Chapter 1
Fundamental Concepts



Signals

« A signal iIs a pattern of variation of a
physical quantity, often as a function of time
(but also space, distance, position, etc).

« These quantities are usually the independent
variables of the function defining the signal

« A signal encodes information, which is the
variation itself



Signhal Processing

 Signal processing is the discipline concerned
with extracting, analyzing, and manipulating
the information carried by signals

* The processing method depends on the type
of signal and on the nature of the information
carried by the signal



Characterization and Classification
of Signals

e The type of signal depends on the nature of
the independent variables and on the value
of the function defining the signal

* For example, the independent variables can
be continuous or discrete

 Likewise, the signal can be a continuous or
discrete function of the independent
variables



Characterization and Classification
of Sighals — Cont’d

* Moreover, the signal can be either a real-
valued function or a complex-valued function

« A signal consisting of a single component is
called a scalar or one-dimensional (1-D)
signal
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Examples: CT vs. DT Signals
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Figure 1.13 MATLAB plot of the signal x(¢) = ¢ *"sin 1.

Figure 1.17 Sampled continuous-time signal.
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Sampling

 Discrete-time signals are often obtained by
sampling continuous-time signals

X(t) — T - X[n] = X(t)]_;r =X(nT)

_‘H] 1y

11“1 TPV s =g




Systems

o A system IS any device that can process
signals for analysis, synthesis, enhancement,
format conversion, recording, transmission,
etc.

« A system is usually mathematically defined
by the equation(s) relating input to output
signals (1/O characterization)

o A system may have single or multiple inputs
and single or multiple outputs



Block Diagram Representation
of Single-Input Single-Output
(S1S0O) CT Systems

Input signal output signal
x(t) T - y(1) =T {x(1)]
teR teR




Types of input/output
representations considered

 Differential equation
e Convolution model

 Transfer function representation (Fourier
transform, Laplace transform)
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Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Currents and
Voltages in Electrical Circuits
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Figure 1.24 RC circuit.
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Examples of 1-D, Real-Valued, CT Signals:
Temporal Evolution of Some Physical
Quantities in Mechanical Systems
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Figure 1.28 Schematic diagram of a

Tl mass—spring—damper system.
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Continuous-Time (CT) Signals

(

. _ 1, t>0
e Unit-step function u(t) =+

0, t<0

. . t, t>0
 Unit-ramp function r(t) =+«

0, t<0
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Figure 1.3 (a) Unit-step and (b) unit-ramp functions.



Unit-Ramp and Unit-Step Functions:
Some Properties

(X(t), t>0

0, t<O

\

X(t)u(t) =+

r®) =] u(2)d2

dr(t)
dt

(with exception of T =0)

u(t) =
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The Rectangular Pulse Function

rot - p(t)=ult+7z/2)—u(t—1z/2)

—1/2 0 7/2 Figure 1.9 Rectangular pulse function.
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he Unit Impulse

e A.k.a. the delta function or Dirac distribution
e |tis defined by:

o(t)=0, t=0
[6()da=1 ve>0

» The value 6(0) is not defined, in particular
0(0) # o
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The Unit Impulse:
Graphical Interpretation

(1)
A
o(t)=lm
()= 1M Pagy
-t
=il / \ ik . : _
2A 24 Figure 1.4 Pulse interpretation of 6(¢).

A 1s a very large number
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The Scaled Impulse Ka(t)

e IfKeR, Ko(t) is the impulse with area K,

l.e.,
Ko(t)=0, t=0

j KS(A)dA=K, Ve>0

KS(f) &

A
(K)

0 ~!  Figure 1.5 Graphical representation of
the impulse Kdé(t).



Properties of the Delta Function

t
1) u(t)= [ 5(2)dA

V1 exceptt =0

2) t0_’+‘€X(t)5(’[ —t,)dt=x(t,) Ve&>0

t,—¢

(sifting property)
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Periodic Signals

 Definition: a signal X(t) is said to be periodic
with period T, If

X(t+T)=x(t) VteR

 Notice that X(t) is also periodic with period
gT where g Is any positive integer
T is called the fundamental period
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Example: The Sinusoid
X(t) = Acos(wt+80), teR

Acos(wt + 0) |

wa
i
[
|
_m+ 20 I 7 —20
2 2
w S ! i w i
i (s N
_3m + 20 = 3w — 20
2w 2w
S ALAIE

Figure 1.6 Sinusoid A cos(wt + 6) with —7/2 < 6 < 0.
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Time-Shifted Signals

ut—2) &

u(t-+2) 4

2 3

2 Y
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Figure 1.7 Two-second shifts of u(¢): (a) right shift; (b) left shift.

I
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Points of Discontinuity

* A continuous-time signal X(t) is said to be
discontinuous at a point t, if X(t,) = X(t;)
wheret; =t +cand t, =t —¢&, ¢ being a
small positive number

X(t) |
/\
N




Continuous Signals

» Asignal x(t) is continuous at the point t, if
X(t;) = X(t;)

« If asignal x(t) is continuous at all points t,
X(t) is said to be a continuous signal
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Example of Continuous Signal:
The Triangular Pulse Function

21 1 —2t

1 1
==T/2 0 /2 .
Figure 1.8 Triangular pulse function.
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Plecewise-Continuous Signals

« Asignal X(t) is said to be piecewise
continuous if it is continuous at all t
except a finite or countably Infinite
collection of points t,1=1,2,3,...
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Example of Piecewise-Continuous
Signhal: The Rectangular Pulse Function

pt) 4

p.(t)=u(t+7/2)-u(t—17/2)

=)

e ¥

0 /2 Figure 1.9 Rectangular pulse function.
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Another Example of Piecewise-
Continuous Signal:
The Pulse Train Function

(repeats) i (repeats)
*o L N N ]
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Figure 1.10 Signal that is discontinuous att = 0, =1, *2, . . ..
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Derivative of a Continuous-Time Signal

« Asignal X(t) is said to be differentiable at a
point t, If the quantity
X(to - h) - X(to)
h

has limit as h — Qindependent of whether h

approaches 0 from above (h > 0) or from
below (h < 0)

« If the limit exists, X(t) has a derivative at t,

dx(t) o X(E +h) = x(t,)
dt t= h—0 h 29




Generalized Derivative

* However, piecewise-continuous signals
may have a derivative in a generalized sense

 Suppose that X(t) is differentiable at allt
except t =1,

* The generalized derivative of x(t) is
defined to be

dx(t) LX) - x() ]85 -t,)
/

ordinary derivative of x(t) at allt exceptt =t, 30




Example: Generalized Derivative
of the Step Function
Kuw 4

» Define x(t) = Ku(t)

K

« The ordinary derivative of x(t) is 0 at all
points except t =0
 Therefore, the generalized derivative of x(t) is
K| u(0")-u(0") |§(t—0) =Ks(t)
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Another Example
of Generalized Derivative

e Consider the function defined as

X(t) =<

(2t+1 0<t<1
1 1<t<?2
—t+3, 2<t<3

0, allothert

(8]
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Figure 1.11 Signal in Example 1.3.
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Another Example
of Generalized Derivative: Cont’d

(D

Figure 1.12 Generalized derivative of
the signal in Example 1.3.
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Example of CT System:
An RC Circuit

ie(t) —\

_|.
x(1) = i(?) R l iR(?) C Z=vc(t) = y(©)

Figure 1.24 RC circuit.

Kirchhoff’s current law: 1 (t) +1_(t) =1(t)
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RC Circuit: Cont’d

e The v-1 law for the capacitor Is

(¢ de® _ i)
dt dt
e \Whereas for the resistor It is

(0= 0 == YO
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RC Circuit: Cont’d

e Constant-coefficient linear differential
equation describing the 1/O relationship If
the circuit

c y(®)
it +RY(t)—l(t) X(t)
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RC Circuit: Cont’d

o Step response when R=C=1

y(1)

018 5=

1 ! i >(  Figure 1.25 Step response of RC circuit
0 1 2 3 whenR=C=1.
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Basic System Properties: Causality

o A system Is said to be causal If, for any time
t,, the output response at time t, resulting

from input x(t) does not depend on values of
the input for t > t,.

o A system Is said to be noncausal If it Is not
causal
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x(t) &

Example: The ldeal Predictor

y(t) = x(t+1)

y(1) 4

I = 0r
(a) (b)

Figure 1.32 (a) Input and (b) output pulse of system in Example 1.5.
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Example: The ldeal Delay
y(t) =x(t-1)

x(1) A y(t) A

(a) (b)

Figure 1.33 (a) Input and (b) output pulse of system in Example 1.6.
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Memoryless Systems
and Systems with Memory

A causal system Is memoryless or static If,
for any time t,, the value of the output at
time t, depends only on the value of the input
at time t,

A causal system that is not memoryless is
said to have memory. A system has memory
If the output at time t, depends in general on
the past values of the input x(t) for some
range of valuesof tuptot=t,
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Examples

 |deal Amplifier/Attenuator
y(t) = Kx(t)

e RC Circuit

y(t) = % [e e x()dr, t20
0
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Basic System Properties:
Additive Systems

o A system is said to be additive If, for any
two Inputs x, (t) and x,(t), the response to the
sum of Inputs x,(t) + x,(t) Is equal to the
sum of the responses to the inputs
(assuming no Initial energy before the
application of the inputs)

X, (1) + x, (1) | system IAOER'AD
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Basic System Properties:
Homogeneous Systems

o A system Is said to be homogeneous If, for
any Input x(t) and any scalar a, the response
to the Input ax(t) is equal to a times the
response to x(t), assuming no energy before
the application of the input

ax(t) | system - ay(t)
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Basic System Properties: Linearity

o A system Is said to be linear If it is both

additive and homogeneous

ax, () +bx, (t)

| system

- ay, (t) T byz (t)

« A system that Is not linear is said to be

nonlinear
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Example of Nonlinear System:
Circuit with a Diode

R\

AV —p——— "

+ +

Input

voltage 20 R, <& y(1)

Figure 1.34 Resistive circuit with an 1deal diode.
[ R

=—x(t), whenx(t)>0
y(t) =1 R +R,

0, when x(t) <0
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Example of Nonlinear System:
Square-Law Device

y(t) = x(t)

Input = x(¢) .é) y(1) = x(1) =i

Signal multiplier

Figure 1.35 Realization of y(r) = x*(¢).
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Example of Linear System:
The lIdeal Amplifier

y(t) = KX(t)

y()

Slope = K

- )C(f)

Figure 1.36 Output versus input in an
ideal amplifier.
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Example of Nonlinear System:

A Real Amplifier

(@) 4

Aol ik Starts smoking

|
|
|
|
T T - ).’(I)
—M 0 M
I
|
|

——+ —kM

Figure 1.37 Output versus input in a nonideal amplifier.
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Basic System Properties:

Time Invariance

o A system Is said to be time invariant if, for any
Input x(t) and any time t,, the response to the
shifted input x(t —t,) Is equal to y(t —t,) where
y(t) Is the response to x(t) with zero initial

energy

X(t—t)

system

" y(t - tl)

e A system that Is not time invariant Is said to be

time varying or time variant
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Examples of Time Varying Systems

o Amplifier with Time-Varying Gain

y(t) =tx(t)
e First-Order System

y(t) +a(t)y(t) = bx(t)
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Basic System Properties:
CT Linear Finite-Dimensional
Systems

 |f the N-th derivative of a CT system can be
written in the form

YU (0= -3 a0y O+ Db OX

then the system is both linear and finite
dimensional

 To be time-invariant
a(t)=a and b(t)=b ViandteR
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