Chapter 1
Fundamental Concepts

Signals

« Asignal is a pattern of variation of a
physical quantity as a function of time,
space, distance, position, temperature,
pressure, etc.

 These quantities are usually the independent
variables of the function defining the signal

A ssignal encodes information, which is the
variation itself

Signal Processing

« Signal processing is the discipline concerned
with extracting, analyzing, and manipulating
the information carried by signals

 The processing method depends on the type
of signal and on the nature of the information
carried by the signal

Characterization and Classification
of Signals

 The type of signal depends on the nature of
the independent variables and on the value
of the function defining the signal

 For example, the independent variables can
be continuous or discrete

* Likewise, the signal can be a continuous or
discrete function of the independent
variables

Characterization and Classification
of Signals — Cont’d

» Moreover, the signal can be either a real-
valued function or a complex-valued function

* A signal consisting of a single component is
called a scalar or one-dimensional (1-D)
signal

« A signal consisting of multiple components is
called a vector or multidimensional (M-D)
signal

Definition of Function from Calculus

y="f(t)
fity=1()
independent dependent
variable variable
fO)
domain: set of values range: set of values

that t can take on spanned by y




Plot or Graph of a Function

y="1(

range

domain

Continuous-Time (CT)
and Discrete-Time (DT) Signals

« A signal x(t) depending on a continuous
temporal variable t € R will be called a
continuous-time (CT) signal

« A signal x[n] depending on a discrete
temporal variable n € Z will be called a
discrete-time (DT) signal

Examples: CT vs. DT Signals

plot(t,x) stem(n,x)

CT Signals:
1-D vs. N-D, Real vs. Complex

v+ 1-D, real-valued, CT signal: X(t) e R,te R
« N-D, real-valued, CT signal: X(t) € RN teR
v« 1-D, complex-valued, CT signal: X(t)eC,teR
+ N-D, complex-valued, CT signal: X(t) € CcN teR

DT Signals:
1-D vs. N-D, Real vs. Complex

v+ 1-D, real-valued, DT signal:  X[n]e R, neZ

« N-D, real-valued, DT signal: X[n] RN nez
¥« 1-D, complex-valued, DT signal: X[n]e C,neZ

* N-D, complex-valued, DT signal: X[n] € cN ,nNeZ

Digital Signals

» A DT signal whose values belong to a finite
set or alphabet A = {a;,a,,...,, } is called
a digital signal

« Since computers work with finite-precision
arithmetic, only digital signals can be
numerically processed

« Digital Signal Processing (DSP): ECE
464/564 (Liu) and ECE 567 (Lucchese)




Digital Signals: 1-D vs. N-D

« 1-D, real-valued, digital signal: X[n]e A,neZ
« N-D, real-valued, digital signal: X[n] € AN nez
A:{al,az,...,aN}

If o, € R, the digital signal is real, if instead at
least one of the ¢, € C, the digital signal is
complex

Systems

» A system is any device that can process
signals for analysis, synthesis, enhancement,
format conversion, recording, transmission,
etc.

A system is usually mathematically defined
by the equation(s) relating input to output
signals (1/0 characterization)

« A system may have single or multiple inputs
and single or multiple outputs

Block Diagram Representation
of Single-Input Single-Output
(SI1SO) CT Systems

input signal output signal
Xt) —— T yO=T{x®)}
teR teR

Block Diagram Representation
of Single-Input Single-Output
(SI1SO) DT Systems

input signal output signal
x[n] T y[n]1=T {x[n]}
nez nez

A Hybrid SISO System: The Analog
to Digital Converter (ADC)

Used to convert a CT (analog) signal into a
digital signal

X(t) y[n]
teR nez

ADC

signals . . System

Block Diagram Representation
of Multiple-Input Multiple-Output
(MIMQ) CT Systems

X (1) e ¥y i
A (1) — — ()

Input Output
. : : signals

X, ————t| | ——
v, (1) Vg (1)

Figure 1.2 System with p inputs and g outputs,




Example of 1-D, Real-Valued, Digital
Signal: Digital Audio Signal

x[n] .

Example of 1-D, Real-Valued, Digital
Signal with a 2-D Domain:
A Digital Gray-Level Image

n,

x[n,,n, ]
[n.n,] e Z]

;1
. pixel

n )
1 coordinates

Digital Gray-Level Image: Cont’d

x[n,,n,]

Example of 3-D, Real-Valued, Digital
Signal with a 2-D Domain:
A Digital Color Image

nZ
rfn,n,]
x[n,n,]=| g[n,n,]
b[n,,n,]
[n,n,]eZ’

Digital Color Image: Cont’d

bln,,n,]
gln,,n,]
r[n;,n,]

Example of 3-D, Real-Valued, Digital
Signal with a 3-D Domain:
A Digital Color Video Sequence

/
f
T

k (temporal axis)

r[n,n,,Kk]

X[n,,n,.k]=| g[n,,n,,k]
b[n,n, k]
[n,n]eZ’ keZ




Types of input/output
representations considered

« Differential equation (or difference
equation)
* The convolution model

* The transfer function representation
(Fourier transform representation)

Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Currents and
Voltages in Electrical Circuits

Figure 1L.24  RC circuit

1 Figee 135 Sicp response of R cecsit
when R = £

Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Some Physical
Quantities in Mechanical Systems

Continuous-Time (CT) Signals
1, t=0
0, t<O
t, t=0
0, t<O0

e Unit-step function u(t) ={

* Unit-ramp function r(t) = {

Figare 13 {a) Unit-step and (b) unit-ramg functions

Unit-Ramp and Unit-Step Functions:
Some Properties

X(O)U(t) = x(t), t=0

o, t<0

r®)=" u(2)d

u) = m (to the exception of t =0)

dt

The Unit Impulse

* A.k.a. the delta function or Dirac distribution
« Itis defined by:

S(t)=0, t=0

&
j 5(A)da=1 Ve>0
—&
* The value §(0) is not defined, in particular
6(0) =




The Unit Impulse:
Graphical Interpretation

A'is a very large number

Figure 1.4 Pulse interpretation of 4(1).

The Scaled Impulse Ka(t)

* IFK eR, K&(t) is the impulse with areaK,
ie,
K()=0, t=0

&
jK&(ﬂ)dﬂ:K, Ves>0
—&

Ko,

!
|
[IR’I
o o =1 " Figure 1.5 Graphical representation of
the impulse Kd(1).

Properties of the Delta Function

t
1) u(t) = j 5(A)da
Vi exceptt =0
t,+e

2) f x(t)s(t—t,)dt=x(t,) Ve>0

t—-¢

(sifting property)

Periodic Signals
« Definition: a signal x(t) is said to be periodic
with period T, if
Xt+T)=x(t) VteR

* Notice that x(t) is also periodic with period
gT where q is any positive integer
* T is called the fundamental period

Example: The Sinusoid
X(t) = Acos(wt+6), teR

Figure 16 Sinusoid A cos{aw + ) with =22 = 0 < 1

@ [rad /sec]

f=2 [1/sec] = [Hz]
0 [rad] 27

Is the Sum of Periodic Signals Periodic?

 Let x (t) and x,(t) be two periodic signals
with periods T, and T,, respectively

* Then, the sumx (t) + X, (t) is periodic only if
the ratio T,/T, can be written as the ratio g/r
of two integers g and r

* In addition, if r and q are coprime, then T=rT,
is the fundamental period of X (t) + X, (t)




Time-Shifted Signals

e

—= -t
[n 1 2 3 4 2 1 o 1 2

(@) b

Figure 1.7 Two-second shifts of n{r): (a) right shift; (b) left shift,

Points of Discontinuity

« A continuous-time signal x(t) is said to be
discontinuous at a point t,if x(t;) = x(t;)
wheret; =t +candt, =t —¢, ¢ beinga
small positive number

X(t)

Continuous Signals

* Asignal x(t) is continuous at the point t, if
X(t)) = x(t)

* If a signal x(t) is continuous at all points t,
X(t)is said to be a continuous signal

Example of Continuous Signal:
The Triangular Pulse Function

Piecewise-Continuous Signals

« Asignal x(t) is said to be piecewise
continuous if it is continuous at all t
except a finite or countably infinite
collection of points t,,i=1,2,3,...

Example of Piecewise-Continuous
Signal: The Rectangular Pulse Function

wy  p(t) =ult+7/2)—u(t-7/2)

Figure 1.9 Rectangular pulse function,




Another Example of Piecewise-
Continuous Signal:
The Pulse Train Function

Derivative of a Continuous-Time Signal

« Asignal x(t) is said to be differentiable at a
point t,if the quantity
X(to + h) - X(to)
h

has limit as h — Qindependent of whether h
approaches 0 from above (h > 0) or from
below (h < 0)

« If the limit exists, x(t) has a derivative at t,

dx(t) L =l X(t, +h) - x(t,)
dt h—0 h

Continuity and Differentiability

« In order for x(t) to be differentiable at a
point t,, it is necessary (but not sufficient)
that x(t) be continuous at t,

 Continuous-time signals that are not
continuous at all points (piecewise
continuity) cannot be differentiable at all
points

Generalized Derivative

» However, piecewise-continuous signals
may have a derivative in a generalized sense

« Suppose that X(t) is differentiable at all t
except t =t

* The generalized derivative of x(t) is
defined to be

dx(t . -
%{x(to)—x(to)]é(t—to)

ordinary derivative of x(t) at all t exceptt =t,

Example: Generalized Derivative
of the Step Function
Ko

* Define x(t) = Ku(t)

1 2 3

* The ordinary derivative of x(t) is 0 at all
points except t =0
* Therefore, the generalized derivative of x(t) is

K[u(0")-u(0)]o(t—0)=Ka(t)

Another Example
of Generalized Derivative

» Consider the function defined as

2t+1, 0<t<1
1, 1<t<?2
x(t) =
—t+3, 2<t<3 !
0, all other t

Figure 111 Signal in Exampie 1.3




Another Example
of Generalized Derivative: Cont’d

* The ordinary derivative of x(t), at all t
exceptt=0,1,2,3is

%; 2[u(t) —u(t-1)]-[u(t—2)-u(t-3)]

* Its generalized derivative is
%JFMW) ) -x@) oy
. -2

Another Example
of Generalized Derivative: Cont’d

WG

Figare 112 Generalized derivative of
the signal in Example 1.3

Signals Defined Interval by Interval
* Consider the signal
X (1), t<t<t,
X(t) =<x,(t), t,<t<t,
X, (1), t>t,

« This signal can be expressed in terms of the
unit-step functionu(t) and its time-shifts as

X(t) = x (O)[ut-t)-u(t-t,)]+
+ X%, (t)[ult-t,)—u(t-t,)]+
+x{ut-t), t=t

Signals Defined Interval by Interval:
Cont'd

By rearranging the terms, we can write
x(t) = f(ut-t)+ f,(Hut-t,)+ f,(Hut-t,)

where
f.(t)=x(t)
f,(t) =%, (t) = x,(t)
fo(t) =%, (t) = X, (t)

Discrete-Time (DT) Signals

« A discrete-time signal is defined only over
integer values

» We denote such a signal by
x[n], nez=4{..,-2,-1,012,..}

Example: A Discrete-Time Signal
Plotted with Matlab

 Suppose that
x[0]=1, X[1]=2, x[2]=1 x[3]=0, x[4]=-1

n=-2:6;
—
x=[001210-100];
stem(n,x) gos) ‘ ‘
xlabel(‘n”)
ylabel(*x[n]’) g \




Sampling

« Discrete-time signals are usually obtained
by sampling continuous-time signals

X(t) A X[n] = X(t)],_pr =X(nT)

DT Step and Ramp Functions

wla] [] rin] &

| 4

Iiﬁll!_l-l."l\ ._'-‘It!lj\.l‘.
b}

Figure 118  (a) Discrete-time unit step and (b) unit-ramp functions.

DT Unit Pulse

1, n=0
o[n]=
0, nx0

Suls

4-3-2-1Jo1 2 3 4 Figure 120 Unit-pulse function.

Periodic DT Signals

» A DT signal x[n] is periodic if there exists
a positive integer r such that

X[n+r]=x[n] VheZ

« ris called the period of the signal

» The fundamental period is the smallest
value of r for which the signal repeats

Example: Periodic DT Signals

« Consider the signal x[n]= Acos(Qn+6)
» The signal is periodic if
Acos(Q(n+r)+8) = Acos(Qn+8)
« Recalling the periodicity of the cosine
cos(a) = cos(a + 2k )

x[n] is periodic if and only if there exists a
positive integer r such that Qr = 2k for
some integer k or, equivalently, that the DT

frequency Q is such that Q = 2k /r for
some positive integers k and r

Example: x[n] = Acos(Qn+8)
for different values of Q

Q=7/3,0=0 0=160=0

h[HlHM\H | {

- |1| i

g L3 Dot sk it # = 0 s} = 203 (84 = 1 [rrr—

periodic signal with period aperiodic signal
r=6 (with periodic envelope)




DT Rectangular Pulse

1, n=—(L-1/2,...,-101,...,(L-1)/2
p.[n]=
0, all othern

(L must be an odd integer)

Figure 122 Discrete-time rectangular pulse.

Digital Signals

« Adigital signal x[n] is a DT signal whose
values belong to a finite set or alphabet

{a,a,,....a,}
» A CT signal can be converted into a digital

signal by cascading the ideal sampler with a
quantizer

Time-Shifted Signals

e If x[n]is a DT signal and q is a positive
integer
X[n—q] is the g-step right shift of x[n]

X[n+q] isthe g-step leftshiftof x[n]

AT

i-2-1 lo1 2 3
|
@

Figure 123 Two-step shits of pn]: (a) right shift: {b) keft shaft

Example of CT System:
An RC Circuit

L A r',-\'rl\
I ;

W =in( | ) R | tatnr € ==vel) = (1)

Figure 1.24 R circuit,

Kirchhoff’s current law: i, (t) +1i. (t) =i(t)

RC Circuit: Cont’'d

 The v-i law for the capacitor is
ic (t) — C dVC (t) — C dy(t)

dt dt
» Whereas for the resistor it is
. 1 1
Ip (t) = EVC (t) = E y(t)

RC Circuit: Cont’d

» Constant-coefficient linear differential
equation describing the 1/O relationship if
the circuit

)

1 .
it +EY(t) =i(t) =x(1)

11



RC Circuit: Cont’d

* Step response when R=C=1

- =1 Figure 1. '! \| cspomnse of RO circuit
1 2 3 when R

Example of CT System:
Car on a Level Surface

Figure 1.26  Car with drive or braking force x(r).

Newton’s second law of motion:

w40 CTORS
dt

where X(t) is the drive or braklng force applied to the
carattimet and y(t) is the car’s position at time t

Car on a Level Surface: Cont’d

« Step response when M=1 and k, =0.1

F 1 + ~ 1 Figure 127 Siep response of car with
01 2 3 4 35 & 7 8 9 10 M = 1and k; = 0.1

Example of CT System:
Mass-Spring-Damper System

x(r)

I_\m

D EEK
1I=Ill’ | P 28 Srlu matic diagram of a
{ spring: T

vtem.

W4V |y

e ot +Ky(t) = x(t)

Mass-Spring-Damper System: Cont’d

« Step response when M=1, K=2, and D=0.5

Time

Example of CT System:
Simple Pendulum

LA LR LS LL L LELL,

.r‘
T

I
o N 2
i | dggt)+MgLsm6?(t) Lx(t)
- 7 |
\«\ |

If sinA(t) ~ O(t)
29(t)
dt?

| +MgL (t) = Lx(t)

12



Basic System Properties: Causality

» A system is said to be causal if, for any time
t;, the output response at time t, resulting
from input x(t) does not depend on values of
the input for t > t,.

» A system is said to be noncausal if it is not
causal

Example: The ldeal Predictor

y(t) = x(t+1)

0 1 1 0 1
() (b}

Figure 1.32  (a) Input and (b} output pulse of system in Example 1.5

Example: The ldeal Delay
y(t) =x(t-1)

i)

Figure 1.33  (a) Input and (b) output pulse of system in Example 1.6.

Memoryless Systems
and Systems with Memory

* A causal system is memoryless or static if,
for any time t;, the value of the output at
time t, depends only on the value of the input
attimet,

« A causal system that is not memoryless is
said to have memory. A system has memory
if the output at time t, depends in general on
the past values of the input x(t) for some
range of values of tuptot=t,

Examples

* ldeal Amplifier/Attenuator
y(t) = Kx(t)

e RC Circuit

y(t) = % je’“’“c)“’”x(r)dr, t>0
0

Basic System Properties:
Additive Systems

» A system is said to be additive if, for any
two inputs x,(t) and x,(t), the response to the
sum of inputs x,(t) + x,(t) is equal to the
sum of the responses to the inputs,
assuming no initial energy before the
application of the inputs

X (t)+ X, (t) — system —— VY, (t)+V,(t)

13



Basic System Properties:
Homogeneous Systems

» A system is said to be homogeneous if, for
any input x(t) and any scalar a, the response
to the input ax(t) is equal to a times the
response to x(t), assuming no energy before
the application of the input

ax(t) ——f system —— ay(t)

Basic System Properties: Linearity

» A system is said to be linear if it is both
additive and homogeneous

ax, (t) +bx, (t) system ——— ay, (t)+by,(t)

A system that is not linear is said to be
nonlinear

Example of Nonlinear System:
Circuit with a Diode

i) : Hh(f) SN

Ay b

Diode

Tnput f)
= x(1) R ()
N AT

voliage

Figure 1.34 Resistive circuit with an ideal diode.
RZ

y =R +R,

0, when x(t) <0

x(t), when x(t)>0

Example of Nonlinear System:
Square-Law Device

y(t)=x"(t)

Input = x(1) : ™~ wn = x40
N

Signal multiplier

Figure 1.35  Realization of y(r) = x*(1).

Example of Linear System:
The Ideal Amplifier

y(®) = Kx(t)

iddeal amplificr.

Figure 1.36  Output versus input in an

Example of Linear System:
A Real Amplifier

Figure 137 Output versus input in a nonideal smplfice,

14



Basic System Properties:
Time Invariance

« Asystem is said to be time invariant if, for any
input x(t) and any time t,, the response to the
shifted input x(t — t;) is equal to y(t —t;) where
y(t) is the response to x(t) with zero initial
energy

X(t—t) —— system —— y(t—t)

A system that is not time invariant is said to be
time varying or time variant

Examples of Time Varying Systems
o Amplifier with Time-Varying Gain

y(t) =tx(t)
« First-Order System

y(®)+a(t)y(t) =bx(t)

Basic System Properties:
Finite Dimensionality

* Let x(t) and y(t) be the input and output of a
CT system

e Let xO(t) and y@(t) denote their i-th
derivatives

* The system is said to be finite dimensional
or lumped if, for some positive integer N the
N-th derivative of the output at time t is
equal to a function of xO(t) and y®(t) at time
tfor 0<i<N-1

Basic System Properties:
Finite Dimensionality — Cont’d

« The N-th derivative of the output at time t
may also depend on the i-th derivative of the
input at time t for i > N

y® () = f(y(t), y?@),....y" (1),
X(t), xV(1),..., x™M (t),1)

« The integer N is called the order of the above
1/0 differential equation as well as the order
or dimension of the system described by such
equation

Basic System Properties:
Finite Dimensionality — Cont’d

» A CT system with memory is infinite
dimensional if it is not finite dimensional,
i.e., if it is not possible to express the N-th
derivative of the output in the form
indicated above for some positive integer N

» Example: System with Delay

%wt ay(t-1) = x(t)

DT Finite-Dimensional Systems
o Let x[n] and y[n] be the input and output of a
DT system.

 The system is finite dimensional if, for some
positive integer N and nonnegative integer M,
y[n] can be written in the form

y[n]= f(y[n-1],y[n-2],...,y[n - N],
X[n], x[n-1],...,x[n—=M1,n)
* N is called the order of the 1/O difference

equation as well as the order or dimension of
the system described by such equation

15



Basic System Properties:
CT Linear Finite-Dimensional Systems

* If the N-th derivative of a CT system can be
written in the form

YU =->any O+ ox 1)

then the system is both linear and finite
dimensional

Basic System Properties:
DT Linear Finite-Dimensional Systems

« If the output of a DT system can be written
in the form

yinl=-> & (yIn—iT+ 3 b (Mxin-i]

then the system is both linear and finite
dimensional

Basic System Properties:
Linear Time-Invariant
Finite-Dimensional Systems

» For a CT system it must be
a()=a and b(t)=b ViandteR

» And, similarly, for a DT system

a(n)=a and b(n)=b ViandneZ

About the Order of Differential and
Difference Equations

v/« Some authors define the order as N
» Some as (M, N)

» Some others as max(M, N)
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