Chapter 1
Fundamental Concepts

Signals

» Asignal is a pattern of variation of a
physical quantity as a function of time,
space, distance, position, temperature,
pressure, etc.

» These quantities are usually the independent
variables of the function defining the signal

» Asignal encodes information, which is the
variation itself




Signal Processing

* Signal processing is the discipline concerned
with extracting, analyzing, and manipulating
the information carried by signals

» The processing method depends on the type
of signal and on the nature of the information
carried by the signal

Characterization and Classification
of Signals

* The type of signal depends on the nature of
the independent variables and on the value
of the function defining the signal

» For example, the independent variables can
be continuous or discrete

 Likewise, the signal can be a continuous or
discrete function of the independent
variables




Characterization and Classification
of Signals — Cont’d

» Moreover, the signal can be either a real-
valued function or a complex-valued function

A signal consisting of a single component is
called a scalar or one-dimensional (1-D)
signal

A signal consisting of multiple components is
called a vector or multidimensional (M-D)
signal

Definition of Function from Calculus

y=f(t)
fitisy=f(t)
independent dependent
variable variable
fQ)
domain: set of values range: set of values

that t can take on spanned by y




Plot or Graph of a Function

y=T1(t)

range

domain

Continuous-Time (CT)
and Discrete-Time (DT) Signals

» A signal x(t) depending on a continuous
temporal variable t € R will be called a
continuous-time (CT) signal

» A ssignal x[n] depending on a discrete
temporal variable n € Z will be called a
discrete-time (DT) signal




Examples: CT vs. DT Signals

| py XIn]
_ ‘ ‘I il ubss

Figure 113 MATLAB plot of the signal x(r) = ¢ *" sin 1.

Figure 1.17  Sampled continuous-time signal.

plot(t,x) stem(n,x)

CT Signals:
1-D vs. N-D, Real vs. Complex

v« 1-D, real-valued, CT signal: X(t)eR,te R
« N-D, real-valued, CT signal: X(t) € RN el
v« 1-D, complex-valued, CT signal: X(t) e C,teR
« N-D, complex-valued, CT signal: X(t)e CN, teR




DT Signals:
1-D vs. N-D, Real vs. Complex

v« 1-D, real-valued, DT signal: X[n]Je R,neZ

« N-D, real-valued, DT signal: X[n] e RN nez
v« 1-D, complex-valued, DT signal: X[n]e C,neZ

« N-D, complex-valued, DT signal: X[n] € CN nez

Digital Signals

« A DT signal whose values belong to a finite
set or alphabet A ={e,,@,,...,, } is called
a digital signal

« Since computers work with finite-precision
arithmetic, only digital signals can be
numerically processed

« Digital Signal Processing (DSP): ECE
464/564 (Liu) and ECE 567 (Lucchese)




Digital Signals: 1-D vs. N-D

« 1-D, real-valued, digital signal: X[n]Je A,neZ
« N-D, real-valued, digital signal: X[n] € AN nez
A={a,a,,...,a,}
If ¢, € R, the digital signal is real, if instead at

least one of the ¢, € C, the digital signal is
complex

Systems

» A system is any device that can process
signals for analysis, synthesis, enhancement,
format conversion, recording, transmission,
etc.

» A system is usually mathematically defined
by the equation(s) relating input to output
signals (I1/O characterization)

A system may have single or multiple inputs
and single or multiple outputs




Block Diagram Representation
of Single-Input Single-Output
(S1S0) CT Systems

input signal output signal
X —— T yO=T{x()
teR teR

Block Diagram Representation
of Single-Input Single-Output
(S1SQO) DT Systems

input signal output signal
X[n] y[n]=T {x[n]}
neZ neZ




A Hybrid SISO System: The Analog
to Digital Converter (ADC)

Used to convert a CT (analog) signal into a
digital signal

X(t)

ADC

telR

y[n]
nNeZ

Block Diagram Representation

of Multiple-Input Multiple-Output
(MIMQ) CT Systems

Input ¢

signals

e

X (1) ——

X, () >
~

System

—— ¥ ()
— ()

Figure 1.2 System with p inputs and g outputs.
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e 30 ()
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4. Output

signals




Example of 1-D, Real-Valued, Digital
Signal: Digital Audio Signal

x[n] ..

Example of 1-D, Real-Valued, Digital
Signal with a 2-D Domain:
A Digital Gray-Level Image

> N

2

x[n;,n,]
[n,n,]eZ’

n,]
11772
" pixel
1 coordinates
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Digital Gray-Level Image: Cont’d

x[nl,nz]:

200, oo

100 i

Example of 3-D, Real-Valued, Digital
Signal with a 2-D Domain:
A Digital Color Image

n2
rfn,,n,]
X[n1’ nz] = g[nl’ nz]
b[n,.n,]
[nl'nz] cZ’
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Digital Color Image: Cont’d

r[nl’ nz]

Example of 3-D, Real-Valued, Digital
Signal with a 3-D Domain:
A Digital Color Video Sequence

K (temporal axis)

n2
r[n,,n,,K]
X[n,n,,k]=1 g[n,n,,K]
b[n,,n,,k]
- [n,n,]eZ’ keZ
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Types of input/output
representations considered

« Differential equation (or difference
equation)
* The convolution model

» The transfer function representation
(Fourier transform representation)

Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Currents and
Voltages in Electrical Circuits

r}-m\

() = a'm(D R g l ig(0) C==veld = )

Figure 1.24 R circuit.

y(t)

+ + =1 Figure 125 Step response of RC circuit

|tl 1 2 <) t when R = C = L.
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Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Some Physical
Quantities in Mechanical Systems

(0}
| M | T_\m

2 2k
=
3
Figure 1.28  Schematic diagram of a
e w

nass-spring—damper system.

y(t) g:ww

Continuous-Time (CT) Signals
1, t>0
0, t<O0

: : t, t=0
* Unit-ramp function r(t) = 0 t<0
, 1<

« Unit-step function u(t) ={

ulr) rit)
7

|
|
|
1
(a) (h)

Figure 1.3 (a) Unit-step and (b} unit-ramp functions.
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Unit-Ramp and Unit-Step Functions:
Some Properties

X(t)u(t) = {g(t)’ t i 8
r®)=[ u(2)da

dr(t)
dt

u(t) =

(to the exception of t =0)

The Unit Impulse

* A.k.a. the delta function or Dirac distribution
* Itis defined by:

o(t)=0, t=0

&

j S(A)dA=1 Ve&>0
=&

» The value 6(0) is not defined, in particular
0(0) =

15



The Unit Impulse:
Graphical Interpretation

()

= 1
A T4 Figure 1.4 Pulse interpretation of 6(r).

A is a very large number

The Scaled Impulse Ks(t)

o IfK eR, Ko(t) is the impulse with area K,

l.e.,
K({t)=0, t=0

&
chS(ﬁ)d/I:K, Ve>0
—&

KS(0)

(09

0 * Figure 1.5 Graphical representation of

the impulse Ko(7).
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Properties of the Delta Function

t
1) u(t) = j S(A)dA

V1 exceptt =0

t,+e

2) [ x®st-t)dt=x{) Ve>0

(sifting property)

Periodic Signals

« Definition: a signal x(t) is said to be periodic
with period T, if
X(t+T)=x(t) VteR

* Notice that x(t) is also periodic with period
gT whereq is any positive integer
T is called the fundamental period
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Example: The Sinusoid

X(t) = Acos(wt +6), teR
R

Acos{ar +
x + 28
2o

i 5

x=238
T
o o

|

|

|

|

|

} !

o N
a im—20
ow 2e
—A
A cos{ewr + 0) with —a2 < 8 < 0.

— [1/sec] = [Hz]
6 [rad] 27T

@ [rad /sec]

Is the Sum of Periodic Signals Periodic?

 Let x (t) and x,(t) be two periodic signals
with periods T, and T,, respectively

* Then, the sum x (t) + X, (t) is periodic only if
the ratio T,/T, can be written as the ratio g/r
of two integers g and r

* In addition, if r and g are coprime, then T=rT,
is the fundamental period of X (t) + X, (t)

18



Time-Shifted Signals

ut=2) u(r+2)

: s U : —f
0= 0 A Dns thiles o o e e L)

(a) (b)

t

Figure 1.7 Two-second shifts of u(f): (a) right shift; (b) left shift.

Points of Discontinuity

« A continuous-time signal X(t) is said to be
discontinuous at a point t, if X(t;) = X(t,)
wheret, =t,+cand t, =t, —¢, ¢ being a
small positive number

X(t)

N
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Continuous Signals

A signal x(t) is continuous at the point t if
X(t) = x(t;)

« If a signal x(t) is continuous at all points t,
X(t) is said to be a continuous signal

Example of Continuous Signal:
The Triangular Pulse Function

?+y¥%+l

i 0 w2

Figure 1.8 Triangular pulse function.
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Piecewise-Continuous Signals

« Asignal x(t) is said to be piecewise
continuous if it is continuous at all t
except a finite or countably infinite
collection of points t., 1=1,2,3,...

Example of Piecewise-Continuous
Signal: The Rectangular Pulse Function

plf)

p.(t) =u(t+7/2)—u(t—7/2)

T2,

/2

t

Figure 1.9 Rectangular pulse function.
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Another Example of Piecewise-
Continuous Signal:
The Pulse Train Function

(repeats) —| ! (repeats)
o090 L N ]
T L7

=58 Tl 5 Tl (e 0 1 2 3 4 5

Figure 1.10  Signal that is discontinuous at ¢ = 0, =1, x2, .. ..

Derivative of a Continuous-Time Signal

 Asignal x(t) is said to be differentiable at a
point t, if the quantity
X(to + h) _ X(to)
h

has limit as h — 0independent of whether h
approaches 0 from above (h > 0) or from
below (h < 0)

o If the limit exists, X(t) has a derivative at t,
dx(t) X(t, + h) —x(t,)
h

gt t=t =

22



Continuity and Differentiability

In order for x(t) to be differentiable at a
point t,, it is necessary (but not sufficient)
that x(t) be continuous at t,

Continuous-time signals that are not
continuous at all points (piecewise
continuity) cannot be differentiable at all
points

Generalized Derivative

However, piecewise-continuous signals
may have a derivative in a generalized sense

Suppose that X(t) is differentiable at all t
exceptt =t,

The generalized derivative of x(t) is
defined to be

dx(t + -
%{x(to)—x(to)]a‘(t—to)

ordinary derivative of x(t) at all t exceptt =t

23



Example: Generalized Derivative
of the Step Function
K utey

* Define x(t) = Ku(t)

T T T
0 | 2 3

 The ordinary derivative of x(t) is O at all
points except t =0

 Therefore, the generalized derivative of x(t) is

K{u(0")-u(0)|5(t-0)=Ks(t)

Another Example
of Generalized Derivative

e Consider the function defined as

x(1)

2t+1, 0<t<1
1, 1<t<2 2
X(t) = |
~t+3, 2<t<3 N
0, all other t s et

Figure L11  Signal in Example 1.3,
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Another Example
of Generalized Derivative: Cont’d

 The ordinary derivative of x(t), atall t
exceptt=0,1,2,3is

dx(t) = 2[u®) ~u(t-D]-[ut-2)-u(t-3)]
. Its generalized derivative is
1 2

Another Example
of Generalized Derivative: Cont’d

(1)

Figure 1.12  Generalized derivative of
the signal in Example 1.3,
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Signals Defined Interval by Interval
 Consider the signal
X (t), t<t<t,
X(t) =9 x,(t), t,<t<t,
X, (1), t>t,

 This signal can be expressed in terms of the
unit-step functionu(t) and its time-shifts as

X(t) = x (O)[ut-t)-ut-t,)]+
+X,O[ult-t,)—u(t-t,)]+
+x,(Hu(t-t,), t=>t

1

Signals Defined Interval by Interval:

Cont’d

* By rearranging the terms, we can write

X(t) = fl(t)U(t—t1)+ fz(t)u(t_t2)+ fs(t)u(t_ts)

where
f1 (t) - Xl(t)
f, (t) =%, (t) — x,(t)
f3 (t) =X (t) — X, (t)
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Discrete-Time (DT) Signals

A discrete-time signal is defined only over
integer values

» We denote such a signal by
X[n], neZ=9{..,-2,-1,0,1,2,.. .}

Example: A Discrete-Time Signal
Plotted with Matlab

» Suppose that

X[0]=1, X[1]=2, x[2]=1 Xx[3]=0, x[4]=-1

n=-2:6;

—
x=[001210-100];
stem(n,x) Tos ‘ ‘

xlabel(*n’) , I ‘

ylabel(*x[n]’)
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Sampling

 Discrete-time signals are usually obtained
by sampling continuous-time signals

or.

X(t)

X[n] = X(t)| _.r =X(nT)

ml 1

: lml T[mest o

DT Step and Ramp Functions

uln] rln] o’
L]
5__
4,,
l¢ .
3__
2A‘
1,,
= n ————9—
=g =0l d 3 E 86 —dlegy =il 0 ik 2 d dl 5
(a) (b)

Figure 1.18 (a) Discrete-time unit step and (b) unit-ramp functions.
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DT Unit Pulse

1, n=0
o[n]=
0, n#0

Figure 1.20  Unit-pulse function.

Periodic DT Signals

» A DT signal x[n] is periodic if there exists
a positive integer r such that

X[n+r]=x[n] VneZ

* ris called the period of the signal

» The fundamental period is the smallest
value of r for which the signal repeats

29



Example: Periodic DT Signals

« Consider the signal X[n]= Acos(2n+ &)
e The signal is periodic if
Acos(Q(n+r)+6) = Acos(Q2n+0)
» Recalling the periodicity of the cosine
cos(ar) = cos(a + 2k )

xX[n] is periodic if and only if there exists a
positive integer r such that Qr = 2k for
some integer k or, equivalently, that the DT

frequency Q is such that Q = 2k /r for
some positive integers k and r

Example: X[n] = Acos(Q2n + )
for different values of Q

Q=7/3,0=0 Q=160=0
k] T
[J[ Hl“ w IJ‘ll lllll W W lj ]Wl {lllf LH T”ll "‘N \1“.

Figure 121 (conninmed)

periodic signal with period aperiodic signal
r=06 (with periodic envelope)
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DT Rectangular Pulse

1, n=-(L-1/2,...,-1,01,...,(L-1)/2
pL[n]:
0, all other n

(L must be an odd integer)

B AR 1050 ey

T T T
==l =i = =il ) ) 1=
2

Figure .22 Discrete-time rectangular pulse.

Digital Signals

A digital signal x[n] is a DT signal whose
values belong to a finite set or alphabet

{a,a,,....a,}

» A CT signal can be converted into a digital
signal by cascading the ideal sampler with a
quantizer

31



Time-Shifted Signals

e If x[n]is a DT signal and q is a positive
integer
X[N—q] is the g-step right shift of x[n]

X[n+q] isthe g-step left shift of X[Nn]

paln — 2] piln + 21‘

[ ——— n *
s L) K [P B S R R e e I DR B | (T S

(a1) (b)

Figure 1.23  Two-step shifts of p,[a]: (a) right shift; (b) lefl shift.

Example of CT System:
An RC Circuit

i(?) \'
+
() = (1) (T) R ? l inlf) C

= vl = ¥

A\

Figure 1.24 RC circuit.

Kirchhoff’s current law: i, (t) +1,(t) =i(t)




RC Circuit: Cont’d

» The v-i law for the capacitor is

i (1) = Cdv (t) Cdy(t)
dt dt
* Whereas for the resistor it 1S

| (t)— Ve (t)——Y(t)

RC Circuit: Cont’d

» Constant-coefficient linear differential
equation describing the 1/O relationship if
the circuit

o )
dt

+= Y(t) I(t) = x(t)




RC Circuit: Cont’d

 Step response when R=C=1

w1y

f f T 1 Figure L25 Siep response of RC circuit
0 1 2 3 whenR=C=1.

Example of CT System:
Car on a Level Surface

0 ¥

Figure 1.26  Car with drive or braking force x(1).

Newton’s second law of motion:
M 9YO L O
dt’ dt

where X(t) is the drive or braking force applied to the
carattimet and y(t) is the car’s position at time t
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Car on a Level Surface: Cont’d

« Step response when M=1 and k, =0.1

¥

—t+—+—+—+—+—+——+—+—+—~+  Figure 1.27 Step response of car with
0 1 PR el N IR e L TR L) M =1and kf = ).1.

Example of CT System:
Mass-Spring-Damper System

x(f)

M ty(t)

Figure 1.28 Schematic diagram of a
mass-spring—damper system.

w90 o d)(/jit)

it + Ky(t) = x(t)
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Mass-Spring-Damper System: Cont’d

 Step response when M=1, K=2, and D=0.5

Time

Example of CT System:
Simple Pendulum

d2(t)

t2

+ MgLsind(t) = Lx(t)

Figure 1.30  Simple pendulum.

If sind(t) = O(t)
d?o(t)

t2

| + MgL 8(t) = Lx(t)
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Basic System Properties: Causality

» A system is said to be causal if, for any time
t,, the output response at time t, resulting
from input x(t) does not depend on values of
the input for t > t,.

o A system is said to be noncausal if it is not
causal

Example: The ldeal Predictor

y(t) = x(t+1)

x(r) ¥(0)

0 1 =il 0 i
@) (b)

Figure 1.32 (a) Input and (b) output pulse of system in Example 1.5.
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Example: The ldeal Delay
y(t) = x(t-1)

x4 y(©) A

(a) ()

Figure 1.33 (a) Input and (b) output pulse of system in Example 1.6.

Memoryless Systems
and Systems with Memory

A causal system is memoryless or static if,
for any time t;, the value of the output at
time t, depends only on the value of the input
at time t;

A causal system that is not memoryless is
said to have memory. A system has memory
if the output at time t, depends in general on
the past values of the input x(t) for some
range of valuesof tuptot=t,;
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Examples

« |deal Amplifier/Attenuator
y(t) = Kx(t)

e RC Circuit

t

y(t) = é [e e x@ydr, t20
0

Basic System Properties:
Additive Systems

» A system is said to be additive if, for any
two inputs x, (t) and x,(t), the response to the
sum of inputs x,(t) + x,(t) is equal to the
sum of the responses to the inputs,
assuming no initial energy before the
application of the inputs

Xl(t) +X, (t) —— system —— yl(t) +Y, (t)
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Basic System Properties:
Homogeneous Systems

» A system is said to be homogeneous if, for
any input x(t) and any scalar a, the response
to the input ax(t) is equal to a times the
response to x(t), assuming no energy before
the application of the input

ax(t)

system

ay(t)

Basic System Properties: Linearity

» A system is said to be linear if it is both
additive and homogeneous

ax, (t) + sz (t) 7

system

ay, (t) + Dby, (t)

« A system that is not linear is said to be

nonlinear
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Example of Nonlinear System:
Circuit with a Diode

A —pt—

Diode

ir)

+

+
Input
voltage Al () Rz§ o

Figure 1.34 Resistive circuit with an ideal diode.

RZ
y(t) = mx(t), when x(t) >0

0, when x(t) <0

Example of Nonlinear System:
Square-Law Device

y(t) =x(t)

Input = x(f) e () = x2(1)
N

Signal multiplier

Figure 1.35 Realization of y(1) = x*().
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Example of Linear System:
The Ideal Amplifier

y(t) = Kx(t)

i

~~Slope = K

Figure 1.36  Output versus input in an
ideal amplifier.

Example of Linear System:
A Real Amplifier

Wi

Japd L A Starts smoking

X

Figure 1.37  Output versus input in a nonideal amplifier.
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Basic System Properties:
Time Invariance

» A system is said to be time invariant if, for any
input x(t) and any time t,, the response to the
shifted input x(t — t,) is equal to y(t —t,) where
y(t) is the response to x(t) with zero initial
energy

X(t—t)—— system —— y(t—t,)

A system that is not time invariant is said to be
time varying or time variant

Examples of Time Varying Systems
o Amplifier with Time-Varying Gain

y(t) =tx(t)
* First-Order System

y(t) +a(t) y(t) =bx(t)
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Basic System Properties:
Finite Dimensionality

Let x(t) and y(t) be the input and output of a
CT system

Let x(O(t) and y®(t) denote their i-th
derivatives

The system is said to be finite dimensional
or lumped if, for some positive integer N the
N-th derivative of the output at time t is
equal to a function of x®(t) and y((t) at time
tfor 0<i<N-1

Basic System Properties:
Finite Dimensionality — Cont’d

The N-th derivative of the output at time t
may also depend on the i-th derivative of the
input at time t for i1 > N

y® ()= f(y®),y?t),....,y" @),
X(t), x®(t),...,x™(1),t)

The integer N is called the order of the above
I/0O differential equation as well as the order
or dimension of the system described by such
equation
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Basic System Properties:
Finite Dimensionality — Cont’d

o A CT system with memory is infinite
dimensional if it is not finite dimensional,
I.e., iIf it is not possible to express the N-th
derivative of the output in the form
indicated above for some positive integer N

Example: System with Delay
dy(t)
dt

+ay(t—1) = x(t)

DT Finite-Dimensional Systems
Let x[n] and y[n] be the input and output of a
DT system.

The system is finite dimensional if, for some
positive integer N and nonnegative integer M,
y[n] can be written in the form

y[n]= f(y[n-1],y[n-2],...,y[n—N],
x[n], x[n-1],...,x[n—M1],n)
N is called the order of the I/O difference

equation as well as the order or dimension of
the system described by such equation
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Basic System Properties:
CT Linear Finite-Dimensional Systems

* If the N-th derivative of a CT system can be
written in the form

YU () =3 a0y 0+ Db X" 1)

then the system is both linear and finite
dimensional

Basic System Properties:
DT Linear Finite-Dimensional Systems

* If the output of a DT system can be written
in the form

yin == a(Myln-il+ > b (Wx{n -]

then the system is both linear and finite
dimensional
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Basic System Properties:
Linear Time-Invariant
Finite-Dimensional Systems

» For a CT system it must be
a(t)=a and b(t)=b ViandteR

* And, similarly, for a DT system

a(n)=a and b(n)=b ViandneZ

About the Order of Differential and
Difference Equations

v« Some authors define the order as N
« Someas(M,N)

« Some others as max(M,N)
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