Chapter 4
The Fourier Series and
Fourier Transform

Fourier Series Representation of
Periodic Signals

o Let x(t) be a CT periodic signal with period
T,ie, x(t+T)=x(t), VteR

» Example: the rectangular pulse train
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Figure 4.6 Periodic signal with fundamental period T = 2.




The Fourier Series

« Then, x(t) can be expressed as
X(t)= > cel, teR
k=—00

where w, =27 /T is the fundamental
frequency (rad/sec) of the signal and

1 T/2
— _jkwot —
G == jx(t)e dt, k=0,+1,+2,...

-T/2

C, Is called the constant or dc component of x(t)

Dirichlet Conditions

o A periodic signal x(t), has a Fourier series
If it satisfies the following conditions:

1. x(t) is absolutely integrable over any
period, namely

a+T

j|x(t)|dt<oo, VaeR

2. X(t) has only a finite number of maxima
and minima over any period

3. X(t) has only a finite number of
discontinuities over any period




Example: The Rectangular Pulse Train
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Figure 4.6 Periodic signal with fundamental period T = 2.

« From figure T =250 @, =27/2=x

* Clearly x(t) satisfies the Dirichlet conditions and
thus has a Fourier series representation

Example: The Rectangular Pulse
Train — Cont’d
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Figure 47 Line spectra for the rectangular pulse train.




Trigonometric Fourier Series

» By using Euler’s formula, we can rewrite
X(t)= > ce’, teR

as k=—c0
x(t) = ¢, + ZZ | ¢, |cos(ka,t + Lck) teR
k=1 \
dc component k-th harmonic

as long as x(t) is real

» This expression is called the trigonometric
Fourier series of x(t)

Example: Trigonometric Fourier
Series of the Rectangular Pulse Train

e The expressmn

x(t)_—+ Z ( 1)'(k Dizglkat R
k=—c0 72-
_k odd
can be rewritten as

1 & 2 T
ty== = cos| kzt+| (=D* V2 _1|= | teR
X(t) 2+;kﬂ (7[+[( ) ]2 c

k odd




Gibbs Phenomenon

« Given an odd positive integer N, define the
N-th partial sum of the previous series

1 &2 T
X, () ==+ > —cos| kzt+| (-D*P"2_1 —j, teR
O3+ 3 Zos[knt o[ 07-1]7 ), e

k odd

« According to Fourier’s theorem, it should be

lim | %, (t) = X(t) |= 0

Gibbs Phenomenon — Cont’d
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Gibbs Phenomenon — Cont’d
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overshoot: about 9 % of the signal magnitude
(present even if N — o0)

Parseval’s Theorem

 Let x(t) be a periodic signal with period T

» The average power P of the signal is defined

as
T/2
1

P== j X (t)dt

-T/2

« Expressing the signal asx(t) = > ¢,e**', teR
k=—

it is also
P= Z |Ck |2

k=—o0




Fourier Transform

» We have seen that periodic signals can be
represented with the Fourier series

» Can aperiodic signals be analyzed in terms of
frequency components?

* Yes, and the Fourier transform provides the
tool for this analysis

» The major difference w.r.t. the line spectra of
periodic signals is that the spectra of
aperiodic signals are defined for all real
values of the frequency variable @ not just
for a discrete set of values

Frequency Content of the
Rectangular Pulse
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Figure 4.12  Plots of the (a) one-second rectangular pulse and (b) pulse train.

X(t) = lim X, (1




Frequency Content of the
Rectangular Pulse — Cont'd

« Since Xx; (1) is periodic with period T, we
can write

()= > ce, teR
k=—c0

where

T/2

cszi _[ x(t)e *'dt, k =0,+1,+2,...

-T/2

Frequency Content of the
Rectangular Pulse — Cont'd

» What happens to the frequency components
of X; (t)asT — o0?

e For kK=0:
C,=1/T
e For k=+1,+2,...:

2 . (k%j 1 . (ka)oj
C, = sin =—sin| —2
K, T 2 Z K7z 2
2




Frequency Content of the
Rectangular Pulse — Cont’d
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Figure 4.13 * Plot of scaled spectrum of x.(i) for (a) T = 2,(b) T = 5,and (c) T = 10.

Frequency Content of the
Rectangular Pulse — Cont’d

e |t can be easily shown that

limTc, = sinc(ﬁj, weR
T > 27[
where

Figure 4.14 Plot of sinc 1.




Fourier Transform of the
Rectangular Pulse

» The Fourier transform of the rectangular
pulse x(t) is defined to be the limit of Tc,
asT — oo, l.e.,

X(w)=limTc, =sinc @ , welR
T > k 27[

Figure 415 Amplitude spectrum of the rectangular pulse Figure 4.16 Phase spectrum of the rectangular pulse.

The Fourier Transform in the
General Case

» Given a signal x(t), its Fourier transform
X () is defined as

X (@) = j x(t)e dt, weR
« Asignal x(t)_is said to have a Fourier
transform in the ordinary sense if the above

Integral converges




The Fourier Transform in the
General Case — Cont’d

The integral does converge if
1. the signal x(t) is “well-behaved”
2. and x(t) is absolutely integrable, namely,

]2|x(t)|dt<oo

—00

Note: well behaved means that the signal
has a finite number of discontinuities,
maxima, and minima within any finite time
interval

Example: The DC or Constant Signal

Consider the signal x(t)=1, teR

Clearly x(t) does not satisfy the first
requirement since

j|x(t)|dt:Tdtmo

Therefore, the constant signal does not have
a Fourier transform in the ordinary sense

Later on, we’ll see that it has however a
Fourier transform in a generalized sense




Example: The Exponential Signal

e Consider the signal x(t)=e™™u(t), beR
* Its Fourier transform is given by

X (@) = j e u(t)e tdt

t=00

_ Ie(mja))tdt _ n +1Jw |:e—(b+ja))t:|

t=0

Example: The Exponential Signal —
Cont’d

e If b<0, X(w) does not exist

e Ifb=0, x(t) =u(t) and X (@) does not
exist either in the ordinary sense

e Ifb>0,itis .
X(@) =——
b+ jo
amplitude spectrum phase spectrum
1
| X (@) | —= arg(X (w)) = —arctan (%j

b +w




Example: Amplitude and Phase
Spectra of the Exponential Signal

x(t) =eu(t)
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Figure 4.17 Plots of the (a) amplitude and (b) phasc spectra of x(f) = exp(—100u(r).

Rectangular Form of the Fourier

Transform
e Consider
X (@) = j x(t)e dt, weR

 Since X (w) in general is a complex
function, by using Euler’s formula

X (@) = ]O X(t) cos(at)dt + j(—of x(t)sin(a)t)dt]

—00 —00
—/ N J

R(0) | (o)

X(w)=R(w)+ Jl(w)




Polar Form of the Fourier Transform

« X(w)=R(w)+ Jl(w) can be expressed in
a polar form as

X (o) = X ()| exp(Jarg(X (@)))

where

| X (@) |= R (@) + 17 ()

_ | (@)
arg(X (o)) = arctan ( R(a))j

Fourier Transform of
Real-Valued Signals

o If x(t) is real-valued, it is
* Hermitian
X(-0) = X" (o) symmetry
e Moreover

X" (o) =| X (o) | exp(-jarg(X (w)))
whence

| X(-0) |5 X(@)| and
arg(X (-w)) = —arg(X (@))




Example: Fourier Transform of the
Rectangular Pulse

» Consider the even signal

Pl
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I
o] 0 - Figure 4.18  Rectangular pulse of dura-
lion T seconds.

e |tis,
2 2 T

X () =2 ! (1) cos(wt)dt = %[sin(a)t)]::glz = Zsin (7
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Example: Fourier Transform of the
Rectangular Pulse — Cont’d
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Figure 4.19 Fourier transform of the z-second rectangular pulse.




Example: Fourier Transform of the
Rectangular Pulse — Cont’d
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Figure 420 (a) Amplitude and (b) phase spectra of the rectangular pulse.

Bandlimited Signals

« A signal x(t) is said to be bandlimited if its
Fourier transform X (w) is zero for all @ > B
where B Is some positive number, called
the bandwidth of the signal

e It turns out that any bandlimited signal must
have an infinite duration in time, i.e.,
bandlimited signals cannot be time limited




Bandlimited Signals — Cont’d

If a signal x(t) is not bandlimited, it is said
to have infinite bandwidth or an infinite
spectrum

* Time-limited signals cannot be
bandlimited and thus all time-limited
signals have infinite bandwidth

» However, for any well-behaved signal x(t)
It can be proven that lim X (@) =0
whence it can be assuUméd that

| X(w) =0 Veo>B

B being a convenient large number

Inverse Fourier Transform

» Given a signal x(t) with Fourier transform
X (@), x(t) can be recomputed from X (o)
by applying the inverse Fourier transform
given by

x(t):ij X (w)e'dw, teR
2 7

e Transform pair
X(t) <> X(w)




Properties of the Fourier Transform
X(t) o X(w) y) <Y (o)
 Linearity:
ax(t) + By(t) & aX(w) + fY (o)
o Left or Right Shift in Time:
x(t—t,) <> X (w)e "

» Time Scaling:

X(at) <> = X (ﬁj

a a

Properties of the Fourier Transform

e Time Reversal:
X(—t) & X(-w)

« Multiplication by a Power of t:

n \Nn dn
t"x(t) < ()) X (w)
do
» Multiplication by a Complex Exponential:

n

x(t)e!" & X(o-w,)




Properties of the Fourier Transform
 Multiplication by a Sinusoid (Modulation):

X(t)sin(w,t) <—>%[X(a)+a)o)— X(a)—a)o)]
X(t) cos(m,t) <> %[X (w+w,)+ X (a)—a)o)]

o Differentiation in the Time Domain:

n

dt”

X(t) & (jo)" X (o)

Properties of the Fourier Transform

e Integration in the Time Domain:

j X(2)d7 > —— X (@) + 7X (0)5 ()
jo

—00

e Convolution in the Time Domain:

X(t)* y(t) <> X(0)Y (@)
 Multiplication in the Time Domain:
x(t)y(t) < X(@)*Y(w)




Properties of the Fourier Transform

e Parseval’s Theorem:

j x(t)y(t)dt <> 1 j X* (@)Y (w)dw
27 s,

R

if y(t) = x(t) i | X(t) [2 dt e% Hi | X (@) Pde

e Duality:
X (1) © 27x(—w)

Properties of the Fourier Transform -
Summary

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Property Transform Pair/Property

Linearity ax(t) + bv(t) © aX(w) + BV(w)
Right or left shift in time x(t — €) & X{w)e ™
1
Time scaling x(ar) & — X 2) 2>0
a a
Time reversal x(—1) & X(—w) = X(w)
g
Multiplication by a power of t x(t) < " % X(w) n=1,2,...
do
Multiplication by a complex exponential x(e '™ o3 Xlw — ay) ey real
Multiplication by sin e x(1) sin @yt <3 é [X(w + wy) — X(w — ay)]
Multiplication by cos x(1) cos myf « ;[X{ru + ) + X(w — )]
: 1" ;
Differentiation in the time domain ?x(;) o ()Y X(w) n=12...
! 1
Integration I 2(A) di & — X(w) + 7 X(0)d(er)
e Jw
Convolution in the time domain x(1) # w(r) & Xew) Vi)
1
Multiplication in the time domain x(t)e(t) 2— Xiw) = Viw)
4
y. 1 =
Parseval’s theorem f x(ev() dr = EJ Xl )V(w) de
0 1%, .
Special case of Parseval’s theorem J () di = IJ [X(w)|* de
w T s

Duality X(t) 3 2ax(—m)




Example: Linearity

X(t) = Py (t) + Py (t)
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Figure 4.21 Signal in Example 4.9.

X(w) = 4sinc(2—wj + 23inc(2j
T 7T

Example: Time Shift
X(t) = p,(t-1)

x(r)

Figure 4.22 Signal in Example 4.10.

X () = Zsinc(gje‘j“’

T




Example: Time Scaling

S

Figure 423  Signals (a) p,(r) and (b)
(b pA20). Figure 424  Fourier transforms of (a) py(t) and (b} py(21)

a >1 time compression <« frequency expansion

0 < a <1 time expansion <> frequency compression

Example: Multiplication in Time

X(t) = tp,(t)

x(r)

Figure 4.25 The signal x() = ip,(1).

do\ w @

X(w) = jiEZSinC(gj]: jzi(sma)j: jza)COSa)z—sma)
do T




Example: Multiplication in Time —

Cont’d
.~wCOSw—SINw
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Figure 4.26 Amplitude spectrum of the signal in Figure 4.25.

Example: Multiplication by a Sinusoid

_ sinusoidal
X(t) = p, (t)cos(a,t) s

VAR AT R 2
ARVAVIIVAVA

Figure 4.27  Sinusoidal burst.

X (@) = %{rsinc(r(a); wo)j—l- rsinc(f(wz_ w")ﬂ
T T




Example: Multiplication by a
Sinusoid — Cont’d

X (w) = %{rsinc( T(w; @) J + rSinC(T(a)Z_ ) ﬂ
T T

X(@) @, =60 rad /sec
60 + 7=0.5
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NG I

Figure 4.28 Fourier transform of the sinusoidal burst x(¢) = p 5(¢) cos 60¢.

Example: Integration in the Time

Domain
pil 2]t
v(t) =( p, (t)

- (t) o dV(t)

2t

Figure 4.30 Derivative of the triangular
pulse.




Example: Integration in the Time
Domain — Cont’d

* The Fourier transform of x(t) can be easily
found to be

(o ={sne 2] ()

* Now, by using the integration property, it is

V() = — X (@) + 7X (0)5 () = %sincz (@j

Jo A

Example: Integration in the Time
Domain — Cont’d

V(@) = %sinc2 (@j
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Figure 4.31 Fourier transform of the 1-second triangular pulse.




Generalized Fourier Transform

e Fourier transform of o(t)
j stedt=1 = s5@t) o1
R

» Applying the duality property
X(t)=LteR & 270 (w)

%r_/

f

generalized Fourier transform
of the constant signal x(t) =1, te R

Generalized Fourier Transform of
Sinusoidal Signals

cos(wypt) <> 7[5 (@ +ay) + (0~ @) |

‘ () ‘ (:r)’
—wp

iy
| Figure 4.32 Fourier transform of cos .

sin(wet) & jz[5(@ +ay) —5(w—m,)]




Fourier Transform of Periodic Signals

 Let x(t) be a periodic signal with period T;
as such, it can be represented with its
Fourier transform

X(t)= > ce’ g =27/T
k=—00
e Since e > 275 (w — w,), it is

X (@)=Y 276,8(0—kay)

K=—o0

Fourier Transform of
the Unit-Step Function

* Since ¢
u(t) = j S(r)dr

using the integration property, it is

u(t) = j- o(r)dr <—>jiw+7z5(a))




Common Fourier Transform Pairs

TABLE 42 COMMON FOURIER TRANSFORM PAIRS

1, —o <1< o 2ad(w)
1

=0.5 + u(t) & —
jew

u(t) & ad(w) + L
jo

8(1) & 1
8(t — ¢) <> €7, ¢ any real number
1
—bt
e u(t)(—)]_m o b=>0

e’ &5 2xd(w — @), v, any real number

(f) & 7 sinc i
b 2n

; Tl
Tsinc —— <> 2np,(w)

2r

2 2
( = )pr([) © 5 sinc =
ool = 2|
5o —2m(l r p.(w)

cos wyt < (0w + wy) + (w — wy)]
cos (wgt + 8) & ale P5(w + wy) + e?8(w — wy)]
sin wyl < jz[d(w + wp) — de — ay)]
sin (wyt + 60) < jaleo(w + w,) — e8(w — wy)]




