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• A signalsignal is a pattern of variation of a pattern of variation of a 
physical quantity, physical quantity, often as a function of time 
(but also space, distance, position, etc).

• These quantities are usually the independent independent 
variablesvariables of the function defining the signal

• A signal encodes informationinformation, which is the 
variation itself

SignalsSignals
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• Signal processing is the discipline concerned 
with extracting, analyzing, and manipulating extracting, analyzing, and manipulating 
the informationthe information carried by signals

• The processing method depends on the type 
of signal and on the nature of the information 
carried by the signal

Signal ProcessingSignal Processing
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• The type of signaltype of signal depends on the nature of 
the independent variables and on the value 
of the function defining the signal

• For example, the independent variables can 
be continuous or discretecontinuous or discrete

• Likewise, the signal can be a continuous or continuous or 
discrete functiondiscrete function of the independent 
variables

Characterization and Classification 
of Signals

Characterization and Classification 
of Signals
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• Moreover, the signal can be either a realreal--
valued functionvalued function or a complexcomplex--valued functionvalued function

• A signal consisting of a single component is 
called a scalar or onescalar or one--dimensional (1dimensional (1--D) D) 
signalsignal

Characterization and Classification 
of Signals – Cont’d

Characterization and Classification 
of Signals – Cont’d
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Examples: CT vs. DT SignalsExamples: CT vs. DT Signals
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• Discrete-time signals are often obtained by 
sampling continuous-time signals

SamplingSampling
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• A systemsystem is any device that can process process 
signalssignals for analysis, synthesis, enhancement, 
format conversion, recording, transmission, 
etc.

• A system is usually mathematically defined 
by the equation(s) relating input to output 
signals (I/O characterizationI/O characterization)

• A system may have single or multiple inputs 
and single or multiple outputs 

SystemsSystems
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Block Diagram Representation 
of Single-Input Single-Output 

(SISO) CT Systems

Block Diagram Representation 
of Single-Input Single-Output 

(SISO) CT Systems
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• Differential equation 

• Convolution model

• Transfer function representation (Fourier 
transform, Laplace transform)

Types of input/output 
representations considered

Types of input/output 
representations considered
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Examples of 1-D, Real-Valued, CT Signals: 
Temporal Evolution of Currents and 

Voltages in Electrical Circuits

Examples of 1-D, Real-Valued, CT Signals: 
Temporal Evolution of Currents and 

Voltages in Electrical Circuits
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Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Some Physical 
Quantities in Mechanical Systems

Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Some Physical 
Quantities in Mechanical Systems
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•• UnitUnit--step functionstep function

•• UnitUnit--ramp functionramp function

Continuous-Time (CT) SignalsContinuous-Time (CT) Signals
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Unit-Ramp and Unit-Step Functions: 
Some Properties

Unit-Ramp and Unit-Step Functions: 
Some Properties
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The Rectangular Pulse FunctionThe Rectangular Pulse Function
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• A.k.a. the delta functiondelta function or Dirac distributionDirac distribution

•• It is defined by:It is defined by:

•• The value          is not defined, in particular The value          is not defined, in particular 

The Unit ImpulseThe Unit Impulse
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The Unit Impulse: 
Graphical Interpretation

The Unit Impulse: 
Graphical Interpretation
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• If            ,             is the impulse with area    ,      
i.e.,       

The Scaled Impulse Kδ(t)The Scaled Impulse Kδ(t)
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Properties of the Delta FunctionProperties of the Delta Function
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• Definition: a signal        is said to be periodic 
with period    , if

• Notice that        is also periodic  with period     

where     is any positive integer

• is called the fundamental periodfundamental period

Periodic SignalsPeriodic Signals
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Example: The SinusoidExample: The Sinusoid
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Time-Shifted SignalsTime-Shifted Signals
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• A continuous-time signal        is said to be 
discontinuous at a point    if                                  
where                  and                 ,     being a 
small positive number

Points of DiscontinuityPoints of Discontinuity
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• A signal        is continuous at the point    if 

• If a signal        is continuous at all points t,           
is said to be a continuous signalcontinuous signal

Continuous SignalsContinuous Signals

( )x t
0 0( ) ( )x t x t+ −=

0t

( )x t
( )x t



25

Example of Continuous Signal: 
The Triangular Pulse Function

Example of Continuous Signal: 
The Triangular Pulse Function
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• A signal         is said to be piecewise 
continuous if it is continuous at all        
except a finite or countably infinite 
collection of points  

Piecewise-Continuous SignalsPiecewise-Continuous Signals
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Example of Piecewise-Continuous 
Signal: The Rectangular Pulse Function

Example of Piecewise-Continuous 
Signal: The Rectangular Pulse Function
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Another Example of Piecewise-
Continuous Signal: 

The Pulse Train Function

Another Example of Piecewise-
Continuous Signal: 

The Pulse Train Function
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• A signal         is said to be differentiabledifferentiable at a 
point    if the quantity

has limit as            independent of whether    
approaches 0 from above             or from 
below

• If the limit exists,         has a derivativederivative at        

Derivative of a Continuous-Time SignalDerivative of a Continuous-Time Signal
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• However, piecewise-continuous signals 
may have a derivative in a generalized sense

• Suppose that        is differentiable at all    
except  

• The generalized derivativegeneralized derivative of         is 
defined to be

Generalized DerivativeGeneralized Derivative
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• Define

• The ordinary derivative of         is 0 at all 
points except

• Therefore, the generalized derivative of        is

Example: Generalized Derivative 
of the Step Function

Example: Generalized Derivative 
of the Step Function
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• Consider the function defined as

Another Example 
of Generalized Derivative 

Another Example 
of Generalized Derivative 
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Another Example 
of Generalized Derivative: Cont’d 

Another Example 
of Generalized Derivative: Cont’d 
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Example of CT System: 
An RC Circuit

Example of CT System: 
An RC Circuit
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• The v-i law for the capacitor is

• Whereas for the resistor it is

RC Circuit: Cont’dRC Circuit: Cont’d
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•• ConstantConstant--coefficient linear differential coefficient linear differential 
equationequation describing the I/O relationship if 
the circuit

RC Circuit: Cont’dRC Circuit: Cont’d
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• Step response when R=C=1

RC Circuit: Cont’dRC Circuit: Cont’d
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• A system is said to be causalcausal if, for any time 
t1, the output response at time t1 resulting 
from input x(t) does not depend on values of 
the input for t > t1.

• A system is said to be noncausalnoncausal if it is not 
causal

Basic System Properties: CausalityBasic System Properties: Causality
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Example: The Ideal PredictorExample: The Ideal Predictor
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Example: The Ideal DelayExample: The Ideal Delay
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• A causal system is memorylessmemoryless or staticstatic if, 
for any time t1, the value of the output at 
time t1 depends only on the value of the input 
at time t1

• A causal system that is not memoryless is 
said to have memorymemory. A system has memory 
if the output at time t1 depends in general on 
the past values of the input x(t) for some 
range of values of t up to t = t1

Memoryless Systems 
and Systems with Memory

Memoryless Systems 
and Systems with Memory
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•• Ideal Amplifier/AttenuatorIdeal Amplifier/Attenuator

•• RC CircuitRC Circuit
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• A system is said to be additive additive if, for any 
two inputs x1(t) and x2(t), the response to the 
sum of inputs x1(t) + x 2(t)  is equal to the 
sum of the responses to the inputs 
(assuming no initial energy before the 
application of the inputs)

Basic System Properties: 
Additive Systems

Basic System Properties: 
Additive Systems

1 2( ) ( )y t y t+1 2( ) ( )x t x t+ system
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• A system is said to be homogeneoushomogeneous if, for 
any input x(t) and any scalar a, the response 
to the input ax(t) is equal to a times the 
response to x(t), assuming no energy before 
the application of the input

Basic System Properties: 
Homogeneous Systems

Basic System Properties: 
Homogeneous Systems

( )ax t ( )ay tsystem
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• A system is said to be linear linear if it is both 
additive and homogeneous

• A system that is not linear is said to be 
nonlinearnonlinear

Basic System Properties: LinearityBasic System Properties: Linearity

system1 2( ) ( )ax t bx t+ 1 2( ) ( )ay t by t+
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Example of Nonlinear System: 
Circuit with a Diode

Example of Nonlinear System: 
Circuit with a Diode
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Example of Nonlinear System: 
Square-Law Device

Example of Nonlinear System: 
Square-Law Device
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Example of Linear System: 
The Ideal Amplifier

Example of Linear System: 
The Ideal Amplifier
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Example of Nonlinear System: 
A Real Amplifier

Example of Nonlinear System: 
A Real Amplifier
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• A system is said to be time invarianttime invariant if, for any 
input x(t) and any time t1, the response to the 
shifted input x(t – t1)  is equal to y(t – t1) where 
y(t) is the response to x(t) with zero initial 
energy

• A system that is not time invariant is said to be 
time varyingtime varying or time varianttime variant

Basic System Properties:
Time Invariance

Basic System Properties:
Time Invariance

system
1( )x t t− 1( )y t t−
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•• Amplifier with TimeAmplifier with Time--Varying GainVarying Gain

•• FirstFirst--Order SystemOrder System

Examples of Time Varying SystemsExamples of Time Varying Systems
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Basic System Properties: 
CT Linear Finite-Dimensional 

Systems

Basic System Properties: 
CT Linear Finite-Dimensional 

Systems
• If the N-th derivative of a CT system can be 

written in the form

then the system is both linear and finite 
dimensional

• To be time-invariant
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