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• Consider the CT SISO system:

• If the input signal is                     and the 
system has no energy at          , the output             

is called the impulse responseimpulse response of 
the system 
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• Let x(t) be an arbitrary input signal with
for

• Using the sifting property sifting property of        , we may 
write

• Exploiting timetime--invarianceinvariance, it is
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• Exploiting linearitylinearity,, it is

• If the integrand                      does not contain 
an impulse located at          , the lower limit of 
the integral can be taken to be 0,i.e.,
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• This particular integration is called the 
convolution integralconvolution integral

• Equation                              is called the 
convolution representation of the systemconvolution representation of the system

• Remark: a CT LTI  system is completely 
described by its impulse response h(t)

The Convolution Integral The Convolution Integral 
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• Since the impulse response h(t) provides the 
complete description of a CT LTI system, 
we write

Block Diagram Representation 
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• Suppose that                               where p(t) 
is the rectangular pulse depicted in figure
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• In order to compute the convolution integral

we have to consider four cases:

Example – Cont’dExample – Cont’d
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• Case 1: 0t ≤
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• Case 2: 0 t T≤ ≤
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• Case 3:
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•• AssociativityAssociativity

•• CommutativityCommutativity

•• DistributivityDistributivity w.r.t. additionw.r.t. addition

Properties of the Convolution IntegralProperties of the Convolution Integral
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•• Shift property:Shift property: define

•• Convolution with the unit impulseConvolution with the unit impulse

•• Convolution with the shifted unit impulseConvolution with the shifted unit impulse
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•• Derivative property: Derivative property: if the signal x(t) is 
differentiable, then it is

• If both x(t) and v(t) are differentiable, then it 
is also
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•• Integration property: Integration property: define
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• Let g(t) be the response of a system with 
impulse response h(t) when with 
no initial energy at time         , i.e.,

• Therefore, it is 
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• Differentiating both sides

• Recalling that

it is
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