representations considered

« Differential equation (or difference
equation)
» The convolution model

» The transfer function representation
(Fourier transform representation)
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Examples of 1-D, Real-Valued, CT Signals:

Temporal Evolution of Currents and
Voltages in Electrical Circuits

i)
-\\
+

(1) = i) (D R § ! ) € == veln) = ¥

Figure 1.24 RC circuit.

y (t) WO ‘
1
05 V—
+ t + ¢ Figure 1.25 Step response of RC circuit

|{l 1 2 3 t whenR=C= 1.
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Examples of 1-D, Real-Valued, CT Signals:

Temporal Evolution of Some Physical
Quantities in Mechanical Systems

xir)

D z
Figure 1.28  Schematic diagram of a
FEEIR mass-spring-damper system.

Time t
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Continuous-Time (CT) Signals

: _ 1, t=0
« Unit-step function u(t) =<
0, t<0
. . 1, t>0
* Unit-ramp function r(t) =<
0, t<0
|
o 4

Figure 1.3 (a) Unit-step and (b) unit-ramp functions.
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Unit-Ramp and Unit-Step Functions:
Some Properties

X(t)u(t) = {g(t)’ : i g
rt)=] u(2)dz

dr(t)
dt

(to the exception of t =0)

u(t) =
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The Unit Impulse

e A.k.a. the delta function or Dirac distribution
* It is defined by:

o(t)=0, t=0

&
j S(A)dAi=1 Ve&>0

=&

» The value 6(0) is not defined, in particular
0(0) =
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The Unit Impulse:
Graphical Interpretation

o()

2A 24 Figure 1.4 Pulse interpretation of 6(¢).

A is a very large number
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The Scaled Impulse Ké(t)

o IfK e R, KJ(t) is the impulse with areaK,

.e.,
K(t)=0, t=0

j KS(A)dA=K, Ve>0
—&

KO()

0 : Figure 1.5 Graphical representation of
the impulse Kd(¢).
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Properties of the Delta Function

t
1) u(t) = j 5(A)dA

Vi exceptt =0

t,+e

2) [ x(s-t)dt=x(t,) Ve>0

t,—¢

(sifting property)
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Periodic Signals

« Definition: a signal x(t) is said to be periodic
with period T , if
Xt+T)=x(t) VteR

* Notice that x(t) is also periodic with period
qT where q is any positive integer
T is called the fundamental period
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Example: The Sinusoid
X(t)= Acos(wt +6), teR

Figure 1.6  Sinusoid A cos(wr + #) with —7/2 < 0 < (),

@ [rad /sec] 0
f =— [1/sec] = [Hz]
6 [rad] 27T
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Is the Sum of Periodic Signals Periodic?

 Let x (t) and x,(t) be two periodic signals
with periods T, and T,, respectively

 Then, the sumx (t) + X, (t) is periodic only if
the ratio T,/T, can be written as the ratio g/r
of two integers g and r

* In addition, if r and q are coprime, then T=rT,
is the fundamental period of X, (t) + X, (t)
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Time-Shifted Signals

ulr=2) u(t+2)
1
I e O
} 1 1 t } 1 f
0= 2N A s JEE g A T ) 2
(a) (b)

Figure 1.7 Two-second shifts of u(¢): (a) right shift; (b) left shift.

37



Points of Discontinuity

« A continuous-time signal X(t) is said to be
discontinuous at a point t, if X(t;) = X(t;)
wheret; =t +sand t; =t, —&, ¢ being a
small positive number

x(t) |

N
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Continuous Signals

A signal x(t) is continuous at the point t, if
X(ty) = x(t; )

« If a signal x(t) is continuous at all points {,
X(t) is said to be a continuous signal
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Example of Continuous Signal:
The Triangular Pulse Function

2t 1 -2

0N P

—2i2 0 0

Figure 1.8 Triangular pulse function.
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Piecewise-Continuous Signals

« Asignal x(t) is said to be piecewise
continuous if it is continuous at all t
except a finite or countably infinite
collection of points t,1=1,2,3,...
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Example of Piecewise-Continuous
Signal: The Rectangular Pulse Function

P

() =u(t+7/2)—u(t—17/2)

—1/2

!

/2

Figure 1.9 Rectangular pulse function.
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Another Example of Piecewise-

(repeats)

Continuous Signal:

The Pulse Train Function

. ,

(repeats)
[ X N ]

o) e el e LR | 0 1 2 3 4

Figure 1.10  Signal that is discontinuous at ¢ = 0, =1, £2, .. ..

5

t
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Derivative of a Continuous-Time Signal

« Asignal x(t) is said to be differentiable at a
point t, if the quantity
x(t, +h) —x(t,)
h

has limit as h — 0independent of whether h
approaches 0 from above (h > 0) or from
below (h < 0)

« If the limit exists, X(t) has a derivative at t,

dx(t) _, =lim X(t, +h) —x(t,)
dt _to h—0
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Continuity and Differentiability

* In order for X(t) to be differentiable at a
point t,, it is necessary (but not sufficient)
that X(t) be continuous at t,

 Continuous-time signals that are not
continuous at all points (piecewise
continuity) cannot be differentiable at all
points
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Generalized Derivative

» However, piecewise-continuous signals
may have a derivative in a generalized sense

 Suppose that x(t) is differentiable at all t
exceptt =1

 The generalized derivative of x(t) is
defined to be

dx(t N _
fji ) [x)-x(t)]5t-t,)

ordinary derivative of x(t) at all t exceptt =t,
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Example: Generalized Derivative
of the Step Function
Kutn

* Define x(t) = Ku(t)

T T T '§
0 2 3

 The ordinary derivative of x(t) is 0 at all
points except t =0
 Therefore, the generalized derivative of x(t) is

K{u(0")-u(0) |s(t—0) =Ks(t)
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Another Example

of Generalized Derivative

e Consider the function defined as

(2t+1, 0<t<1l

1, 1<t<?2
X(t) =+

—t+3, 2<t<3

|0, allothert

Figure 1.11

Signal in Example 1.3.

48



Another Example
of Generalized Derivative: Cont’d

 The ordinary derivative of x(t), at all t
exceptt=0,1,2,3is

%: 2[u(t) —u(t-1)]-[ut-2)-u(t-3)]
o Its generalized derivative is
%+[x(0*) - x(O‘)J&(t)Jr[x(l*) - x(l‘)]&(t ~1)
1 —2
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Another Example
of Generalized Derivative: Cont’'d

(1

Figure 1.12  Generalized derivative of
the signal in Example 1.3.
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Signals Defined Interval by Interval
 Consider the signal
X (), t<t<t,
X(t)=1X%(t), t, <t<t,
X, (1), t>t

 This signal can be expressed in terms of the
unit-step functionu(t) and its time-shifts as

X(t) =x (Out-t)-u(t-t,)]+
+%,(O)[u(t-t,)-ut—t)]+
+x,(u(t-t,), t=>t
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Signals Defined Interval by Interval:
Cont’d

» By rearranging the terms, we can write

x(t) = f,(Out-t)+ f,(Qu(t-t,)+ f,(Ou(t-t,)
where
f,(t) =x,(t)
F, (1) = %, () =%, (1)
fy(t) =%, (1) = %, (t)
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Discrete-Time (DT) Signals

A discrete-time signal is defined only over
integer values

» We denote such a signal by
X[n], neZ={..,-2,-1,0,1,2,.. .}
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Example: A Discrete-Time Signal
Plotted with Matlab

» Suppose that
X[0]=1, X[1]=2, X[2]=1 x[3]=0, x[4]=-1

n=-2:6; ]
— L3
x=[001210-100];
stem(n,x) :u' ‘ l
xlabel(‘n’)

ylabel(*x[n]’)
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Sampling

 Discrete-time signals are usually obtained
by sampling continuous-time signals

X(t) 7 - X[n]= X(t)| .y =X(NT)
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DT Step and Ramp Functions

uln)

—¢— ¢
==l =l D) il e el & 5 R w4 =3 SR ORI = 3E 4y
(a) (b)

Figure 1.18 (a) Discrete-time unit step and (b) unit-ramp functions.

56



DT Unit Pulse

1, n=0

o[n] =
[n] 0, nz0

o[n]

—ehesd o =Ll g g Figure 1.20

Unit-pulse function.
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Periodic DT Signals

« A DT signal x[n] is periodic if there exists
a positive integer r such that

X[n+r]=x[n] VneZ

* ris called the period of the signal

» The fundamental period is the smallest
value of r for which the signal repeats
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Example: Periodic DT Signals

« Consider the signal X[n]= Acos(Qn+ &)
« The signal is periodic if
Acos(Q(n+r)+8) = Acos(Q2n+6)
 Recalling the periodicity of the cosine
cos(a) = cos(ax + 2k )

x[n] is periodic if and only if there exists a
positive integer r such that Qr = 2k for
some integer k or, equivalently, that the DT

frequency Q is such that Q = 2k /r for
some positive integers k and r
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Example: x[n] = Acos(Q2n+6)
for different values of Q2

Q=7/3,0=0

;‘_I|l I‘l lh Ih [‘I Xll |
Uj’l [‘I l‘[ l\l I‘l wl Jll

periodic signal with period
r=6

0=16=0

| M 1L L,

frm

aperiodic signal
(with periodic envelope)
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DT Rectangular Pulse

1, n=—-(L-1/2,...,-1,0,1,...,(L-1)/2
pL[n]:
0, all other n

(L must be an odd integer)

Pilnl &
1
ass [ [ { -» } { [ ses
)“—L,‘ Th—] f—f—t Fi‘—‘—‘— n
=(L=1) =3 =2 =1 10/ 1 *2% 3 =l
2 2

Figure 1.22 Discrete-time rectangular pulse.
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Digital Signals

« A digital signal x[n]is a DT signal whose
values belong to a finite set or alphabet

{a,,a,,...,3,}

« A CT signal can be converted into a digital
signal by cascading the ideal sampler with a
quantizer
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Time-Shifted Signals

e If x[n] is a DT signal and q is a positive

integer

X[n—q] is the g-step right shift of X[ N]
X[n+q] isthe g-step left shift of X[N]

paln — 2] myln + 2]

1+ T1
F«U—L‘— n ¢<—U—[—>—4—0—¢—-— i
1

= = DR O RS B R SEl St el e 1 (T R e |

(a)

(b)

Figure 1.23  Two-step shifts of p,[n]: (a) right shift; (b) left shift.
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Example of CT System:
An RC Circuit

iclt) ~\'
+
(1) = i(t) CT) R i iw(0) C

=Vt = y(t)

Al

Figure 1.24 RC circuit.

Kirchhoff’s current law: i, (t) + 1 (t) =1i(t)
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RC Circuit: Cont’d

» The v-i law for the capacitor is

i ()=c el _ o)

dt dt
» Whereas for the resistor it IS

| (t)— Ve (t)——Y(t)
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RC Circuit: Cont'd

* Constant-coefficient linear differential
equation describing the 1/0 relationship if
the circuit

dy(t) 1 oy oy
CT+Ey(t)—|(t)—x(t)




RC Circuit: Cont’d

 Step response when R=C=1

i

05

t———t+———=1 Figure 1.25 Step response of RC circuil
7 3 when R = C = 1.
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Example of CT System:
Car on a Level Surface

0 (0

Figure 1.26  Car with drive or braking force x(¥).

Newton’s second law of motion:
p 9YO L O
dt? dt

where X(t) is the drive or braking force applied to the
carattimet and y(t) is the car’s position at time t
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Car on a Level Surface: Cont'd

« Step response when M=1 and k, =0.1

W)

- ! Figure 1.27 Step response of car with
M =1and k= 0.1
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Example of CT System:
Mass-Spring-Damper System

x(6)

M ty(r)

Figure 1.28 Schematic diagram of a
mass—spring-damper system.

+ Ky(t) = x(t)

80 | L dyO
dt’ dt
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Mass-Spring-Damper System: Cont’d

 Step response when M=1, K=2, and D=0.5

Time
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Example of CT System:
Simple Pendulum

|
|
|
| I
|
I

d2o(t)

t2

+ MgLsind(t) = Lx(t)
Mg sin @ (1) Figure 130 Simple pendulum.

If sin@(t) = 6(t)
d*a(t)

t2

+ MgL 4(t) = Lx(t)
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Basic System Properties: Causality

» A system is said to be causal if, for any time
t,, the output response at time t, resulting
from input x(t) does not depend on values of
the input for t > t,.

» A system is said to be noncausal if it is not
causal
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Example: The ldeal Predictor

y(t) =x(t+1)

x(#) y(®)

(@) (b)

Figure 1.32 (a) Input and (b} output pulse of system in Example 1.5.
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Example: The ldeal Delay

x(f) A

y(t) = x(t-1)

¥(1)

Y]

Figure 1.33  (a) Input and (b) output pulse of system in Example 1.6.

(b)
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Memoryless Systems
and Systems with Memory

o A causal system is memoryless or static if,
for any time t,, the value of the output at
time t, depends only on the value of the input
at time t;

A causal system that is not memoryless is
said to have memory. A system has memory
if the output at time t, depends in general on
the past values of the input x(t) for some
range of valuesof tuptot=1t;

76



Examples

* Ideal Amplifier/Attenuator
y(t) = Kx(t)

e RC Circuit

y(t) = % [ew e Ix(r)dzr, t20
0
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Basic System Properties:
Additive Systems

« A system is said to be additive if, for any
two inputs x,(t) and x,(t), the response to the
sum of inputs x,(t) + x,(t) is equal to the
sum of the responses to the inputs,
assuming no initial energy before the
application of the inputs

Xi(t) + X, (t) — system —— Y, (t) +Y, (t)
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Basic System Properties:
Homogeneous Systems

» A system is said to be homogeneous if, for
any input x(t) and any scalar a, the response
to the input ax(t) is equal to a times the
response to x(t), assuming no energy before
the application of the input

ax(t) —— system

ay(t)
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Basic System Properties: Linearity

» A system is said to be linear if it is both
additive and homogeneous

ax, (t) +bx, (t) —— system ay, (t) + by, (t)

A system that is not linear is said to be
nonlinear
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Example of Nonlinear System:
Circuit with a Diode
R, i g
AWy < :

Diode
+ +

Input
voltage ) C) Rzg y(®)

Figure 1.34 Resistive circuit with an ideal diode.

RZ

y(t) - R1 + Rz
0, when x(t) <0

X(t), whenx(t)>0
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Example of Nonlinear System:
Square-Law Device

y(t) =X(t)

Input = x{t) w0 = X1

NG

Signal multiplier

Figure 1.35 Realization of y(7) = x*(1).
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Example of Linear System:

i)

The ldeal Amplifier

y(t) = Kx(t)

~~Slope = K

(1)

Figure 1,36 Output versus input in an
ideal amplifier.
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Example of Linear System:

A Real Amplifier

¥

M4 —— Starts smoking

(1)

Figure 1.37  Output versus input in a nonideal amplifier.
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Basic System Properties:
Time Invariance

» A system is said to be time invariant if, for any
input x(t) and any time t;, the response to the
shifted input x(t —t;) is equal to y(t —t,) where
y(t) is the response to x(t) with zero initial
energy

X(t—t)—— system —— y(t—-t)

« A system that is not time invariant is said to be
time varying or time variant
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Examples of Time Varying Systems

o Amplifier with Time-Varying Gain

y(t) =tx(t)
 First-Order System

y(t) +a(t)y(t) = bx(t)
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Basic System Properties:
Finite Dimensionality

 Let x(t) and y(t) be the input and output of a
CT system

o Let xO(t) and y((t) denote their i-th
derivatives

» The system is said to be finite dimensional
or lumped if, for some positive integer N the
N-th derivative of the output at time t is
equal to a function of x®(t) and y®(t) at time
tfor 0<i<N-1
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Basic System Properties:
Finite Dimensionality — Cont’d

The N-th derivative of the output at time t
may also depend on the i-th derivative of the
inputat timetfori>N

y(N)(t) = f (y(t)’ y(l) (t), Xy y(N_l) (t),
X(t), x® (t),...,x™(1),t)

The integer N is called the order of the above
I/O differential equation as well as the order
or dimension of the system described by such
equation
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Basic System Properties:
Finite Dimensionality — Cont’d

» A CT system with memory is infinite
dimensional if it is not finite dimensional,
I.e., if it is not possible to express the N-th
derivative of the output in the form
indicated above for some positive integer N

» Example: System with Delay

i;()dray(t ~1) = x(t)
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DT Finite-Dimensional Systems

 Let x[n] and y[n] be the input and output of a
DT system.

* The system is finite dimensional if, for some
positive integer N and nonnegative integer M,
y[n] can be written in the form

y[n] - f (y[n _1]1 y[n—Z],..., y[n_ N]’
x[n], x[n=1],...,X[n—=M],n)
* N is called the order of the 1/O difference

equation as well as the order or dimension of
the system described by such equation
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Basic System Properties:
CT Linear Finite-Dimensional Systems

o If the N-th derivative of a CT system can be
written in the form

YO0 =3 a0y 1)+ Db X

then the system is both linear and finite
dimensional
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Basic System Properties:
DT Linear Finite-Dimensional Systems

* If the output of a DT system can be written
in the form

yin] =3 a(yln-il+ 3b (mxn-i

then the system is both linear and finite
dimensional
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Basic System Properties:
Linear Time-lnvariant
Finite-Dimensional Systems

e For a CT system it must be
a(t)=a and b(t)=b ViandteR

* And, similarly, fora DT system

a(n)=a and b(n)=b ViandneZ
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About the Order of Differential and
Difference Equations

v« Some authors define the order as N
« Someas(M,N)

« Some others as max(M, N)
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