
4 Fourier series

Any LTI system is completely determined by its impulse response h(t). This is the output of the
system when the input is a Dirac delta function at the origin. In linear systems theory we are
usually more interested in how a system responds to signals at different frequencies. When we talk
about a signal of frequency ω, we mean the signal ejωt. This is the only signal that will contain
both a t variable and a ω variable in its specification — it defines the relationship between the
time and frequency domains. Note that j =

√
−1, so the signal is complex valued.

The pertinent question is this: what happens to a pure frequency when it passes through a
particular linear system? Assuming the input is x(t) = ejωt, and assuming that the frequency ω
is fixed at some value of interest, the output is simple to derive from convolution:

y(t) =

∫ ∞

−∞

h(τ)x(t − τ)dτ =

∫ ∞

−∞

h(τ)ejω(t−τ)dτ =

∫ ∞

−∞

h(τ)e−jωτ ejωtdτ

=

(
∫ ∞

−∞

h(τ)e−jωτdτ

)

ejωt = H(ω)ejωt.

Since ω is fixed, H(ω) is a number, possibly complex valued, that depends on the impulse response
h(t). We see that the system therefore has the following input-output pair:

ejωt −→ H(ω)ejωt.

Looking at it differently, if the input-output relation of the system is written as y(t) = T {x(t)},
then the complex exponential input satisfies the property

T
{

ejωt
}

= H(ω)ejωt.

This is an eigen relation: the transformation T applied to the signal ejωt results in the same signal
ejωt, but multiplied by a constant H(ω) that depends on the frequency ω and is determined by
the system. Complex exponential functions (or pure frequencies) are characteristic functions for
LTI systems: they propagate through without change, except for an overall (complex) scaling. For
any given system the scaling depends on the frequency of the complex exponential. Alternatively,
LTI systems cannot create frequencies at the output that were not already present at the input:
they can only modify them by a complex-valued scaling.

The function

H(ω) =

∫ ∞

−∞

h(τ)e−jωτdτ

is called the frequency response of the system. For any value of ω it tells us how the
system responds to an input frequency ejωt: the output will be H(ω)ejωt. If you know
the impulse response h(t) of a system, then you also know its frequency response H(ω)
from the formula given. The quantity H(ω) is also called the transfer function of the
system.

The Fourier series decomposition allows us to express any periodic signal x(t) with period T as a
linear combination (or weighted sum) of a countable set of frequencies:

x(t) =
∞
∑

k=−∞

cke
jkω0t

for some coefficients ck. Putting this signal through an LTI system is simple: the output is

y(t) = T {x(t)} = T

{

∞
∑

k=−∞

cke
jkω0t

}

=

∞
∑

k=−∞

ckT
{

ejkω0t
}

=
∞
∑

k=−∞

ckH(kω0)e
jkω0t =

∞
∑

k=−∞

dke
jkω0t,
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with dk = ckH(kω0). The transformation of coefficients dk = ckH(kω0) tells us exactly how the
different frequency components in the signal are affected by the system. Thus if we can get used
to thinking about signals in the frequency domain, we have a very simple way of interpreting the
action of LTI systems on signals.

Complex exponential are the eigenfunctions of LTI systems: they are the only functions that
propagate through linear systems without change except for multiplication by a complex scale
factor. Coupled with the fact that any periodic signal can be expressed as a weighted sum of
a set of complex exponentials, this gives a very intuitive description of a system: inputs are
linear combinations of complex exponentials, and outputs are linear combinations of responses to
complex exponentials. The weights in the linear combinations at the output are related to the
weights at the input by multiplication with the system transfer function H(ω).

Most signals in the world are real. It may seem strange to express a real-valued signal as a linear
combination of complex signals. Nonetheless, the truth of the matter is that it makes things
simpler, both in terms of understanding and in terms of algebra. Complex exponentials are the
natural building blocks of signals, even though we’re usually only interested linear combinations
of complex exponentials that end up being real valued.

4.1 Complex numbers: a review

Letting j =
√
−1 we can write a complex number in two ways:

• Rectangular form:

s = a+ jb, a = Re(s) (real part)

b = Im(s) (imaginary part)

• Polar form:

s = ρejθ, ρ = |s| (nonnegative magnitude)

θ = ∠s (phase).

Euler’s formula states that
ejθ = cos(θ) + j sin(θ)

and links these two representations algebraically. This can be used directly to convert a complex
number from polar to rectangular form:

s = ρejθ = ρ(cos(θ) + j sin(θ)) = ρ cos(θ) + jρ sin(θ) = a+ jb,

with a = ρ cos(θ) and b = ρ sin(θ). To covert from rectangular to polar form we note that

a2 + b2 = ρ2 cos2(θ) + ρ2 sin2(θ) = ρ2(cos2(θ) + sin2(θ)) = ρ2

and

b/a =
sin(θ)

cos(θ)
= tan(θ),

so the magnitude and phase components of the complex number are given by

ρ =
√

a2 + b2

θ =

{

arctan(b/a) a ≥ 0

180◦ + arctan−1(b/a) a < 0.

These representations are linked very naturally via the correspondence of complex numbers with
the 2D plane, also called the Argand diagram:
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Doing algebra on complex numbers is easy as long as they are expressed in the appropriate form.
Defining the two complex numbers s1 and s2 according to

s1 = a1 + jb1 = ρ1e
jθ1 and s2 = a2 + jb2 = ρ2e

jθ2 ,

the following operations are simple:

• Addition: s1 + s2 = (a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2)

• Subtraction: s1 − s2 = (a1 + jb1)− (a2 + jb2) = (a1 − a2) + j(b1 − b2)

• Multiplication: s1s2 = (ρ1e
jθ1)(ρ2e

jθ2) = ρ1ρ2e
j(θ1+θ2)

• Division: s1/s2 = (ρ1e
jθ1)(ρ2e

jθ2)−1 = (ρ1/ρ2)e
j(θ1−θ2).

To add or subtract two complex numbers, express them in rectangular form and the operation
follows. To multiply or divide complex numbers, use polar forms. Note that as far as algebra is
concerned you can think of j as a normal variable — it just happens to have a value of

√
−1.

Consider a plot of the function x(t) = sin(2πt), expressed in polar form. The signal x(t) is shown
below, along with |x(t)| and ∠x(t):
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Note that, even though the signal is real, the phase is nonzero. This becomes obvious if you plot
the number −1 on the Argand diagram:
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Im
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Evidently when expressed in polar form we have −1 = 1ejπ, which has a magnitude of 1 and
a phase of π. The same is true for any negative real number: it has a phase of π, because the
magnitude must be positive.

However, note also that −1 = 1e−jπ — we’re just measuring the angle in the negative direction
instead of the positive direction. Phase is not determined up to addition by a multiple of 2π: a
phase of 0.3 radians is equivalent to a phase of 0.3+ 2π radians or 0.3+ (2)2π radians or 0.3− 2π
radians — we’re just going around the unit circle by multiples of a full circle, but the point in
the Argand diagram (and hence the corresponding complex number) is unchanged. Thus, in the
plot of ∠x(t) we could have given the portions of the signal indicated with the value π the value
π + k(2π) for any integer k. Positive real numbers have phases of 0,±2π,±4π, . . . ; negative real
numbers have phases of ±π,±3π, . . ..

4.2 Fourier series formulation

Suppose we are given a signal xs(t), which can be a real or complex valued function of a (real)
time variable t. Furthermore, suppose that the signal is periodic with period T : for all t we have
xs(t) = xs(t+ T ).

We define the (parametric) signal x(t) to be the weighted sum of an infinite set of complex
exponentials

x(t) =

∞
∑

k=−∞

ake
j(2πk/T )t,

for some given set of coefficient weights {ak}∞k=−∞ = {. . . , a−1, a0, a1, . . .}. Note that we allow
these coefficients to be complex numbers, and in general the function x(t) can be complex valued.
We can describe the relation above by saying that x(t) can be written as a linear combination or
weighted sum of complex exponential signals ej(2πk/T )t. The weights of each complex exponential
are the values ak in the summation.

We will not prove it in this course, but if xs(t) is sufficiently well behaved (like all real-world
signals are), then we can always find a set of coefficients ak for k ∈ Z such that x(t) is almost

exactly1 equal to xs(t).

The periodic signal x(t) can be completely described by the set of values that it takes for 0 ≤ t < T .
Formally, to know x(t) we just need to know all values of the (infinite) set {x(t)|t ∈ R, 0 ≤ t < T }
(the set of values of x(t) such that t is real and 0 ≤ t < T ). From the previous assertion x(t) can
alternatively be described by the set of coefficients ak for k ∈ Z, or the elements of the (infinite)

1Almost exactly in this context means that for any ǫ > 0 we can find a set of coefficients ak such that

∫
T

0

|x(t) − xs(t)|
2
dt < ǫ.

This means that the difference in the energy of the two signals is arbitrarily small, but does not necessarily mean
that x(t) = xs(t) for all t. (The difference between these two statements is quite subtle, and unimportant for most
practical purposes.)
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set {ak|k ∈ Z} (the set of values of ak such that k is any integer). For our purposes these two
descriptions are exactly equivalent: if ak for k ∈ Z are specified then x(t) is completely determined,
and any x(t) corresponds to a set of coefficients ak that completely describes it.

The important (basis) functions in the Fourier series representation are the complex exponentials
with frequencies ωk = 2πk

T , for integer k (positive or negative). There are an infinite number of
these complex exponential functions:

. . . , e−j 4π
T

t, e−j 2π
T

t, ej0t, ej
2π
T

t, ej
4π
T

t, . . . ,

corresponding to frequencies . . . ,− 4π
T ,− 2π

T , 0, 2πT , 4π
T , . . .. Each of these functions can be regarded

as a complex-valued signal. In the Fourier series representation each of these complex exponentials
is assigned a weight, and the sum of all of the weighted complex exponentials yields the desired
signal.

People (especially engineers) will often talk about the ”amount” of a frequency present in a
signal: by this they mean some quantity related directly to the coefficient weighting the complex
exponential at that frequency. The fact that the Fourier series representation for a periodic
signal with period T exists leads to the interesting observation that such a signal only contains
frequencies at integer multiples of ω0 = 2π

T . This is the fundamental frequency of the signal,
expressed in radians per second.

The Fourier series representation is constructed as the sum of an infinite set of products of the
form aejωt, where a is generally complex. It is really worth understanding how multiplication by
a affects the complex exponential ejωt. First of all let’s think of a specific complex exponential
signal x(t) = ejω0t at some frequency ω0. Note that x(t) = ejω0t = 1ejω0t is a complex-valued
function, expressed in polar form. Thus the magnitude is |x(t)| = 1, a constant function, and the
phase is ∠x(t) = ω0t.

Now consider the signal y(t) = ax(t), where a is a constant. The right hand side involves multi-
plication of complex quantities, so we should write a in polar form: a = ρejφ. Then

y(t) = ax(t) = ρejφejω0t = ρej(ω0t+φ)

which is also a complex valued function in polar form: |y(t)| = ρ and ∠y(t) = ω0t + φ. Com-
paring the representations we see that multiplication by a changes the magnitude of the complex
exponential by |a|, and adds an overall phase of ∠a.

To really see the effect, we can note that y(t) can be written in terms of x(t) as

y(t) = ρej(ω0t+φ) = ρe
j
(

ω0

(

t+ φ

ω0

))

= ρx

(

t+
φ

ω0

)

.

(This is only true if x(t) = ejω0t.) Multiplication by a has caused a change in the overall scale by
|a|, and has time-shifted the complex exponential by some amount proportional to ∠a. In general
multiplication of a complex exponential by a complex constant causes a change in its magnitude
and a change in its position along the time axis.

[Exercise: do one of these explicitly]

In summary, and modifying notation slightly, the Fourier series representation claims the following:

Any periodic signal x(t), for which x(t) = x(t+T ) for all t, can be expressed in the form

x(t) =
∞
∑

k=−∞

ake
jkω0t,

where ω0 = 2π
T is the fundamental frequency. This is the Fourier series synthesis equa-

tion: it tells us how to reconstruct (or synthesise) the signal x(t) from the coefficient
values ak.
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[Discuss harmonics here]

The only question that remains is this: ”How do we find the coefficients ak for a given signal

x(t)?”

4.3 Finding coefficient values

The complex exponentials in the Fourier expansion for x(t) have an important property: they are
all orthogonal to one another with respect to a particular scalar product, namely integration over
one period. Specifically, consider the integral

∫ T

0

ej(
2π
T )kte−j( 2π

T )ltdt =

∫ T

0

ej(
2π
T )(k−l)tdt.

When k = l this integral is simply
∫ T

0
e0dt =

∫ T

0
dt = T . When k 6= l we have

∫ T

0

ej(
2π
T )(k−l)tdt =

1

j2π(k − l)/T
(ej2π(k−l) − 1) = 0,

since ej2πm = (ej2π)m = 1m = 1.

Solve the integral and convince yourself that this is true.Exercise:

These two results can be summarised into the single expression
∫ T

0

ej(
2π
T )kte−j( 2π

T )ltdt = Tδkl,

where δkl is called the Kronecker delta: the subscripts k and l are integer, and

δkl =

{

1 k = l

0 k 6= l.

This result can be used to find the coefficients or weights in the Fourier series expansion. Multi-
plying x(t) by e−j(2πk/T )t (for some fixed k) and integrating over one period gives

∫ T

0

x(t)e−j( 2π
T )ktdt =

∫ T

0

[

∞
∑

m=−∞

amej(
2π
T )mt

]

e−j( 2π
T )ktdt

=

∞
∑

m=−∞

am

∫ T

0

ej(
2π
T )mte−j( 2π

T )ktdt =

∞
∑

m=−∞

amδmkT = akT.

In the above we used the dummy variable m in the Fourier series expansion of x(t). Thus for each
integer k we have the Fourier series analysis equation

ak =
1

T

∫ T

0

x(t)e−j( 2π
T )ktdt.

Given a signal x(t) in the time domain, this expression can be used to find the coefficients or
weights associated with each frequency component in the Fourier series representation — or in
other words, how to analyse the signal to find its frequency components.

In practice, everything in this section remains true if the integration domain is changed from [0, T ]
to [b, b + T ] for any value a: it is simple to show that the complex exponentials are orthogonal
as long as the integration is over any complete period. This modification leads to the analysis
equation

ak =
1

T

∫ b+T

b

x(t)e−j( 2π
T )ktdt,

where b can be any number. It is often slightly simpler to use this more general form for the
analysis stage.
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4.4 Example: rectangular pulse train

Suppose we are given the signal x(t) below, and want to find the Fourier series representation:
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The signal is periodic. By inspection the fundamental period is T = 8, so the fundamental
frequency is ω0 = 2π

8 = π
4 rad/s. The signal can therefore be expressed as a Fourier series

x(t) =
∞
∑

k=−∞

ake
jkω0t =

∞
∑

k=−∞

ake
jk( π

4 )t,

and the coefficients can be found using the analysis equation

ak =
1

T

∫ T/2

−T/2

x(t)e−jkω0tdt =
1

8

∫ 4

−4

x(t)e−jk( π
4 )tdt.

The integration interval [−4, 4] corresponds to one complete period and is convenient for this
problem.

To evaluate ak we note that over the integration limits the signal is only nonzero from −2 to 2,
and within these limits it has a value of exactly one. The coefficients are therefore

ak =
1

8

∫ 2

−2

e−jk( π
4 )tdt.

It usually helps to calculate a0 separately:

a0 =
1

8

∫ 2

−2

e−j0(π
4 )tdt =

1

8

∫ 2

−2

dt = 1/2.

For k 6= 0, the remaining coefficients are given by

ak =
1

8

∫ 2

−2

e−jk( π
4 )tdt =

1

8

[

1

−jk
(

π
4

)e−jk( π
4 )t

]t=2

t=−2

=
1

−jk
(

π
4

)

8

[

e−jk( π
4 )t
]t=2

t=−2

=
1

−jk
(

π
4

)

8

(

e−jk( π
4 )2 − ejk(

π
4 )2
)

=
1

kπ

1

2j

(

ejk(
π
4 )2 − e−jk( π

4 )2
)

=
sin(

(

π
2

)

k)

kπ
.

Each of these coefficient values is real, which is not typically the case — it only happens when the
signal x(t) is real and even.

As always it is useful to plot results in order to visualise them. Consider the terms in the Fourier
series representation

x(t) =

∞
∑

k=−∞

ake
jk( π

4 )t.

Each value of k relates to a frequency ω =
(

π
4

)

k, and there is a corresponding coefficient value
ak. Plotting the value of ak as a function of the related frequency is meaningful. However, since
ak is generally complex, two plots are needed. It is easier to interpret magnitude and phase plots,
so this is what is commonly done. A plot of each coefficient verses the corresponding frequency is
shown below:
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The term for k = 0 corresponds to a frequency ω = 0, and the coefficient value is a0 = 1/2 = 1
2e

j0.
This is indicated by a dot of value 0.5 at frequency zero of the magnitude plot, and a dot of value
0 at the same frequency in the phase plot. Similarly, k = 1 corresponds to a frequency ω = π

4 , for
which the coefficient a1 = 1

π . Again this is real and positive, so the phase is zero. The coefficient
a2 = 0, which has zero magnitude and any phase — we have arbitrarily chosen a zero value for
the phase, and the point is indicated at ω = π

2 . The term for k = 3 is different. It corresponds
to a frequency ω = 3π

4 , but the value is a3 = − 1
3π = 1

3π e
jπ . The nonzero phase is required to

make the value negative, since the magnitude cannot be negative. The other points can be plotted
similarly.

Nonzero points on the negative ω axis of the phase plot have been indicated with values of −π.
Since phase is undetermined up to addition of a multiple of 2π, these points could equally validly
have been drawn going upwards rather than downwards. The reason they are drawn as they are
is this: since

ak =
1

T

∫ T

0

x(t)e−j( 2π
T )ktdt,

it is true that

a−k =
1

T

∫ T

0

x(t)ej(
2π
T )ktdt and a∗−k =

1

T

∫ T

0

x∗(t)e−j( 2π
T )ktdt.

If x(t) is real then x(t) = x∗(t), and we see from above that it must be true that ak = a∗−k.

Writing ak = |ak|ej∠ak and a−k = |a−k|ej∠a
−k , this condition states that for real signals we must

have |ak|ej∠ak = |a−k|e−j∠a
−k . Equality of complex numbers means that their magnitudes and

phases must be equal, so

For real-valued signals it is always the case that

|ak| = |a−k| and ∠ak = −∠a−k.

The magnitude of the Fourier coefficients is an even function of k, and the phase is an
odd function.

For this reason the phase plot in the previous figure was drawn as it was in order to make the
phase plot ”look” more like an odd function.

It seems evident from the magnitude plot of |ak| that the coefficient values are tending to zero as
|k| → ∞. This can indeed be shown to be the case. The nature of the Fourier series representation
can therefore be explored by considering the partial reconstruction

xN (t) =

N
∑

k=−N

ake
jkω0t,
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where the truncated sum means that the reconstruction only uses a subset of the terms in
the Fourier series. We should have x(t) = limN→∞ xN (t), and indeed this is the case in an
appropriately-defined context. Reconstructed signals for different values of N are shown below:
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Small values of N yield a poor reconstruction, but as N increases the reconstructed signal tends
towards the original signal x(t).

In practice one seldom actually reconstructs a signal from its Fourier series coefficients — it is
sufficient just to know that it can be done, and that they completely describe the signal.

4.5 Example: impulse train

One of the most important periodic signals is the impulse train pT (t) shown below:
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T
t
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One possible mathematical expression for this signal is

pT (t) =

∞
∑

k=−∞

δ(t− kT ).

One reason for its importance is that if we convolve any signal with it, then the result will be
periodic with a period of T . For example, if we convolve pT (t) with x(t) below

0
t

x(t)
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then the result y(t) = x(t) ∗ pT (t) will be

0
t

y(t)

Mathematically, this follows from (but is not proved by) the linearity and shift invariance of
convolution:

y(t) = x(t) ∗
(

∞
∑

k=−∞

δ(t− kT )

)

=

∞
∑

k=−∞

(x(t) ∗ δ(t− kT )) =

∞
∑

k=−∞

x(t− kT ),

Show that the signal y(t) as defined above is periodic with a period T .Exercise:

Having a Fourier series representation of the impulse train is useful. Firstly, we note that it is
clearly periodic with a period of T . It therefore has a representation of the form

pT (t) =
∞
∑

k=−∞

cke
jkω0t

for some set of coefficients ck and ω0 = 2π
T . The coefficient values are given by

ck =
1

T

∫ T/2

−T/2

pT (t)e
−jkω0kdt =

1

T

∫ T/2

−T/2

δ(t)e−jkω0tdt =
1

T

∫ T/2

−T/2

δ(t)dt =
1

T
,

where the sifting property was used and the integration interval was chosen to ensure that we
didn’t try to integrate over ”half” of a Dirac delta. Substituting back into the Fourier series
synthesis equation gives the required representation:

pT (t) =

∞
∑

k=−∞

1

T
ejk(

2π
T )t.

4.6 Trigonometric Fourier series

If the signal x(t) is real, then it seems a little strange that the Fourier series representation requires
a linear combination of complex exponential components. Shouldn’t a real signal have a real-valued
decomposition?

The answer is yes: a real-valued signal can be written as a linear combination of real-valued
components at integer multiples of a fundamental frequency. In a sense, though, the complex
decomposition is simpler.

If x(t) is real, then it has been shown that the Fourier coefficients satisfy ak = a∗−k. In general ak
is complex, so we can write it in magnitude-phase form as ak = |ak|ej∠ak . With this definition it
is evident that a−k = a∗k = (|ak|ej∠ak)∗ = |ak|e−j∠ak .

Consider the Fourier series reconstruction formula in this case:

x(t) =

∞
∑

k=−∞

ake
jkω0t = · · ·+ a−2e

−j2ω0t + a−1e
−jω0t + a0 + a1e

jω0t + a2e
j2ω0t + · · ·

Pulling out the k = 0 term this can be written as

x(t) = a0 +

∞
∑

k=1

(ake
jkω0t + a−ke

−jkω0t).
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Noting that cos θ = 1
2 (e

jθ + e−jθ) we see that

x(t) = a0 +

∞
∑

k=1

(|ak|ej∠akejkω0t + |ak|e−j∠ake−jkω0t)

= a0 +

∞
∑

k=1

|ak|(ej(kω0t+∠ak) + e−j(kω0t+j∠ak)

= a0 +

∞
∑

k=1

2|ak|
1

2
(ej(kω0t+∠ak) + e−j(kω0t+j∠ak)

= a0 +

∞
∑

k=1

2|ak| cos(kω0t+ ∠ak).

The component functions in the weighted sum are now real-valued sinusoids. This form of decom-
position is called the trigonometric Fourier series.

One can develop direct equations for calculating the parameters of the trigonometric Fourier series
for real-valued signals. They look similar to those for the complex exponential case, but are slightly
more intricate and harder to remember. The above analysis shows that in the case where a signal is
real, the complex exponential Fourier coefficients have structure that essentially cases cancellation
of all the complex parts of the complex exponential components.

4.7 Parseval’s theorem

A current I through a resistor R dissipates a total power of P = I2R. A voltage V across a
resistor R results in a power dissipation of P = V 2/R. The important thing to note is that the
power dissipated is proportional to the square of either the current or the voltage.

The power of a signal x(t) is defined to be the average of its squared values, or its mean square

value. Formally, this can be calculated as

P = lim
T→∞

1

T

∫ T

0

|x(t)|2dt.

The limiting process is required because the signal can have infinite duration. If x(t) is a current,
this calculation finds the average power dissipated when the signal is passed through a reference
R = 1 ohm resistor. If x(t) is a voltage then it finds the average power dissipated when the voltage
signal is held across a reference R = 1 ohm resistor.

If the signal x(t) is periodic, then we can find its mean-square value without using the limit. The
average power of the signal will just be the average power over one cycle:

P =
1

T

∫ T

0

|x(t)|2dt.

Given the description of a signal x(t) in the time domain, it is therefore quite simple to calculate
the average power.

Parseval’s theorem relates power in the time domain to power in the frequency domain, in terms
of the Fourier series coefficients.
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Assuming that x(t) has a Fourier series representation

x(t) =

∞
∑

k=−∞

ake
jkω0t,

Parseval’s theorem states that

1

T

∫ T

0

|x(t)|2dt =
∞
∑

k=−∞

|ak|2.

The theorem can be partially justified as follows. Consider the kth term in the Fourier series
representation: it is a signal of the form xk(t) = ake

jω0t. In isolation, this term has an average
power of

Pk =
1

T

∫ T

0

|xk(t)|2dt =
1

T

∫ T

0

xk(t)x
∗
k(t)dt =

1

T

∫ T

0

ake
jkω0ta∗ke

−jkω0tdt

=
1

T
aka

∗
k

∫ T

0

ejkω0te−jkω0tdt =
1

T
aka

∗
k

∫ T

0

dt = aka
∗
k = |ak|2,

where we’ve used the fact that |z|2 = zz∗ for any complex number z. Thus the average power in
the kth component of x(t) is |ak|2. Parseval’s theorem states that the total power in the signal
is the sum of the power in each of the individual components in the Fourier series representation.
(Note that this is only possible because the complex exponentials in the expansion are orthogonal
over one period.)

Thus the total power in x(t) can be found either from the time-domain description, or from
the Fourier series coefficients. However, the Fourier coefficients contain more information: they
additionally let you determine the frequencies at which the power contributions arise.

In the example of Section 4.4, the average signal power can be found in the time domain as follows:

P =
1

8

∫ 4

−4

|x(t)|2dt = 1

8

∫ 2

−2

1dt =
4

8
=

1

2
.

This would be measured in units of power, probably watts. The same result can be obtained from
the magnitude plot of |ak|: using Parseval’s theorem we have

P =

∞
∑

k=−∞

|ak|2 = · · ·+ 1

(3π)2
+

1

(π)2
+

1

(2)2
+

1

(π)2
+

1

(3π)2
+ · · ·

=
1

4
+

2

π2

∞
∑

k=0

1

(2(k + 1)− 1)2
=

1

4
+

2

π2

π2

8
=

1

2
.

(This is far from obvious.) However, the theorem also tells us where the power is located in terms
of frequency. The k = 0 term corresponds to the component of the signal a0e

j0ω0t = a0, which is
constant and has frequency zero (i.e. the DC component of the signal). The power in the signal
at frequency 0 is therefore |a0|2 = 1

4 watts. Half of the signal power is therefore contained in the
DC component.

The first harmonic corresponds to the fundamental frequency: the terms for k = ±1. The power
contained in a1e

jω0t is 1
π2 , and the power in the component a−1e

−jω0t is also 1
π2 . The total power

contained in the first harmonic is therefore 2
π2 watts. There is no power in the second harmonic,

since the Fourier coefficients are zero, but the power in the third harmonic can similarly be shown
to be 2

9π2 watts.

The partition of power to different frequencies in the signal allows us to interpret the effect of
modifying the signal. Suppose we were to put x(t) through a system that removes the components
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of the signal above the third harmonic — this is the operation of a filter, which will be discussed at
length later on. Such a filter would null the components of the signal corresponding to frequencies
ω ≥ 4ω0: the Fourier components at these frequencies would be set to zero by the action of the
system. The remaining nonzero coefficients are then just {a−3, a−1, a0, a1, a3}, which have an
average power of 1

9π2 + 1
pi2 + 1

4 + 1
pi2 + 1

9π2 = 0.4752 watts. The system therefore removes 0.0248

watts of signal power. Alternatively, we could say that 0.4752/0.5 = 95.032% of the total signal
power is contained in the first three harmonics.
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