Chapter 5
Frequency Domain Analysis
of Systems



CT, LTI Systems

e Consider the following CT LTI system:

X(t) . h(t)

- y(t)

« Assumption: the impulse response h(t) Is

absolutely integrable, I.e.,
j [h(t) | dt < oo
R

(this has to do with system stability)



Response of a CT, LTI System to a
Sinusoidal Input

e \What’s the response y(t) of this system to
the input signal

X(t) =cos(wt+6), teR ?

» We start by looking for the response y,(t) of
the same system to

X (1)=e teR



Response of a CT, LTI System to a
Complex Exponential Input

e The output Is obtained through convolution
as
Yo (t) =h(t) *x,(t) = [h(x)x (t—7)dz =
R
— Ih(r)eij(t_T)dT —
R
- gaﬂj‘ h(z)e 1" dr =

X (1) R

=X, (1) [h(z)e " dz



The Frequency Response of a CT,
LTI System

* By defining H (o) is the frequency

_ — jor response of the CT,
H (m) o jh(f)e dz LTI system = Fourier
R

transform of h(t)
It Is
Ye (t) = H (@)X (1) =
=H(w,)e', teR

e Therefore, the response of the LTI system to a
complex exponential Is another complex
exponential with the same frequency o,




Analyzing the Output Signal y,(t)

e Since H(w,) is in general a complex
guantity, we can write

Yo (1) = H (@, )e'™ =
= H ((‘)o) | plagH (@) g ont _

(a)ot+arg H (a)o ))

output signal’s

output S|gnal phase

magnitude



Response of a CT, LTI System to a
Sinusoidal Input

 With Euler’s formulas we can express X(t)
as X(t) = cos(a,t + 0)
_ % (e i(@t+0) | - j(a)ot+<9))

— %ejeejwot +%e_jge_1a)0t
Using the previous result, the response Is

y(t) = 2e'H (w,)e'*" +1e H (o, )e



Response of a CT, LTI System to a
Sinusoidal Input — Cont’d

e If h(t) Is real, then H(-w)=H"(»)and
H (@,) = H (@) | &’™0"
H(-®,) = H (@) | g™ /7an eb)

e Thus we can write y(t) as

1 | (ogt+6+argH (w 1 — J(opt+6+argH (o,
y(t):§||—|(a)o)|ej( ot+6 gH(O”+E|H(a)O)|e j(pt+0+argH (ap))

=| H(w,) | cos(aw,t + 0 +arg H (w,))



Response of a CT, LTI System to a
Sinusoidal Input — Cont’d

e Thus, the response to
X(t) = Acos(w,t +6)
IS
y(t) = A|H(®,)|cos(aw,t+0+argH (w,))
which 1s also a sinusoid with the same
frequency w, but with the amplitude scaled by

the factor| H (@, ) | and with the phase shifted
by amount arg H (w, )



Example: Response of a CT, LTI
System to Sinusoidal Inputs

e Suppose that the frequency response of a
CT, LTI system is defined by the following

Specs:
[H@)|t 1.5, 0<w<20,
| H(®) =+
) ‘ 0, w>20,
arg H (o)t <0 @
0 o argH(w)=-60",Vo




Example: Response of a CT, LTI
System to Sinusoidal Inputs —
Cont’d

e |f the input to the system Is
X(t) = 2cos(10t +90°) + 5cos(25t +120°)
* Then the output Is

y(t) =2|H(10)|cos(10t +90° +arg H (10)) +
+5|H(25) | cos(25t +120° +arg H (25)) =
= 3cos(10t + 30°)



Example: Frequency Analysis of an
RC Circuit

» Consider the RC circuit shown in figure

ic(1)

x(t) = w1 6 == 0= )

Figure 5.1 RC circuit in Example 5.2.



Example: Freqguency Analysis of an
RC Circuit — Cont’d

e From EEE2032F, we know that:

1. The complex impedance of the capacitor Is
equal to 1/ JwC

2. If the input voltage is X, (t) = e!”, then the
output signal Is given by

1/ joC 1/RC -

Yo(t) == e e’

R+1/ joC  jo+1/RC




Example: Freqguency Analysis of an
RC Circuit — Cont’d

» Setting o =w, , It IS

. 1/RC -
% (1) =€ and Y (1) jo, +1/RC

whence we can write
yc (t) — H (a)O)Xc (t)

1/RC
Jo+1/RC

where

H (@) =



Example: Freqguency Analysis of an
RC Circuit — Cont’d
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Example: Freqguency Analysis of an
RC Circuit — Cont’d

e The knowledge of the frequency response
H () allows us to compute the response
y(t) of the system to any sinusoidal input
signal

X(t) = Acos(w,t +6)
since

y(t) = A|H(®,)|cos(aw,t+0+argH (w,))



Example: Freqguency Analysis of an
RC Circuit — Cont’d

 Suppose that1/ RC =1000 and that
X(t) = cos(100t) + cos(3000t)
e Then, the output signal Is

y(t) =[ H(100) | cos(100t +arg H (100)) +
+| H (3000) | cos(3000t +arg H (3000)) =
=0.9950c0s(100t —5.71") + 0.3162cos(3000t — 71.56")



Example: Freqguency Analysis of an
RC Circuit — Cont’d
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Figure 5.3 (a) Input and (b) output of RC circuit when 1/RC = 1000.



Example: Freqguency Analysis of an
RC Circuit — Cont’d

e Suppose now that
X(t) = cos(100t) + cos(50, 000t)
*Then, the output signal Is
y(t) =[ H (100) | cos(100t + arg H (100)) +
+| H (50,000) | cos(50,000t + arg H (50,000)) =
= 0.9950cos(100t —5.71°) + 0.0200 cos(50, 000t — 88.85°)



Example: Freqguency Analysis of an
RC Circuit — Cont’d
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The RC circuit behaves as a lowpass filter, by letting low-
frequency sinusoidal signals pass with little attenuation and by
significantly attenuating high-frequency sinusoidal signals

Ml

REj o 001 o002 003 004 005 fo0s H04 L0z 002 O0M .
Time (sec) Time (sec)




Response of a CT, LTI System to
Periodic Inputs

e Suppose that the input to the CT, LTI
system Is a periodic signal x(t) having
period T

 This signal can be represented through Its
Fouriler series as

Xt)= > cie’, teR
k=—00

where ty+T

]_ .
== | x(t)e *'dt, keZ
== j (t)

0



Response of a CT, LTI System to
Periodic Inputs — Cont’d

* By exploiting the previous results and the
linearity of the system, the output of the
system Is

y(©) = D H(kap)ce ™

k=—00

. N J(ka)t+arg(c )+argH(ka) ))
—Z\H(kwo)HCk\e Y

arg C,

ICI

_ i ‘C&/ ‘ej(ka)ot+arg(c Z Cyejka)ot t e R

k=—o0 k=—o0



Example: Response of an RC Circuit
to a Rectangular Pulse Train

e Consider the RC circuit

ic(1)

WA 7

x(t) = v(@) C == o= el

Figure 5.1 RC circuit in Example 5.2.

with input x(t) = ) rect(t —2n)

nez



Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

1 x(t) = rect(t —2n)

1
neZz

e o (repeats)

=29 =155 05 0 05 155 25

Figure 5.4 Periodic input signal in Example 5.4.

 \We have found 1ts Fourier series to be
X(t) =Y cie’, teR

keZ

with 1 K
C, = —smc(—j
2 2



Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d

 Magnitude spectrum| ¢, |of input signal x(t)
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Figure 5.5 Amplitude spectrum of periodic input in Example 5.4.



Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d

* The frequency response of the RC circuit
was found to be

H () = 1/RC

Jo+1/RC

e Thus, the Fourier series of the output signal
IS given by

y(t) = > H(key)cie" ™ = > ek
k=—00 K=—00




Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d
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Example: Response of an RC Circuit
to a Rectangular Pulse Train — Cont’d
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Figure 5.6 Amplitude spectrum of output when (a) 1/RC = 1; (b) 1/RC = 10; (c)

filter more
selective



Example: Response of an RC Circuit to
a Rectangular Pulse Train — Cont’d
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Figure 5.7 Plot of output when (a) 1/RC = 1; (b) I/RC = 10; (c) I/RC = 100.
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Response of a CT, LTI System to

Aperiodic Inputs

e Consider the following CT, LTI system

X(t) L h(t)

* |Its I/O relation Is given by
y(t) = h(t) *x(t)

- y(t)

which, In the frequency domain, becomes

Y (@) =H (o)X (o)



Response of a CT, LTI System to
Aperiodic Inputs — Cont’d

* FromY (w) = H (@) X (@) , the magnitude
spectrum of the output signal y(t) Is given

by
Y (@) |5 H(o) || X(@)|

and Its phase spectrum Is given by

argY (o) =argH (w) +arg X (o)



Example: Response of an RC Circuit
to a Rectangular Pulse

e Consider the RC circuit

ic(1)

WA 7

x(t) = v(@) C == o= el

Figure 5.1 RC circuit in Example 5.2.

with input X(t) = rect(t)



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

x(r) &
1

X(t) = rect(t)

S 0 0.5 Figure 5.8 Input pulse in Example 5.5.

e The Fourier transform of x(t) is

: a
X (C()) = S|nC(Ej



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.9 (a) Amplitude and (b) phase spectra of the input pulse.
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Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.10 (a) Amplitude and (b) phase spectra of y(1) when 1/RC = 1.



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5,11 (a) Amplitude and (b) phase spectra of y(¢) when 1/RC = 10.



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d

e The response of the system in the time
domain can be found by computing the
convolution

y(t) = h(t) *x(t)
where

h(t) = (1/ RC)e W <)y(t)
X(t) = rect(t)



Example: Response of an RC Circuit
to a Rectangular Pulse — Cont’d
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Figure 5.12 Output response when (a) 1/RC = 1 and (b) 1/RC = 10.
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Example: Attenuation of High-
Freguency Components
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Figure 5.15 (a) Amplitude and (b) phase spectra of output in Example 5.6.
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Figure 5.13  (a) Magnitude and (b} phase functions of system in Example 5.6.
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(a) Amplitude and (b) phase spectra of input in Example 5.6.



Example: Attenuation of High-
Frequency Components
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Figure 5.16 (a) Input and (b) resulting output in Example 5.6.



Filtering Signals

e The response of a CT, LTI system with
frequency response H (@) to a sinusoidal

signal
. X(t) = Acos(w,t +6)
y(t) = Al H(w,) | cos(myt +6+arg H (w,))

. if |H(w,)|=0o0r|H(w,) |0
theny(t)=0o0r y(t)~0, VteR



Four Basic Types of Filters

lowpass {|H(®)| highpass | H ()]
( | passband 1
stopband stopband _
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Figure 5.17 Magnitude functions of ideal filters: (a) lowpass; (b) highpass; (¢) band-
pass; (d) bandstop.



Phase Function

 Filters are usually designed based on
specifications on the magnitude response | H (@) |

* The phase response arg H (@) has to be taken
Into account too In order to prevent signal
distortion as the signal goes through the
system

o |If the filter has linear phase In Its
passband(s), then there Is no distortion



Ideal Sampling

e Consider the ideal sampler:

X(t)

>,

teR

T

- X[N] = X(t) | _yr =X(NT)

ne/z

* |t Is convenient to express the sampled signal
x(nT)as X(t) p(t) where

p(t) = ) (t—nT)



Ideal Sampling — Cont’d

e Thus, the sampled waveform x(t) p(t) is

X(E)pt) =) x(t)s(t-nT)=> x(nT)S(t-nT)

neZ neZ

 X(t) p(t)is an impulse train whose weights
(areas) are the sample values x(nT) of the
original signal x(t)



Ideal Sampling — Cont’d

e Since p(t) Is periodic with period T, It can
be represented by Its Fourier series

. 2 sampling
Kot
p(t) = > ce’™™, @ =—— frequency
Ié ‘ S T (rad/sec)
1 T/2 |
where C, =— j p(t)e **'dt, keZ
T ~T1/2
1 T/2

~ 2 [ s(te et ==
T —T/2 T



Ideal Sampling — Cont’d

e Therefore

1 .
p(t) =2, e
keZ

and

X, (t) = x(t) p(t) = Z L (el = —Z X(t)e ke

keZ keZ
whose Fourier transform IS

X (w)=—= ZX(a) kK, )

keZ



Ideal Sampling — Cont’d
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Figure 5.24 Fourier transform of (a) x(¢) and (b) x,(¢) = x(¢)p(¢).



Sighal Reconstruction

e Suppose that the signal x(t) i1s bandlimited
with bandwidth B, i.e., | X () |= 0, for |w [> B

* Then, if w, > 2B, the replicas of X (@) in

X(@) =23 X (@-ka)

keZ
do not overlap and X (@) can be recovered by

applying an ideal lowpass filter to X, (@)
(interpolation filter)



Interpolation Filter for Signal

Reconstruction
e (T, wel-B,B
H(w) =+ [ ]
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Figure 3.25 Frequency response function of ideal lowpass filter with bandwidth B.



Interpolation Formula

* The impulse response h(t) of the interpolation
filter Is

h(t) :Esinc(gtj

7T 7T

and the output y(t) of the interpolation filter is

given by
y(t) = h(t) *x,(t)



Interpolation Formula — Cont’d

e But

X, (t) = x(t) p(t) = Zx(nT)5(t nT)

whence

y(t) =h(t) *x_(t) = Z x(nNT)h(t—nT) =

= EZx(nT)smc( (t — nT)j

7Z'nZ

 Moreover, v(t) = X(t)



Shannon’s Sampling Theorem

A CT bandlimited signal x(t) with frequencies
no higher than B can be reconstructed from Its

samples X[n] = x(nT) if the samples are taken
at a rate

o, =2xlT >2B

e The reconstruction of x(t) from its samples
X[n] = x(nT) is provided by the interpolation
formula

X(t) = EZ x(nT)sinc(E(t - nT)j
7T

T neZ



Nyquist Rate

e The minimum sampling rate w, =27z /T = 2B
IS called the Nyquist rate

e Question: Why do CD’s adopt a sampling
rate of 44.1 kHz?

o Answer: Since the highest frequency
perceived by humans is about 20 kHz, 44.1

kHz 1s slightly more than twice this upper
bound




Aliasing

|X(w)] . x (a))
; \1 ~ @  Figure 527 Amplitude spectrum of a
—B 0 b time-limited signal.
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£ Transposed high-frequency components
keZ
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Figure 5.28 Amplitude spectrum of a sampled signal.



Aliasing —Cont’d

* Because of aliasing, It I1s not possible to
reconstruct x(t) exactly by lowpass filtering
the sampled signal x_ (t) = x(t) p(t)

 Aliasing results in a distorted version of the
original signal x(t)

e |t can be eliminated (theoretically) by
lowpass filtering x(t) before sampling it so
that | X (w)|=0for|w|> B



