Chapter 5
Frequency Domain Analysis
of Systems

CT, LTI Systems

» Consider the following CT LTI system:

X(t) ——

h(t)

— y(1)

o Assumption: the impulse response h(t) is
absolutely integrable, i.e.,

jlh(t)|dt<oo

(this has to do with system stability)




Response of a CT, LTI System to a
Sinusoidal Input

« What’s the response y(t) of this system to
the input signal

X(t) =cos(w,t+0), teR ?

« We start by looking for the response y,(t) of
the same system to

x ()= teR

Response of a CT, LTI System to a
Complex Exponential Input

 The output Is obtained through convolution
as
yc (t) — h(t) * XC (t) = Ih(T)XC (t — T)dT —
R
it e -
R
- &jaﬁ,“h(f)e_j%rdr =

X (1) R

=X, (0 [ h(z)e " dz




The Frequency Response of a CT,
LTI System

* By defining H (o) is the frequency

_ ~jor response of the CT,
H (w) — jh(f)e dz LTI system = Fourier
R

transform of h(t)
Itis
yc (t) — H (COO)XC (t) —
=H(w,)e'™", teR

» Therefore, the response of the LTI system to a
complex exponential Is another complex
exponential with the same frequency w,

Analyzing the Output Signal y,(t)

« Since H(w,) is in general a complex
quantity, we can write

Yo (1) = H ()6 =
= H (wo) | plargH (@) g Japt _

=| H (ep) [/ T
OWVS output signal’s

hase
magnitude Phas




Response of a CT, LTI System to a
Sinusoidal Input

o With Euler’s formulas we can express x(t)
as X(t) = cos(w,t + 0)
_ %(ej(a)oHé?) 4 e—j(a)ot+¢9))
— %ejeeja)ot _|_%e_j9e_ja)0t
Using the previous result, the response is

y(t) = %ejeH (a)o)ej”Ot +%e‘19H (—a)o)e_ja’ot

Response of a CT, LTI System to a
Sinusoidal Input — Cont’d
o If h(t) is real, then H(-w)=H"(w)and
H (@) = H(®,) | glerottie)
H(-a,) =[H (@) | g™ aney)
e Thus we can write y(t) as

Y(t) — ll H (a) ) | ej(a)ot+¢9+argH(a)0)) +£| H ((00) | e—j(w0t+9+argH(a)0))
2 ’ 2

= H(w,) | cos(ao,t + 8 +arg H (w,))




Response of a CT, LTI System to a
Sinusoidal Input — Cont’d

e Thus, the response to
X(t) = Acos(w,t + 0)
IS
y(t) = A H(w,) |cos(w,t+0+argH (w,))
which is also a sinusoid with the same
frequency @, but with the amplitude scaled by

the factor| H (@, ) | and with the phase shifted
by amount arg H (w,)

Example: Response of a CT, LTI
System to Sinusoidal Inputs

« Suppose that the frequency response of a
CT, LTI system is defined by the following

Specs:
[H@)IT 15 1.5, 0<w<20,
H@){
) : > 20,
argH (o)t 20 @
_60° o argH(w)=-60",Vw




Example: Response of a CT, LTI
System to Sinusoidal Inputs —
Cont’d

o If the input to the system is
X(t) = 2cos(10t +90°) + 5cos(25t +120%)
e Then the output is

y(t)=2|H(10)|cos(10t +90° +arg H (10)) +
+5|H(25) | cos(25t +120° +arg H (25)) =
=3c0s(10t +30°)

Example: Frequency Analysis of an
RC Circuit

» Consider the RC circuit shown in figure

ic(f)

M

R
AL

+
() = Wo) <> c == () = veld)

Figure 5.1 RC circuit in Example 5.2.




Example: Frequency Analysis of an
RC Circuit — Cont’d

 From EEE2032F, we know that:

1. The complex impedance of the capacitor is
equal to 1/ joC

2. Ifthe input voltage is X_(t) = e'”, then the
output signal is given by
R+1/ joC Jo+1/RC

Example: Frequency Analysis of an
RC Circuit — Cont’d

» Setting =, , 1t IS

| 1/RC -
— Ja)Ot t — e]a)Ot
%) =e and YoV Jo, +1/RC

whence we can write
yc (t) — H (a)o)xc (t)

H () = 1/RC
Jo+1/RC

where




Example: Frequency Analysis of an
RC Circuit — Cont’'d
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Example: Frequency Analysis of an
RC Circuit — Cont’d

* The knowledge of the frequency response
H (@) allows us to compute the response
y(t) of the system to any sinusoidal input
signal

X(t) = Acos(w,t + 0)
since

y(t) = Al H(w,) | cos(ewt+0+argH (w,))




Example: Frequency Analysis of an
RC Circuit — Cont’d

 Suppose that 1/ RC =1000 and that
X(t) = cos(100t) + cos(3000t)
e Then, the output signal is

y(t) =| H (100) | cos(100t +arg H (100)) +
+| H(3000) | cos(3000t + arg H (3000)) =
=0.9950c0s(100t —5.71") + 0.3162 cos(3000t — 71.56")

Example: Frequency Analysis of an
RC Circuit — Cont’d
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0.1 -0.05 0 0.05 0.1
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Figure 5.3 (a) Input and (b) output of RC circuit when 1/RC = 1000.




Example: Frequency Analysis of an
RC Circuit — Cont’d

e Suppose now that
X(t) = cos(100t) + cos(50, 000t)
*Then, the output signal is

y(t) =[ H(100) | cos(100t +arg H (100)) +
+| H(50,000) | cos(50,000t + arg H (50,000)) =
=0.9950c0s(100t —5.71") +0.0200cos(50, 000t — 88.85°)

Example: Frequency Analysis of an
RC Circuit — Cont’d
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The RC circuit behaves as a lowpass filter, by letting low-
frequency sinusoidal signals pass with little attenuation and by
significantly attenuating high-frequency sinusoidal signals




Response of a CT, LTI System to
Periodic Inputs

e Suppose that the input to the CT, LTI
system is a periodic signal x(t) having
period T

 This signal can be represented through its
Fourier series as

X(t)= > ceX teR

k=—00

where 1 t+T

c;:? j x(t)e *tdt, keZ

Response of a CT, LTI System to
Periodic Inputs — Cont’d

* By exploiting the previous results and the
linearity of the system, the output of the
system is

y(©) = D H(kay)cie™ ™

k=—c0
K H (k
_ Z | H (ka)o) | Ck |eJ( wot+ar9(0k)+argy (ko)) _
K=—oo arg c,

ICky |

_ Z |Ck |ej(ka)0t+arg(cky)) Z Clzlejka)ot teR

k=—00




Example: Response of an RC Circuit
to a Rectangular Pulse Train

e Consider the RC circuit

ic(1)

MA

R
T +

x() = v(®) =m0 =al

Figure 5.1 RC circuit in Example 5.2.

with input x(t) = rect(t —2n)

nez

Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

1 x(t) = rect(t—2n)

1
nez

® o (repeals)

—2:5 L5 3055 OF () 1.5 2.5

* \We have found its Fourier series to be
X(t) = chfejk”t, teR

keZ

with 1 k
C, = —smc(—j
2 2




Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

 Magnitude spectrum | ¢, |of input signal x(t)
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Figure 5.5 Amplitude spectrum of periodic input in Example 5.4.

Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

» The frequency response of the RC circuit

was found to be
H () = 1/RC

- Jo+1/RC

* Thus, the Fourier series of the output signal
IS given by

y(t) = Y H(kay)cie™™ = > clel

k:—OO k:—OO




Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d
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Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

1/RC =1
1/RC =10
1/RC =100

filter more
selective

gy ®
-40

srTT-TI‘

------

-40

-20

0 0 40 60 &0
kv, (radisec)

Figure 5.6 Amplitude spectrum of output when (a) 1/RC = 1; (b) URC = 10; (c)

LRC = 100.




Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

y(t) |
1/RC=1

Time (sec)

- Trpe ST
y]() w filter more
1/RC =10 : selective

. L
1/ RC =100 © 2 MJ_L

Response of a CT, LTI System to
Aperiodic Inputs

» Consider the following CT, LTI system

X(t) ——

h(t)

— y(t)

* Its I/O relation is given by

y(t) = h(t) = x(t)
which, in the frequency domain, becomes

Y (@) =H(0)X (o)




Response of a CT, LTI System to
Aperiodic Inputs — Cont’d

* FromY (@) = H(w) X (@), the magnitude
spectrum of the output signal y(t) is given

by
|Y (@) |5 H (o) || X ()]

and its phase spectrum is given by

argY (o) =argH (o) +arg X (o)

Example: Response of an RC Circuit
to a Rectangular Pulse

e Consider the RC circuit

ic(t)

MA

R
+

+
0= () () c == 30 =ve®

Figure 5.1 RC circuit in Example 5.2.

with input X(t) = rect(t)




Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

x(r)

l X(t) = rect(t)

t
Figure 5.8 Input pulse in Example 5.5.

=0k} 0 0.5

* The Fourier transform of x(t) is

X(w) = sinc(zﬁj

T

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.9 (a) Amplitude and (b) phase spectra of the input pulse,




Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.10 (a) Amplitude and (b) phase spectra of y(¢) when 1/RC = 1.

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.11 (a) Amplitude and (b) phase spectra of y(t) when 1/RC = 10.




Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

e The response of the system in the time
domain can be found by computing the
convolution

y(t) = h(t) * x(t)
where

h(t) = (1/ RC)e MRy(t)
X(t) = rect(t)

Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.12 Output response when (a) 1/RC = 1 and (b) 1/RC = 10.




Example: Attenuation of High-
Frequency Components
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Figure .14 (a) Amplitude and (b) phase spectra of inpat in Example 5.6.

Example: Attenuation of High-
Frequency Components
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Figure 5.16 (a) Input and (b) resulting output in Example 5.6.




Filtering Signals

e The response of a CT, LTI system with
frequency response H (@) to a sinusoidal

signal
. X(t) = Acos(aw,t +6)
y(t) = Al H(m,)|cos(myt +0+argH (w,))

. Lif |H(w,) |=00or|H(w,) |~ 0
theny(t)=0or y(t) =0, VteR

Four Basic Types of Filters

lowpass {|H ()| highpass | H ()|
1 | passband 1
stopband stopband
[42] » (1)
S DN Eplion " n
@ cutoff frequency b)
bandpass {|H (o)| bandstop {|H (@) |
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(c) (d)

Figure 5.17 Magnitude functions of ideal filters: (a) lowpass; (b) highpass; (c) band-
pass; (d) bandstop.




Phase Function

 Filters are usually designed based on
specifications on the magnitude response| H (@) |

* The phase response arg H (@) has to be taken
Into account too in order to prevent signal
distortion as the signal goes through the
system

o If the filter has linear phase in its
passband(s), then there is no distortion

Ideal Sampling

 Consider the ideal sampler:

X(t) I - X[n] = x(t)|t:nT =x(nT)
teR T nez

e It is convenient to express the sampled signal
x(nT)as X(t) p(t) where

p(t)=> _5(t—nT)

neZ




Ideal Sampling — Cont’d

« Thus, the sampled waveform x(t) p(t) is

X)p(t) = > x(t)st-nT)=> x(nT)S(t—nT)

nez nez
 X(t) p(t)is an impulse train whose weights
(areas) are the sample values x(nT) of the
original signal x(t)

Ideal Sampling — Cont’d

 Since p(t) is periodic with period T, it can
be represented by its Fourier series

: 2 sampling
p(t) = che’k%t, @, = — frequency
keZ T (rad/sec)

1 T/2 .
where C, = j p(t)e " 'dt, keZ
T/2
1 T/2

- 1
== | st)e M dt==
T | 50 T

-T/2




Ideal Sampling — Cont’d

e Therefore .
()= Y e

keZ
and

1 .
X (t) =x(t)pt)=> = x(t)e‘k“” Zx(t)e’k”st
keZT TkeZ
whose Fourier transform IS

X (o) = ZX(a) Ko,)

keZ

Ideal Sampling — Cont’d

1, X (@)
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keZ
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Figure 5.24 Fourier trans (a) x(r) and (b) x,(1) = x()p(1)




Signal Reconstruction

« Suppose that the signal x(t) is bandlimited
with bandwidth B, i.e., | X (@) |= 0, for |w [> B

« Then, if w, > 2B, the replicas of X (@) in
1 Z X (v —-Kaw,)

T keZ

do not overlap and X (@) can be recovered by

applying an ideal lowpass filter to X (@)
(interpolation filter)

X (@) =

Interpolation Filter for Signal
Reconstruction

e T, wel[-B,B]
0, wg¢[-B,B]

/4] 0 B

Figure 5.25 Frequency response function of ideal lowpass filter with bandwidth B.




Interpolation Formula

* The impulse response h(t) of the interpolation
filter is

h(t) = Esinc(Etj
7T 7T
and the output y(t) of the interpolation filter is

given by
y(t) =h(t) = x,(t)

Interpolation Formula — Cont’d

e But
X (t) = x(t) p(t) = > x(nT)S(t—nT)

neZz
whence

y(t) =h(t) *x(t) = Z X(NT)h(t—nT) =

neZz

= BT x(nT)sinc(E(t — nT)j
7T

T nez

 Moreover, y(t) = X(t)




Shannon’s Sampling Theorem

« A CT bandlimited signal x(t) with frequencies
no higher than B can be reconstructed from its
samples X[n] = x(nT) if the samples are taken
at a rate

o, =2r71T >2B

* The reconstruction of x(t) from its samples
X[n] = x(nT) is provided by the interpolation
formula

x(t) = EZ x(nT)sinc(E(t - nT)j
7T

T nez

Nyquist Rate

e The minimum sampling ratew, =27 /T =2B
IS called the Nyquist rate

* Question: Why do CD’s adopt a sampling
rate of 44.1 kHz?

« Answer: Since the highest frequency
perceived by humans is about 20 kHz, 44.1
kHz is slightly more than twice this upper
bound
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% Figure 5.27 Amplitude spectrum of a
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Figure 5.28 Amplitude spectrum of a sampled signal.

Aliasing —Cont’d

» Because of aliasing, it is not possible to
reconstruct x(t) exactly by lowpass filtering
the sampled signal x, (t) = x(t) p(t)

 Aliasing results in a distorted version of the
original signal x(t)

* It can be eliminated (theoretically) by
lowpass filtering x(t) before sampling it so
that | X (w)|=0for|w > B




