Chapter 1 Fundamental Concepts

Signals

- A signal is a pattern of variation of a physical quantity, often as a *function* of time (but also space, distance, position, etc).
- These quantities are usually the independent variables of the function defining the signal
- A signal encodes information, which is the variation itself

Signal Processing

- Signal processing is the discipline concerned with extracting, analyzing, and manipulating the information carried by signals
- The processing method depends on the type of signal and on the nature of the information carried by the signal

Characterization and Classification of Signals

- The type of signal depends on the nature of the independent variables and on the value of the function defining the signal
- For example, the independent variables can be continuous or discrete
- Likewise, the signal can be a continuous or discrete function of the independent variables

Characterization and Classification of Signals – Cont'd

- Moreover, the signal can be either a realvalued function or a complex-valued function
- A signal consisting of a single component is called a scalar or one-dimensional (1-D) signal

Sampling

• Discrete-time signals are often obtained by sampling continuous-time signals

Systems

- A system is any device that can process signals for analysis, synthesis, enhancement, format conversion, recording, transmission, etc.
- A system is usually mathematically defined by the equation(s) relating input to output signals (I/O characterization)
- A system may have single or multiple inputs and single or multiple outputs

Continuous-Time (CT) Signals

- Unit-step function $u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$ Unit-ramp function $r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$

Unit-Ramp and Unit-Step Functions: **Some Properties**

$$x(t)u(t) = \begin{cases} x(t), & t \ge 0\\ 0, & t < 0 \end{cases}$$

$$r(t) = \int_{-\infty}^{t} u(\lambda) d\lambda$$

$$u(t) = \frac{dr(t)}{dt}$$
 (with exception of $t = 0$)

• It is defined by:

$$\delta(t) = 0, \quad t \neq 0$$
$$\int_{-\varepsilon}^{\varepsilon} \delta(\lambda) d\lambda = 1, \quad \forall \varepsilon > 0$$

• The value $\delta(0)$ is not defined, in particular $\delta(0) \neq \infty$

Properties of the Delta Function

1)
$$u(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda$$
$$\forall t \text{ except } t = 0$$

2)
$$\int_{t_0-\varepsilon}^{t_0+\varepsilon} x(t)\delta(t-t_0)dt = x(t_0) \quad \forall \varepsilon > 0$$
(sifting property)

19

Periodic Signals

• Definition: a signal x(t) is said to be periodic with period T, if

$$x(t+T) = x(t) \quad \forall t \in \mathbb{R}$$

- Notice that *x*(*t*) is also periodic with period *qT* where *q* is any positive integer
- T is called the fundamental period

Points of Discontinuity

A continuous-time signal x(t) is said to be discontinuous at a point t₀ if x(t₀⁺) ≠ x(t₀⁻) where t₀⁺ = t₀ + ε and t₀⁻ = t₀ - ε, ε being a small positive number

23

Continuous Signals

- A signal x(t) is continuous at the point t_0 if $x(t_0^+) = x(t_0^-)$
- If a signal *x*(*t*) is continuous at all points *t*, *x*(*t*) is said to be a continuous signal

Derivative of a Continuous-Time Signal

A signal x(t) is said to be differentiable at a point t₀ if the quantity

$$\frac{x(t_0+h)-x(t_0)}{h}$$

has limit as $h \rightarrow 0$ independent of whether h approaches 0 from above (h > 0) or from below (h < 0)

• If the limit exists, x(t) has a derivative at t_0

$$\frac{dx(t)}{dt}\Big|_{t=t_0} = \lim_{h \to 0} \frac{x(t_0 + h) - x(t_0)}{h}$$
²⁹

Generalized Derivative

- However, piecewise-continuous signals may have a derivative in a generalized sense
- Suppose that x(t) is differentiable at all t except t = t₀
- The generalized derivative of *x*(*t*) is defined to be

$$\int \frac{dx(t)}{dt} + \left[x(t_0^+) - x(t_0^-)\right] \delta(t - t_0)$$

ordinary derivative of x(t) at all t except $t = t_0$

Example: Generalized Derivative of the Step Function

• Define x(t) = Ku(t)

- The ordinary derivative of x(t) is 0 at all points except t = 0
- Therefore, the generalized derivative of x(t) is

$$K\left[u(0^{+})-u(0^{-})\right]\delta(t-0)=K\delta(t)$$

Another Example of Generalized Derivative

• Consider the function defined as

$$x(t) = \begin{cases} 2t+1, & 0 \le t < 1\\ 1, & 1 \le t < 2\\ -t+3, & 2 \le t \le 3\\ 0, & all \ other \ t \end{cases}$$

Kirchhoff's current law: $i_C(t) + i_R(t) = i(t)$

RC Circuit: Cont'd

• The *v*-*i* law for the capacitor is

$$i_{c}(t) = C \frac{dv_{c}(t)}{dt} = C \frac{dy(t)}{dt}$$

• Whereas for the resistor it is

$$i_R(t) = \frac{1}{R} v_C(t) = \frac{1}{R} y(t)$$

35

RC Circuit: Cont'd

• Constant-coefficient linear differential equation describing the I/O relationship if the circuit

$$C\frac{dy(t)}{dt} + \frac{1}{R}y(t) = i(t) = x(t)$$

Example: The Ideal Predictor

y(t) = x(t+1)

Memoryless Systems and Systems with Memory

- A causal system is memoryless or static if, for any time t₁, the value of the output at time t₁ depends only on the value of the input at time t₁
- A causal system that is not memoryless is said to have memory. A system has memory if the output at time t_1 depends in general on the past values of the input x(t) for some range of values of t up to $t = t_1$

Examples

• Ideal Amplifier/Attenuator

$$y(t) = Kx(t)$$

• RC Circuit

$$y(t) = \frac{1}{C} \int_{0}^{t} e^{-(1/RC)(t-\tau)} x(\tau) d\tau, \quad t \ge 0$$

Basic System Properties: Additive Systems

A system is said to be additive if, for any two inputs x₁(t) and x₂(t), the response to the sum of inputs x₁(t) + x₂(t) is equal to the sum of the responses to the inputs (assuming no initial energy before the application of the inputs)

$$x_1(t) + x_2(t) \longrightarrow \text{system} \longrightarrow y_1(t) + y_2(t)$$

43

Basic System Properties: Homogeneous Systems

 A system is said to be homogeneous if, for any input x(t) and any scalar a, the response to the input ax(t) is equal to a times the response to x(t), assuming no energy before the application of the input

$$ax(t) \longrightarrow \text{system} \longrightarrow ay(t)$$

Examples of Time Varying Systems

• Amplifier with Time-Varying Gain

y(t) = tx(t)

• First-Order System

$$\dot{y}(t) + a(t)y(t) = bx(t)$$

51

Basic System Properties: CT Linear Finite-Dimensional Systems

• If the N-th derivative of a CT system can be written in the form

$$y^{(N)}(t) = -\sum_{i=0}^{N-1} a_i(t) y^{(i)}(t) + \sum_{i=0}^{M} b_i(t) x^{(i)}(t)$$

then the system is both linear and finite dimensional

• To be time-invariant

 $a_i(t) = a_i$ and $b_i(t) = b_i$ $\forall i \text{ and } t \in \mathbb{R}$