Chapter 4 The Fourier Series and Fourier Transform

Fourier Series Representation of Periodic Signals

- Let $x(t)$ be a CT periodic signal with period T, i.e., $x(t+T)=x(t), \quad \forall t \in R$
- Example: the rectangular pulse train

Figure 4.6 Periodic signal with fundamental period $T=2$.

The Fourier Series

- Then, $x(t)$ can be expressed as

$$
x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}, \quad t \in \mathbb{R}
$$

where $\omega_{0}=2 \pi / T$ is the fundamental frequency ($\mathrm{rad} / \mathrm{sec}$) of the signal and

$$
c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k \omega_{o} t} d t, \quad k=0, \pm 1, \pm 2, \ldots
$$

C_{0} is called the constant or dc component of $x(t)$

Dirichlet Conditions

- A periodic signal $x(t)$, has a Fourier series if it satisfies the following conditions:

1. $x(t)$ is absolutely integrable over any period, namely

$$
\int_{a}^{a+T}|x(t)| d t<\infty, \quad \forall a \in \mathbb{R}
$$

2. $x(t)$ has only a finite number of maxima and minima over any period
3. $x(t)$ has only a finite number of discontinuities over any period

Example: The Rectangular Pulse Train

Figure 4.6 Periodic signal with fundamental period $T=2$.

- From figure $T=2$, so $\omega_{0}=2 \pi / 2=\pi$
- Clearly $x(t)$ satisfies the Dirichlet conditions and thus has a Fourier series representation

$$
\begin{aligned}
& \text { Example: The Rectangular Pulse } \\
& \text { Train - Cont"d } \\
& x(t)=\frac{1}{2}+\sum_{\substack{k=-\infty \\
k \text { odd }}}^{\infty} \frac{1}{k \pi}(-1)^{|(k-1) / 2|} e^{j k \pi t}, \quad t \in \mathbb{R}
\end{aligned}
$$

Figure 4.7 Line spectra for the rectangular pulse train.

Trigonometric Fourier Series

- By using Euler’s formula, we can rewrite

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}, \quad t \in \mathbb{R} \\
& \text { as } \\
& x(t)=c_{0}+\sum_{k=1}^{\infty} 2 \underbrace{\left|c_{k}\right| \cos \left(k \omega_{0} t+\angle c_{k}\right)}_{k \text {-th harmonic }}, \quad t \in \mathbb{R}
\end{aligned}
$$

as long as $x(t)$ is real

- This expression is called the trigonometric Fourier series of $x(t)$

Example: Trigonometric Fourier Series of the Rectangular Pulse Train

- The expression

$$
x(t)=\frac{1}{2}+\sum_{\substack{k=-\infty \\ k \text { odd }}}^{\infty} \frac{1}{k \pi}(-1)^{|(k-1) / 2|} e^{j k \pi t}, \quad t \in \mathbb{R}
$$

can be rewritten as

$$
x(t)=\frac{1}{2}+\sum_{\substack{k=1 \\ k \text { odd }}}^{\infty} \frac{2}{k \pi} \cos \left(k \pi t+\left[(-1)^{(k-1) / 2}-1\right] \frac{\pi}{2}\right), \quad t \in \mathbb{R}
$$

Gibbs Phenomenon

- Given an odd positive integer N, define the N-th partial sum of the previous series

$$
x_{N}(t)=\frac{1}{2}+\sum_{\substack{k=1 \\ k \text { odd }}}^{N} \frac{2}{k \pi} \cos \left(k \pi t+\left[(-1)^{(k-1) / 2}-1\right] \frac{\pi}{2}\right), \quad t \in \mathbb{R}
$$

- According to Fourier's theorem, it should be

$$
\lim _{N \rightarrow \infty}\left|x_{N}(t)-x(t)\right|=0
$$

Gibbs Phenomenon - Cont"d

Gibbs Phenomenon - Cont'd

overshoot: about 9% of the signal magnitude (present even if $N \rightarrow \infty$)

Parseval's Theorem

- Let $x(t)$ be a periodic signal with period T
- The average power P of the signal is defined as

$$
P=\frac{1}{T} \int_{-T / 2}^{T / 2} x^{2}(t) d t
$$

- Expressing the signal as $x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}, t \in \mathbb{R}$ it is also

$$
P=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}
$$

Fourier Transform

- We have seen that periodic signals can be represented with the Fourier series
- Can aperiodic signals be analyzed in terms of frequency components?
- Yes, and the Fourier transform provides the tool for this analysis
- The major difference w.r.t. the line spectra of periodic signals is that the spectra of aperiodic signals are defined for all real values of the frequency variable ω not just for a discrete set of values

Frequency Content of the Rectangular Pulse

Figure 4.12 Plots of the (a) one-second rectangular pulse and (b) pulse train.

$$
x(t)=\lim _{T \rightarrow \infty} x_{T}(t)
$$

Frequency Content of the
 Rectangular Pulse - Cont'd

- Since $x_{T}(t)$ is periodic with period T, we can write

$$
x_{T}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}, \quad t \in \mathbb{R}
$$

where

$$
c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) e^{-j k \omega_{o} t} d t, \quad k=0, \pm 1, \pm 2, \ldots
$$

Frequency Content of the Rectangular Pulse - Cont’d

- What happens to the frequency components of $x_{T}(t)$ as $T \rightarrow \infty$?
- For $k=0$:

$$
c_{0}=1 / T
$$

- For $k= \pm 1, \pm 2, \ldots$:

$$
\begin{gathered}
c_{k}=\frac{2}{k \omega_{0} T} \sin \left(\frac{k \omega_{0}}{2}\right)=\frac{1}{k \pi} \sin \left(\frac{k \omega_{0}}{2}\right) \\
\omega_{0}=2 \pi / T
\end{gathered}
$$

Frequency Content of the Rectangular Pulse - Cont"d

plots of $T\left|c_{k}\right|$ vs. $\omega=k \omega_{0}$ for $T=2,5,10$

Figure 4.13 Plot of scaled spectrum of $x_{T}(t)$ for (a) $T=2$, (b) $T=5$, and (c) $T=10$.

Frequency Content of the Rectangular Pulse - Cont'd

- It can be easily shown that

$$
\lim _{T \rightarrow \infty} T c_{k}=\operatorname{sinc}\left(\frac{\omega}{2 \pi}\right), \quad \omega \in \mathbb{R}
$$

where

Figure 4.14 Plot of sinc λ.

Fourier Transform of the Rectangular Pulse

- The Fourier transform of the rectangular pulse $x(t)$ is defined to be the limit of $T c_{k}$ as $T \rightarrow \infty$, i.e.,

$$
X(\omega)=\lim _{T \rightarrow \infty} T c_{k}=\operatorname{sinc}\left(\frac{\omega}{2 \pi}\right), \quad \omega \in \mathbb{R}
$$

The Fourier Transform in the General Case

- Given a signal $x(t)$, its Fourier transform $X(\omega)$ is defined as

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t, \quad \omega \in \mathbb{R}
$$

- A signal $x(t)$ is said to have a Fourier transform in the ordinary sense if the above integral converges

The Fourier Transform in the General Case - Cont"d

- The integral does converge if

1. the signal $x(t)$ is "well-behaved"
2. and $x(t)$ is absolutely integrable, namely,

$$
\int_{-\infty}^{\infty}|x(t)| d t<\infty
$$

- Note: well behaved means that the signal has a finite number of discontinuities, maxima, and minima within any finite time interval

Example: The DC or Constant Signal

- Consider the signal $x(t)=1, \quad t \in \mathbb{R}$
- Clearly $x(t)$ does not satisfy the first requirement since

$$
\int_{-\infty}^{\infty}|x(t)| d t=\int_{-\infty}^{\infty} d t=\infty
$$

- Therefore, the constant signal does not have a Fourier transform in the ordinary sense
- Later on, we'll see that it has however a Fourier transform in a generalized sense

Example: The Exponential Signal

- Consider the signal $x(t)=e^{-b t} u(t), \quad b \in \mathbb{R}$
- Its Fourier transform is given by

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{\infty} e^{-b t} u(t) e^{-j \omega t} d t \\
& =\int_{0}^{\infty} e^{-(b+j \omega) t} d t=-\frac{1}{b+j \omega}\left[e^{-(b+j \omega) t}\right]_{t=0}^{t=\infty}
\end{aligned}
$$

Example: The Exponential Signal Cont'd

- If $b<0, X(\omega)$ does not exist
- If $b=0, x(t)=u(t)$ and $X(\omega)$ does not exist either in the ordinary sense
- If $b>0$, it is

$$
X(\omega)=\frac{1}{b+j \omega}
$$

amplitude spectrum
$|X(\omega)|=\frac{1}{\sqrt{b^{2}+\omega^{2}}} \quad \arg (X(\omega))=-\arctan \left(\frac{\omega}{b}\right)$

Example: Amplitude and Phase Spectra of the Exponential Signal

$$
x(t)=e^{-10 t} u(t)
$$

(b)

Figure 4.17 Plots of the (a) amplitude and (b) phase spectra of $x(t)=\exp (-10 t) u(t)$.

Rectangular Form of the Fourier Transform

- Consider

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t, \quad \omega \in \mathbb{R}
$$

- Since $X(\omega)$ in general is a complex function, by using Euler's formula

$$
X(\omega)=\underbrace{\int_{-\infty}^{\infty} x(t) \cos (\omega t) d t}_{R(\omega)}+j \underbrace{\left(-\int_{-\infty}^{\infty} x(t) \sin (\omega t) d t\right)}_{I(\omega)}
$$

$$
X(\omega)=R(\omega)+j I(\omega)
$$

Polar Form of the Fourier Transform

- $X(\omega)=R(\omega)+j I(\omega)$ can be expressed in a polar form as

$$
X(\omega)=|X(\omega)| \exp (j \arg (X(\omega)))
$$

where

$$
\begin{aligned}
& |X(\omega)|=\sqrt{R^{2}(\omega)+I^{2}(\omega)} \\
& \arg (X(\omega))=\arctan \left(\frac{I(\omega)}{R(\omega)}\right)
\end{aligned}
$$

Fourier Transform of

 Real-Valued Signals- If $x(t)$ is real-valued, it is
- Moreover

$$
X(-\omega)=X^{*}(\omega) \quad \begin{aligned}
& \text { Hermitian } \\
& \text { symmetry }
\end{aligned}
$$

$$
X^{*}(\omega)=|X(\omega)| \exp (-j \arg (X(\omega)))
$$

whence

$$
\begin{aligned}
& |X(-\omega)|=|X(\omega)| \text { and } \\
& \arg (X(-\omega))=-\arg (X(\omega))
\end{aligned}
$$

Example: Fourier Transform of the Rectangular Pulse

- Consider the even signal

Figure 4.18 Rectangular pulse of dura-
tion τ seconds.

- It is

$$
\begin{aligned}
X(\omega) & =2 \int_{0}^{\tau / 2}(1) \cos (\omega t) d t=\frac{2}{\omega}[\sin (\omega t)]_{t=0}^{t=\tau / 2}=\frac{2}{\omega} \sin \left(\frac{\omega \tau}{2}\right) \\
& =\tau \operatorname{sinc}\left(\frac{\omega \tau}{2 \pi}\right)
\end{aligned}
$$

Example: Fourier Transform of the Rectangular Pulse - Cont'd

$$
X(\omega)=\tau \operatorname{sinc}\left(\frac{\omega \tau}{2 \pi}\right)
$$

Figure 4.19 Fourier transform of the τ-second rectangular pulse.

Example: Fourier Transform of the Rectangular Pulse - Cont’d

amplitude

 spectrum
phase
spectrum

Figure 4.20 (a) Amplitude and (b) phase spectra of the rectangular pulse.

Bandlimited Signals

- A signal $x(t)$ is said to be bandlimited if its Fourier transform $X(\omega)$ is zero for all $\omega>B$ where B is some positive number, called the bandwidth of the signal
- It turns out that any bandlimited signal must have an infinite duration in time, i.e., bandlimited signals cannot be time limited

Bandlimited Signals - Cont'd

- If a signal $x(t)$ is not bandlimited, it is said to have infinite bandwidth or an infinite spectrum
- Time-limited signals cannot be bandlimited and thus all time-limited signals have infinite bandwidth
- However, for any well-behaved signal $x(t)$ it can be proven that $\lim X(\omega)=0$ whence it can be assümed that

$$
|X(\omega)| \approx 0 \quad \forall \omega>B
$$

B being a convenient large number

Inverse Fourier Transform

- Given a signal $x(t)$ with Fourier transform $X(\omega), x(t)$ can be recomputed from $X(\omega)$ by applying the inverse Fourier transform given by

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega, \quad t \in \mathbb{R}
$$

- Transform pair

$$
x(t) \leftrightarrow X(\omega)
$$

Properties of the Fourier Transform

$$
x(t) \leftrightarrow X(\omega) \quad y(t) \leftrightarrow Y(\omega)
$$

- Linearity:

$$
\alpha x(t)+\beta y(t) \leftrightarrow \alpha X(\omega)+\beta Y(\omega)
$$

- Left or Right Shift in Time:

$$
x\left(t-t_{0}\right) \leftrightarrow X(\omega) e^{-j \omega t_{0}}
$$

- Time Scaling:

$$
x(a t) \leftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right)
$$

Properties of the Fourier Transform

- Time Reversal:

$$
x(-t) \leftrightarrow X(-\omega)
$$

- Multiplication by a Power of t:

$$
t^{n} x(t) \leftrightarrow(j)^{n} \frac{d^{n}}{d \omega^{n}} X(\omega)
$$

- Multiplication by a Complex Exponential:

$$
x(t) e^{j \omega_{0} t} \leftrightarrow X\left(\omega-\omega_{0}\right)
$$

Properties of the Fourier Transform

- Multiplication by a Sinusoid (Modulation):

$$
\begin{aligned}
& x(t) \sin \left(\omega_{0} t\right) \leftrightarrow \frac{j}{2}\left[X\left(\omega+\omega_{0}\right)-X\left(\omega-\omega_{0}\right)\right] \\
& x(t) \cos \left(\omega_{0} t\right) \leftrightarrow \frac{1}{2}\left[X\left(\omega+\omega_{0}\right)+X\left(\omega-\omega_{0}\right)\right]
\end{aligned}
$$

- Differentiation in the Time Domain:

$$
\frac{d^{n}}{d t^{n}} x(t) \leftrightarrow(j \omega)^{n} X(\omega)
$$

Properties of the Fourier Transform

- Integration in the Time Domain:

$$
\int_{-\infty}^{t} x(\tau) d \tau \leftrightarrow \frac{1}{j \omega} X(\omega)+\pi X(0) \delta(\omega)
$$

- Convolution in the Time Domain:

$$
x(t) * y(t) \leftrightarrow X(\omega) Y(\omega)
$$

- Multiplication in the Time Domain:

$$
x(t) y(t) \leftrightarrow X(\omega) * Y(\omega)
$$

Properties of the Fourier Transform

- Parseval's Theorem:

$$
\begin{gathered}
\int_{\mathbb{R}} x(t) y(t) d t \leftrightarrow \frac{1}{2 \pi} \int_{\mathbb{R}} X^{*}(\omega) Y(\omega) d \omega \\
\text { if } y(t)=x(t) \int_{\mathbb{R}}|x(t)|^{2} d t \leftrightarrow \frac{1}{2 \pi} \int_{\mathbb{R}}|X(\omega)|^{2} d \omega
\end{gathered}
$$

- Duality:

$$
X(t) \leftrightarrow 2 \pi x(-\omega)
$$

Properties of the Fourier Transform Summary

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM	
Property	Transform Pair/Property
Linearity	$a x(t)+b v(t) \leftrightarrow a X(\omega)+b V(\omega)$
Right or left shift in time	$x(t-c) \leftrightarrow X(\omega) e^{-j \omega c}$
Time scaling	$x(a t) \leftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right) \quad a>0$
Time reversal	$x(-t) \leftrightarrow X(-\omega)=\overline{X(\omega)}$
Multiplication by a power of t	$t^{n} x(t) \leftrightarrow j^{n} \frac{d^{n}}{d \omega^{n}} X(\omega) \quad n=1,2,$.
Multiplication by a complex exponential	$x(t) e^{j \omega_{0} t} \leftrightarrow X\left(\omega-\omega_{0}\right) \quad \omega_{0}$ real
Multiplication by $\sin \omega_{0} I$	$x(t) \sin \omega_{0} t \leftrightarrow \frac{j}{2}\left[X\left(\omega+\omega_{0}\right)-X\left(\omega-\omega_{0}\right)\right]$
Multiplication by $\cos \omega_{0} t$	$x(t) \cos \omega_{0} t \leftrightarrow \frac{1}{2}\left[X\left(\omega+\omega_{0}\right)+X\left(\omega-\omega_{0}\right)\right]$
Differentiation in the time domain	$\frac{d^{n}}{d t^{n}} x(t) \leftrightarrow(j \omega)^{n} X(\omega) \quad n=1,2, \ldots$
Integration	$\int_{-\infty}^{t} x(\lambda) d \lambda \leftrightarrow \frac{1}{j \omega} X(\omega)+\pi X(0) \delta(\omega)$
Convolution in the time domain	$x(t) * v(t) \leftrightarrow X(\omega) V(\omega)$
Multiplication in the time domain	$x(t) v(t) \leftrightarrow \frac{1}{2 \pi} X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t) v(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{X(\omega)} V(\omega) d \omega$
Special case of Parseval's theorem	$\int_{-\infty}^{\infty} x^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\|X(\omega)\|^{2} d \omega$
Duality	$X(t) \leftrightarrow 2 \pi x(-\omega)$

Example: Linearity

$$
x(t)=p_{4}(t)+p_{2}(t)
$$

Figure 4.21 Signal in Example 4.9.

$$
X(\omega)=4 \operatorname{sinc}\left(\frac{2 \omega}{\pi}\right)+2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right)
$$

Example: Tìme Shift

$$
x(t)=p_{2}(t-1)
$$

Figure 4.22 Signal in Example 4.10.

$$
X(\omega)=2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right) e^{-j \omega}
$$

Example: Time Scaling

$\xrightarrow[-1.0]{ }$
$a>1$ time compression \leftrightarrow frequency expansion
$0<a<1$ time expansion \leftrightarrow frequency compression

Example: Multiplication in Time

$$
x(t)=t p_{2}(t)
$$

Figure 4.25 The signal $x(t)=t p_{2}(t)$.

$$
X(\omega)=j \frac{d}{d \omega}\left(2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right)\right)=j 2 \frac{d}{d \omega}\left(\frac{\sin \omega}{\omega}\right)=j 2 \frac{\omega \cos \omega-\sin \omega}{\omega^{2}}
$$

Example: Multiplication in Time Cont'd

$$
X(\omega)=j 2 \frac{\omega \cos \omega-\sin \omega}{\omega^{2}}
$$

Figure 4.26 Amplitude spectrum of the signal in Figure 4.25.

Example: Multiplication by a Sinusoid

$$
x(t)=p_{\tau}(t) \cos \left(\omega_{0} t\right) \quad \begin{aligned}
& \text { sinusoidal } \\
& \text { burst }
\end{aligned}
$$

Figure 4.27 Sinusoidal burst.

$$
X(\omega)=\frac{1}{2}\left[\tau \operatorname{sinc}\left(\frac{\tau\left(\omega+\omega_{0}\right)}{2 \pi}\right)+\tau \operatorname{sinc}\left(\frac{\tau\left(\omega-\omega_{0}\right)}{2 \pi}\right)\right]
$$

Example: Multiplication by a Sinusoid - Cont'd

$$
X(\omega)=\frac{1}{2}\left[\tau \operatorname{sinc}\left(\frac{\tau\left(\omega+\omega_{0}\right)}{2 \pi}\right)+\tau \operatorname{sinc}\left(\frac{\tau\left(\omega-\omega_{0}\right)}{2 \pi}\right)\right]
$$

Figure 4.28 Fourier transform of the sinusoidal burst $x(t)=p_{0.5}(t) \cos 60 t$.

Example: Integration in the Time Domain

Example: Integration in the Time Domain - Cont'd

- The Fourier transform of $x(t)$ can be easily found to be

$$
X(\omega)=\left(\operatorname{sinc}\left(\frac{\tau \omega}{4 \pi}\right)\right)\left(j 2 \sin \left(\frac{\tau \omega}{4}\right)\right)
$$

- Now, by using the integration property, it is

$$
V(\omega)=\frac{1}{j \omega} X(\omega)+\pi X(0) \delta(\omega)=\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\tau \omega}{4 \pi}\right)
$$

Example: Integration in the Time Domain - Cont'd

$$
V(\omega)=\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\tau \omega}{4 \pi}\right)
$$

Figure 4.31 Fourier transform of the 1-second triangular pulse.

Generalized Fourier Transform

- Fourier transform of $\delta(t)$

$$
\int_{\mathbb{R}} \delta(t) e^{-j \omega t} d t=1 \quad \Rightarrow \quad \delta(t) \leftrightarrow 1
$$

- Applying the duality property

generalized Fourier transform
of the constant signal $x(t)=1, t \in \mathbb{R}$

Generalized Fourier Transform of Sinusoidal Signals

$\cos \left(\omega_{0} t\right) \leftrightarrow \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]$

$$
\sin \left(\omega_{0} t\right) \leftrightarrow j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]
$$

Fourier Transform of Periodic Signals

- Let $x(t)$ be a periodic signal with period T; as such, it can be represented with its Fourier transform

$$
x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t} \quad \omega_{0}=2 \pi / T
$$

- Since $e^{j \omega_{0} t} \leftrightarrow 2 \pi \delta\left(\omega-\omega_{0}\right)$, it is

$$
X(\omega)=\sum_{k=-\infty}^{\infty} 2 \pi c_{k} \delta\left(\omega-k \omega_{0}\right)
$$

Fourier Transform of the Unit-Step Function

- Since

$$
u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau
$$

using the integration property, it is

$$
u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau \leftrightarrow \frac{1}{j \omega}+\pi \delta(\omega)
$$

Common Fourier Transform Pairs

TABLE 4.2 COMMON FOURIER TRANSFORM PAIRS

$$
\begin{aligned}
& 1, \quad-\infty<t<\infty \leftrightarrow 2 \pi \delta(\omega) \\
& -0.5+u(t) \leftrightarrow \frac{1}{j \omega} \\
& u(t) \leftrightarrow \pi \delta(\omega)+\frac{1}{j \omega} \\
& \delta(t) \leftrightarrow 1 \\
& \delta(t-c) \leftrightarrow e^{-j \omega c}, \quad c \text { any real number } \\
& e^{-b t} u(t) \leftrightarrow \frac{1}{j \omega+b}, \quad b>0 \\
& e^{j \omega_{0} t} \leftrightarrow 2 \pi \delta\left(\omega-\omega_{0}\right), \omega_{0} \text { any real number } \\
& p_{\tau}(t) \leftrightarrow \tau \operatorname{sinc} \frac{\tau \omega}{2 \pi} \\
& \tau \operatorname{sinc} \frac{\tau t}{2 \pi} \leftrightarrow 2 \pi p_{\tau}(\omega) \\
& \left(1-\frac{2|t|}{\tau}\right) p_{\tau}(t) \leftrightarrow \frac{\tau}{2} \operatorname{sinc} c^{2}\left(\frac{\tau \omega}{4 \pi}\right) \\
& \frac{\tau}{2} \sin c^{2}\left(\frac{\tau t}{4 \pi}\right) \leftrightarrow 2 \pi\left(1-\frac{2|\omega|}{\tau}\right) p_{\tau}(\omega) \\
& \cos \omega_{0} t \leftrightarrow \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right] \\
& \cos \left(\omega_{0} t+\theta\right) \leftrightarrow \pi\left[e^{-j \theta} \delta\left(\omega+\omega_{0}\right)+e^{j \theta} \delta\left(\omega-\omega_{0}\right)\right] \\
& \sin \omega_{0} t \leftrightarrow j \pi\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right] \\
& \sin \left(\omega_{0} t+\theta\right) \leftrightarrow j \pi\left[e^{-j \theta} \delta\left(\omega+\omega_{0}\right)-e^{j \theta} \delta\left(\omega-\omega_{0}\right)\right]
\end{aligned}
$$

