Fourier series and an RC circuit

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

Circuit

Resistor R in series with capacitor C, input x(t) is voltage across combination, output y(t) is voltage across capacitor.

Resistor:

$$v_r(t) = Ri(t)$$

Capacitor:

$$i(t) = C \frac{d}{dt} v_c(t)$$

and

$$v(t) = v_c(t) + v_r(t)$$

Eliminating i(t) and letting v(t) = x(t) and $y(t) = v_c(t)$ gives DE

$$x(t) = RC\frac{dy(t)}{dt} + y(t)$$

System interpretation

The system is linear (linear constant coefficient DE), and therefore has an impulse response h(t). (Don't yet know how to find it.) The input/output relationship can therefore be written in the form

$$y(t) = h(t) * x(t)$$

Input complex exponential $x(t) = c_1 e^{j\omega_0 t}$:

$$y(t) = \int_{-\infty}^{\infty} h(\lambda) x(t-\lambda) d\lambda = \int_{-\infty}^{\infty} h(\lambda) c_1 e^{j\omega_0(t-\lambda)} d\lambda$$
$$= \left(c_1 \int_{-\infty}^{\infty} h(\lambda) e^{-j\omega_0 \lambda} d\lambda \right) e^{j\omega_0 t} = d_1 e^{j\omega_0 t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Finding output coefficients

Return to DE:

$$x(t) = RC\frac{dy(t)}{dt} + y(t)$$

Consider input $x(t) = c_1 e^{j\omega_0 t}$. Know the output is of the form $y(t) = d_1 e^{j\omega_0 t}$. Coefficient c_1 is known: want to find d_1 .

Substitute into DE and solve:

$$c_1 e^{j\omega_0 t} = RC \frac{d}{dt} \left[d_1 e^{j\omega_0 t} \right] + d_1 e^{j\omega_0 t}$$
$$\implies c_1 e^{j\omega_0 t} = j\omega_0 RC d_1 e^{j\omega_0 t} + d_1 e^{j\omega_0 t}$$
$$\implies c_1 = (j\omega_0 RC + 1) d_1$$

So

$$d_1 = \frac{1}{1 + j\omega_0 RC} c_1$$

Multiple component signal

Input complex exponential $x(t) = c_1 e^{j\omega_0 t} + c_2 e^{j2\omega_0 t}$:

$$\begin{aligned} y(t) &= \int_{-\infty}^{\infty} h(\lambda) x(t-\lambda) d\lambda \\ &= \int_{-\infty}^{\infty} h(\lambda) c_1 e^{j\omega_0(t-\lambda)} d\lambda + \int_{-\infty}^{\infty} h(\lambda) c_2 e^{j2\omega_0(t-\lambda)} d\lambda \\ &= \left(c_1 \int_{-\infty}^{\infty} h(\lambda) e^{-j\omega_0\lambda} d\lambda \right) e^{j\omega_0 t} \\ &+ \left(c_2 \int_{-\infty}^{\infty} h(\lambda) e^{-j2\omega_0\lambda} d\lambda \right) e^{j2\omega_0 t} \\ &= d_1 e^{j\omega_0 t} + d_2 e^{j2\omega_0 t} \end{aligned}$$

Complex exponentials in, complex exponentials out at same frequencies. Only need to find the coefficients d_1 and d_2 given c_1 and c_2

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Coefficients for multi-component signal

You can (and should) do same for two-component signal. Let

$$x(t)=c_1e^{j\omega_0t}+c_2e^{j2\omega_0t},$$

y(t) must be of form

$$y(t)=d_1e^{j\omega_0t}+d_2e^{j2\omega_0t},$$

substitute into the DE and solve (algebraically!) for d_1 and d_2 . In general, if input and output are

$$x(t)=\sum_{k=-\infty}^{\infty}c_ke^{jk\omega_0t}\qquad ext{and}\qquad y(t)=\sum_{k=-\infty}^{\infty}d_ke^{jk\omega_0t},$$

then

$$d_k = \frac{1}{1 + jk\omega_0 RC} c_k$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 日 ・

In general

If there is a LCCDE linking inputs and outputs, the FS coefficients for input and output will be found to obey

$$d_k = H(k\omega_0)c_k$$

where for the RC circuit we have

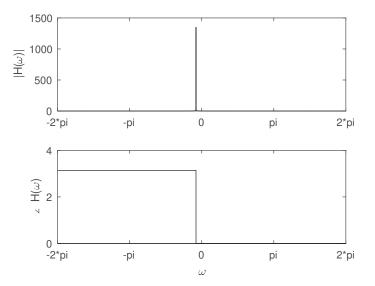
$$H(\omega) = \frac{1}{1 + j\omega RC}$$

To work out how a signal is modified by the circuit, only need to know the values of $H(\omega)$ at the frequencies present

 $H(\omega)$ is just a complex number for each value of frequency ω . The plot of the magnitude and phase of H as a function of ω is called the *Bode plot* of the system.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Bode plot for RC circuit



◆ロト ◆母 ト ◆臣 ト ◆臣 - の々で

Observe

Time domain description of signals x(t) and $y(t) \rightarrow differential equation linking input and output of system. Can solve for <math>y(t)$ given x(t), but no intuition.

Instead, think about signals as (weighted linear) combinations of complex exponentials (or combinations of frequencies)

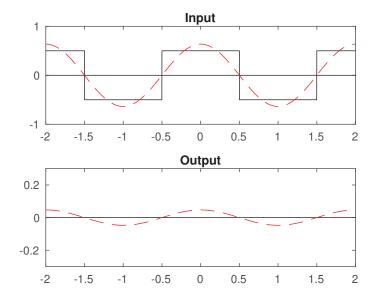
$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$
 and $y(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk\omega_0 t}$

 \longrightarrow algebraic equation linking input and output:

$$d_k = H(k\omega_0)c_k$$

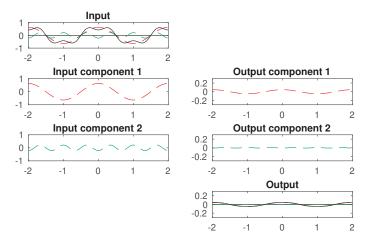
Much easier to understand.

One component approximation to square wave



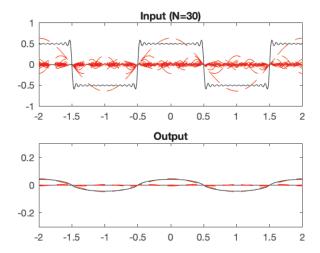
◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

Two component approximation to square wave



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Many component approximation to square wave



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで