Chapter 4
The Fourier Series and
Fourier Transform



Fourier Series Representation of

Periodic Signals

o Let x(t) be a CT periodic signal with period

T ie, x(t+T)=x(t), VteR

o Example: the rectangular pulse train
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Figure 4.6 Periodic signal with fundamental period 7 = 2.
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The Fourier Series

e Then, x(t) can be expressed as
X(t) = Z ce’ teR

k=—0o0
where @, =27 /T is the fundamental
frequency (rad/sec) of the signal and

T/2
1

G == j x(t)e *etdt, k=0,+1,+2,...
-T/2

C, Is called the constant or dc component of X(t)



Dirichlet Conditions

A periodic signal x(t), has a Fourier series
If It satisfies the following conditions:

. X(t) Is absolutely integrable over any
period, namely

a+T1

[ Ix®)]dt<o, vaeR

. X(t) has only a finite number of maxima
and minima over any period

. X(t) has only a finite number of
discontinuities over any period



Example: The Rectangular Pulse Train

x(t) ¢

(continues)
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Figure 4.6 Periodic signal with fundamental period T = 2.

 From figure T =250 @, =27/2=nx

o Clearly x(t) satisfies the Dirichlet conditions and
thus has a Fourier series representation



Example: The Rectangular Pulse
Train — Cont’d

x(t)——+ Z ( ) kDiAgikat R

k=—o0
k odd
Iy y
e |1k| i
T — - T
1 el 2 L |
== 3w 3z e
ee 57 ST see
) 4 7t T ¢ 3 T e 4 s
| i I 1 | oTe Yy I
5% —4x —-3% -2n -—=m 0 i 27 3 4 S5x
/Ck A
- 180°
[ W ] [ oo e
'y & & 'y 'y & | & & -
b 2T I b T M T Yuff et o
e T L Tr i = TR DTy T 0 b4 27 l?m: 47T Y A
- —180°

Figure 4.7 Line spectra for the rectangular pulse train.



Trigonometric Fourier Series

* By using Euler’s formula, we can rewrite

X(t) = Z ce’ teR
as (=
X(t) =c, + ZZ | ¢, |cos(kayt + Ack) teR

/ k=1 \ ~

dc component k-th harmonic

as long as x(t) Is real

e This expression is called the trigonometric
Fouriler series of x(t)



Example: Trigonometric Fourier
Series of the Rectangular Pulse Train

e The expressmn
x(t)_—+ Z ( 1)kDieglat e R

k——oo
_k odd
can be rewritten as

1l & 2 T
t)== = cos| kzt+| (=D*P?_1|=|, teR
X(t) 2+kZ:;k7r (724{( ) ]Zj c

k odd



Gibbs Phenomenon

e Glven an odd positive integer N, define the
N-th partial sum of the previous series

7T

1 & 2 (k-1)/2 4
Xy (t) ==+ > —cos| kzt+| (-1) -1|= |, teR
2 =k

k odd

« According to Fourier’s theorem, it should be
lim | X, (t) —x(t) |=0

N —o0
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Gibbs Phenomenon — Cont’d
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Figure 4.8 Plot of x,(r) when N = 3.
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Figure 4.9 Approximation x,(%).
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Gibbs Phenomenon — Cont’d

X (1)

0.81

-0.2

X5 (1)

0.8F

0.6

x45(t)

0.4f

0.2r

2 1 0 1 2 3 0.2

SRR L i Tt o R

—

Time (sec) = -

Figure 410 Approximation x,,(f).

5

0 1
Time (sec)

Figure 4.11 The signal x,(r).

overshoot: about 9 % of the signal magnitude

(present even if N — o0)
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Parseval’s Theorem

o Let x(t) be a periodic signal with period T
* The average power P of the signal is defined

as T/2

p_1 j X2 (t)dt
T -T1/2

e Expressing the signal asx(t) = > ce™™, teR

it is also k:_oo
P = Z ‘Ck ‘2
k=—o0



Fourier Transform

We have seen that periodic signals can be
represented with the Fourier series

Can aperiodic signals be analyzed in terms of
frequency components?

Yes, and the Fourier transform provides the
tool for this analysis

The major difference w.r.t. the line spectra of
periodic signals is that the spectra of
aperiodic signals are defined for all real
values of the frequency variable @ not just
for a discrete set of values



Frequency Content of the
Rectangular Pulse
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Figure 412 Plots of the (a) one-second rectangular pulse and (b) pulse train.

X(t) = lim x. (t)

T >0



Frequency Content of the
Rectangular Pulse — Cont’d

* Since x; (t) is periodic with period T, we
can write

X, (1) = Z ce’ teR

k=—0o0

where
T/2
1

c, == j x(t)e *etdt, k=0,+1,+2,...

-T/2



Frequency Content of the
Rectangular Pulse — Cont’d

 \What happens to the frequency components
of X;(t)as T — ©?

e For k=0:
C,=1/T
e For kK=%1,%2,...:
2 (ka)oj 1 (ka)oj
C, = sin| —2 |=—sin| —
@, 2 [kﬂ'
W, =27lT



Frequency Content of the
Rectangular Pulse — Cont’d

(a) = St .
plotsof T|¢c, | " ‘ l
VS.C():ka)O _010,I,°T _ln'T= 0 -T=;:=T='10n
for T = 2,5,10 oot

[ ]
ole

Lase o1ty 10 o111 T[‘ hLTn?J%ﬁJﬂhﬂT—l

-10m -51 0
kw (rad/sec)

Om

O dilhe, ¥, [T a1 | [T ¥ TTTTY
-10m ST 0 5w 107
kw, (rad/sec)

Figure 4.13 - Plot of scaled spectrum of x(¢) for (a) T = 2,(b) T = 5,and (c) T = 10.



Frequency Content of the
Rectangular Pulse — Cont’d

e |t can be easily shown that

limTc, =sinc(ﬂj, ®eR
T > 272'
where

Sinc 4 4

/\ sinc(2) = Si“;%)

G /\/\ e

T 2 -
Figure 4.14 Plot of sinc 4.



Fourier Transform of the
Rectangular Pulse

* The Fourier transform of the rectangular
pulse x(t) is defined to be the limit of Tc,
asT — oo, I.e,,

X(w)=1limTc, =sinc @ , weR
T—>ow ) 272'

| X(o)| - arg(X ()

1
Al 180° +
4 LN ) ese
=il =bigr (e il =)
Al ‘ .' -
4l 0 2m 4 6 8a 107
*e [N N ]
i T T T T T T T L] T (’U =1

=0 = o= i ey U 2k 4 [i%4 8z 105

- —180°

Figure 415 Amplitude spectrum of the rectangular pulse. Figure 4,16 Phase spectrum of the rectangular pulse.



The Fourier Transform in the
General Case

e Given asignal x(t), its Fourier transform
X (w) is defined as

X (w) = j x(t)e ''dt, weR
e Asignal x(t)_is said to have a Fourier
transform In the ordinary sense if the above

Integral converges



The Fourier Transform in the
General Case — Cont’d

e The integral does converge If
1. the signal x(t) is “well-behaved”
2. and x(t) Is absolutely integrable, namely,

T\x(t)\dt<oo

—00

 Note: well behaved means that the signal
has a finite number of discontinuities,
maxima, and minima within any finite time
Interval



Example: The DC or Constant Signal

 Consider the signal x(t)=1, teR

o Clearly x(t) does not satisfy the first
requwement since

j|x(t)\dt_jdt=oo

. Therefore the constant S|gnal does not have
a Fouriler transform in the ordinary sense

e Later on, we’ll see that It has however a
Fourier transform in a generalized sense



Example: The Exponential Signal

e Consider the signal x(t)=e™™u(t), beR
o |ts Fourier transform is given by

X (@) = j e "u(t)e dt

{=00

:OO ~(b+jo)t g — _ 1 —(b+ joo)t
et = e



Example: The Exponential Sighal —
Cont’d

e If b<0, X(w) does not exist

e Ifb=0, x(t) =u(t) and X (w)does not
exist either in the ordinary sense

e Ifbh>0,itis .
X(@) =—
b+ jo
amplitude spectrum phase spectrum
1
| X(@) |= arg(X (@)) = —arctan (Qj
o X(@) .



Example: Amplitude and Phase
Spectra of the Exponential Signal
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Figure 4.17 Plots of the (a) amplitude and (b) phase spectra of x(¢) = exp(—100)u(r).



Rectangular Form of the Fourier
Transform

e Consider

X(w) = j x(t)e ''dt, weR
 Since X (@) in general is a complex
function, by using Euler’s formula

X () = Of X(t) cos(wt)dt + j(—f x(t)sin(a)t)dtj

—00
I\ / I\

—00

R () | ()

X(@) =R(0)+ Jl(o)



Polar Form of the Fourier Transform

¢« X(w)=R(w)+ JlI(w) can be expressed in
a polar form as

X(w) = X (@) |exp(Jarg(X (o))

where

| X (@) |= R (@) + 12 (o)

_ | (@)
arg(X (w)) = arctan ( R(a))j



Fourier

ransform of

Real-Valued Signals

o If x(t) Is real-valued, It Is
X (_a)) — X *(a)) Hermitian

 Moreover

symmetry

X" (@) =| X (@) | exp(-jarg(X (»)))

whence

| X (-o) |5 X(@)| ana
arg(X (-w)) = —arg(X (w))



Example: Fourier Transform of the
Rectangular Pulse

e Consider the even signal

pr(f) 1

1

!
e 0 /2 Figure 4.18 Rectangular pulse of dura-
tion r seconds.

e |tiIS 712 5
X (w) = Zj (1) cos(ewt)dt ——[sm(a)t)]t e :—sin(%j

W
T
= 75INC
&



Example: Fourier Transform of the
Rectangular Pulse — Cont’d

7

X(w) = rsmc( o7 |

X(w) |

Figure 4.19 Fourier transform of the t-second rectangular pulse.



Example: Fourier Transform of the
Rectangular Pulse — Cont’d
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Figure 4.20 (a) Amplitude and (b) phase spectra of the rectangular pulse.



Bandlimited Signals

o A signal x(t) iIs said to be bandlimited If its
Fourier transform X (w) is zero for allo > B
where B Is some positive number, called
the bandwidth of the signal

e |t turns out that any bandlimited signal must
have an infinite duration in time, I.e.,
bandlimited signals cannot be time limited



Bandlimited Signals — Cont’d

o |If asignal x(t) is not bandlimited, it Is said
to have infinite bandwidth or an infinite
spectrum

 Time-limited signals cannot be
bandlimited and thus all time-limited
signals have infinite bandwidth

* However, for any well-behaved signal x(t)
it can be proven that Iim X(w) =0
whence it can be assuimed that

| X(w)|=0 Vw>B

B being a convenient large number



Inverse Fourier Transform

e Given a signal x(t) with Fourier transform
X (@), x(t) can be recomputed from X (w)
by applying the inverse Fourier transform
given by

X(t) = — j X (w)e!”dw, teR

e Transform pair
X(t) & X(w)



Properties of the Fourier Transform
X(t) o X(w) y@i) <Y (w)
e Linearity:
aXx(t)+ py(t) & aX(w)+ LY (w)
 Left or Right Shift in Time:
X(t—t,) < X (w)e 1"

e Time Scaling:

X(at) <> 1 X (gj

d a



Properties of the Fourier Transform

 Time Reversal:
X(—t) & X(—w)

e Multiplication by a Power of t:

n T\ N dn
t'x() < ()) X (w)
dw
e Multiplication by a Complex Exponential:

n

x()e' o X (o -w,)



Properties of the Fourier Transform
e Multiplication by a Sinusoid (Modulation):

X(t)sin(w,t) > =| X(w+a,) — X (@ - a)o)]

) |
X(t) cos(m,t) <> %[X (w+@,)+ X (- a)o)]
e Differentiation in the Time Domain:

dn
dt”

X(t) © (jo)" X ()



Properties of the Fourier Transform

 |ntegration in the Time Domain:

j X(r)dz <> jl X(w)+7X(0)o(w)
@

—00

e Convolution in the Time Domalin:
X(t)*y(t) © X(o)Y (@)
e Multiplication in the Time Domain:
X(t)y(t) & X(@)*Y (o)



Properties of the Fourier Transform

e Parseval’s Theorem:

[x®)ydt > 21 [X* (@)Y (@)dw

R

if y(t) = x(t) Hi [ X(t) [P dt <> 2172 Hi | X (@) [P[de

e Duality:

X (1) © 27X(-w)



Properties of the Fourier Transform -
Summary

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Property Transform Pair/Property
Linearity ax(t) + bv(1) © aX(w) + bV(w)
Right or left shift in time x(t — ¢) & X(w)e 7*°
Time scaling x(at) < %X % a>0
Time reversal x(—1) © X(—a) = X(w)
Multiplication by a power of t t"x(f) < " {:u Xw) n=12,...
Multiplication by a complex exponential x(De’ & X(o — wy)  w,real
Multiplication by sin wf x(t) sin wpt < % [X(w + o) — X(w — wy)]
Multiplication by cos ¢ x(7) cos wyt & %[X(w + wy) + X — wy)]
Differentiation in the time domain j; x(H) & (jw)'X(w) n=12,...
Integration f:c x(1) dA & ’é X(w) + aX(0)d(w)
Convolution in the time domain x(t) * v(t) & X(w)V(w)
Multiplication in the time domain x(Ov(i) & i){(w) * V(iw)
Parseval’s theorem J: x(v(t) dr = % J_ : X(w)V(w) dow
Special case of Parseval’s theorem Jm () dt = %z J_Z X (w)|? do

Duality X(t) & 2mx(—w)




Example: Linearity
X(t) = p, (1) + P, (t)

Figure 4.21 Signal in Example 4.9.

X(w) = 4sinc(2—w) + Zsinc(gj

7T 7T

1



Example: Time Shift
X(t) = p,(t-1)

x(f) 4

Figure 4.22 Signal in Example 4.10.

X (@) = Zsinc(gj g1

7T



Example: Time Scaling
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Figure 4.23  Signals (a) p,(¢) and (b)
(b) Ppa(20).
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Figure 4.24 Fourier tran
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sforms of (a) p,(t) and (b) p,(21).

a >1 time compression <> frequency expansion

0 < a <1 time expansion <> frequency compression



Example: Multiplication in Time

X(t) = tp, (1)

X(f) A

Figure 4.25 The signal x(¢) = ip,(?).

) T do\ o )

X(w) = jdi(Zsinc(QD: 2 d (Slﬂa)j: jza)coswz—sma)



Example: Multiplication in Time —
Cont’d

@ COS @ —SIN @

2
Q

X(w)=]2

X (w)|
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Figure 4.26 Amplitude spectrum of the signal in Figure 4.25.



Example: Multiplication by a Sinusoid

_ sinusoidal
X(t) = p.(t)cos(mt) s

x()

AAMAN
VYU

ipure 4.27 Sinusoidal burst

X(w) = 1 rsinc(f(w;r w")j+ rsinc(r(wz_ wO)j
7T 7T




Example: Multiplication by a
Sinusoid — Cont’d

X (w) :%_rsinc(f(w+w°)j+ rsinc(f(w_%)j

27T

27T

e @, =60 rad /sec
60 + =05
O\ A AN A A+ ofradier
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Figure 4.28 Fourier transform of the sinusoidal burst x(f) = p, s(¢) cos 60z.




Example: Integration in the Time
Domain

v(t) 4

1 V(t):(1_2|t|

T

j p. (t)

1 I t
A 0 /2

Figure 4.29 Triangular pulse.
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Figure 430 Derivative of the triangular
pulse.




Example: Integration in the Time
Domain — Cont’d

* The Fourier transform of x(t) can be easily
found to be

xto={sme{ 32| s2sn( 7]

* Now, by using the integration property, It IS

V(w) = 1 X(w)+ 72X (0)o(w) = % sinc? ( ra)j
12, 2 4



Example: Integration in the Time
Domain — Cont’d
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0.6

0.4

0.2

0 J ; T L i e — 1
50 40 30 20 -10 0 10 20 30 40 50
Frequency (rad/sec)

Figure 4.31 Fourier transform of the 1-second triangular pulse.



Generalized Fourier Transform

* Fourier transform of o(t)

[smeitdt=1 = s(t) o1
R

* Applying the duality property
X(t)=LteR < 270 (w)

/

generalized Fourier transform
of the constant signal x(t) =1,te R




Generalized Fourier Transform of
Sinusoidal Signals

cos(wgt) © z[S(w+@y) + 5 (0 — )]

Figure 4.32 Fourier transform of cos wy!.

sin(ogt) <> jz[d(0+a,) - 5(0-a,)]



Fourier Transform of Periodic Signals

o Let x(t) be a periodic signal with period T;
as such, 1t can be represented with its
Fourier transform

X(t)= ). c e’ w,=271T

K=—00

e Since /' & 278 (w —w,), it is

X (@)=Y 27¢,8(c—ka,)



Fourier Transform of
the Unit-Step Function

* Since t
wozjawmf

using the integration property, it is

u(t) = j o(r)dr < jla) + 710 (W)




Common Fourier Transform Pairs

TABLE 42 COMMON FOURIER TRANSFORM PAIRS

1, —oo <t <o 2mi(w)

—0.5 + u(r) <—>—1'—
jo

u(t) & ao(w) + L
jw

5(0) o 1
d(t — ¢) <> €7, ¢ any real number
e Pu(t) o - : b =0

jo + b’
Jergt 6 £l
e’ < 2m0(w — w,), w, any real number

(f) ¢ T sinc v
P 27

2] T W
( = T)P’(r} = sinc? (4&1’)

Gl 2|wl

5 sine” (7~ & 2n |1 = p. ()

cos wyt > (@ + wy) + Hw — wy)]
cos (wyf + 0) & ale 5 (w + wy) + e?S(w — wy)]
sin wt < jr[d(w + wy) — d(w — wy)]
sin (@t + 8) < jale (o + o,) — ePé(w — w,)]




