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Abstract
Conventionally, tracking people through an environment has
been achieved by monitoring a series of fixed cameras. With
the advent of wireless technologies, the option of inverting the
paradigm and monitoring instead, from each person’s point-
of-view, has become more accessible. By taking video se-
quences from a person moving through various environments,
this paper explores a process for classifying the different loca-
tions encountered using chromatic information gathered from
images. This involves extracting a set of simple features from
each frame, applying an unsupervised clustering algorithm and
classifying new images with anearest neighbourmethod.

1. Introduction
The general paradigm for tracking people has been by observ-
ing their movements from fixed-position cameras. As the peo-
ple move through different areas of the environment, the system
can be switched to the most appropriate camera view. However,
in certain scenarios, this method can be uneconomical and awk-
ward.

An example could be monitoring the positions of 20 to 30
people in a large, automated industrial plant. Depending on the
size of the plant, the video network could require anything up to
200 cameras in order to cover all relevant locations. An alterna-
tive system could be instead, to equip each person with an on-
body wireless camera and use the images from those cameras
to detect their general location in the environment. This system
is obviously not a total replacement for most CCTV systems,
however there are numerous advantages in employing mobile
cameras for monitoring:

• The problem of multi-view tracking is reduced, since a
continuous feed is available from the camera and no view
switching is necessary.

• Although the exact positioning is not as consistent as
ActiveBadges (radio positioning tags), the video infor-
mation can provide detailed information of each per-
son’s activities and is not dependent on the person be-
ing occluded by others in a cluttered environment (where
CCTV systems sometimes fail).

• As wireless technology progresses, a network of mobile
cameras can also be more economical (no cables/video
switches and less cameras).

This paper addresses the problem of taking the video feed
from a moving person and training a data set to recognise
distinctive areas so that the general location can be classi-
fied. The process followed involves collecting features from
recorded image sequences, analysing and visualising clusters

using Self-Organising Maps and implementing a clustering al-
gorithm which then passes a cluster map to the classifier.

2. Pre-Processing and Feature Extraction
Since a major requirement of the system is to provide up-to-date
information, the classification process needs to run as close to
real-time as possible. In order to facilitate this process, a very
simple feature set was created using averaged Hue and Satu-
ration values, extracted from masked areas of the input frame
(similar to the method used in [2]). A rectangular-block mask
was chosen since the grid size can be easily changed thus al-
lowing control over the length of the feature vector (see figure
1).

Figure 1: Various feature extraction masks (produces 2-,4-,9-
or 16-dimension features).

Feature extraction proceeds firstly by pre-processing each
image. This involves converting the image from RGB to HSV
colour space. The Hue and Saturation channels provide a useful
measure of chromaticity in the image (found to provide good
class separation), while being more robust against lighting vari-
ations than the RGB model [1]. A full analysis of all possible
features was not conducted as, the emphasis was placed on in-
vestigating whether clusters did exist and how to approach the
classification problem. Fine-tuning of the actual feature com-
position was left for future work.

Following the colour-space transform, a median filter is ap-
plied for reduction of noisy pixel values. Finally, the mask is
applied and values of mean Hue (Hm) and Saturation (Sm) are
calculated for each masked area. The final feature vectorp(i) is
a 2n-dimension row vector wheren is the number of blocks in
the mask of theith frame.

p(i) = [Hm1 Sm1 Hm2 Sm2 . . . Hmn Smn ] (1)

For the training phase, the output of the feature extractor is
a matrix of i feature vectors which can then be applied to the
clustering algorithm.



For development purposes, a simplified set of features con-
sisting of onlyHm values for a 2 x 1 mask was used. This
limited the feature vectors to a 2-D set and allowed initial two-
dimensional visualisation during testing of the clustering algo-
rithm. Once the operation of the algorithm was verified, exper-
imentation continued with higher dimension features.

3. Clustering Algorithm
Since initial observations of the 2-D features showed that the
features of similar images tended to form small regions, a clus-
tering approach was favoured.

A general problem with many clustering methods is that
they require a user to specify the number of patterns or classes.
This is not a problem if this is a known fact, e.g. sorting red ap-
ples from green (2 patterns). Unfortunately, this is not practical
when the number of patterns is harder to specify, e.g. splitting
an environment into separate locations for tracking. Naturally
in the latter case, we would like the network to discern the most
distinguishable locations and determine however many separate
patterns exist.

Another issue, was the problem of visualising clusters past
a 2-D feature space. One solution to both these problems, was
to use a Kohonen Network. After initial tests, though, the Koho-
nen network was solely used as a visualisation tool, while a less
computationally-intense clustering algorithm was implemented.

3.1. Kohonen Networks

A Kohonen Network (or Self-Organising Map), is a two-layer
network where the input layer is interconnected to the output
layer (like a conventional network), however, the output layer
(competitive layer) is also structured to form a two-dimensional
grid (see figure 2). During training, each output node is moved
so as to be closer to an input vector. In addition, neighbouring
output nodes are also moved towards each other. This has the
effect of quantitising the input vectors, by folding the grid of
neurons around the presented data. Eventually, the output grid
becomes an ordered map with similar prototypes close together.
Effectively, the network’s weights are trained while at the same
time, the topological information is preserved.

Figure 2:Kohonen Network Structure.

3.2. Training

Initially, a Supervised Learning scheme was applied in which
each location was defined by a labelled training set. This
information was then integrated during training in order to
maximise the exclusion of erroneous noisy samples. Although
the performance of the system was fair, not all location data
could always be consistently separated based on the labels.
For this reason, a new implementation, governed by an Unsu-
pervised Learning method was developed. This allowed the

training process to decide which locations were best for clas-
sification, based on the Euclidean distance between each cluster.

The basic training algorithm is as follows:

• A training set is applied in the form described previously
(Feature Extraction phase).

• As with training the probability weights of a PNN, a
hyper-surface is created by summing small Gaussian ker-
nels to each training sample. The result is a surface
having peaks where the kernels overlap thus forming a
cluster. Ifd(i,j) is the Euclidean distance between two
features, thenq(i), below, is an estimate of the probabil-
ity of the ith feature falling into a distinguishable class
(i.e. the higher and sharper the peak, the more unique the
cluster).

q(i) = e
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−d2
(i,2)/σ

+ . . . + e
−d2

(i,n)/σ (2)

Figure 3 below shows an example surface generated for
a training sequence with 2-D features. Here, two distinct
clusters dominate, while some smaller regions also exist.

Figure 3:Summed Gaussian kernel map.

Figure 4:Example of a trained cluster map (2 features).

• The list of weighted points is then sorted in order of
probability q(i) and the highest value is selected as a
starting point. Neighbouring points are grouped into
the cluster until a distance threshold is reached. At this



point, the cluster splits and a new highest point is elected
to be the centre of the next cluster. The process repeats
until the list of points is depleted. Points that are not al-
located due to distance thresholding or being part of an
excessively small cluster, are discarded. Figure 4 shows
an example of a generated cluster map.

3.3. Classification

Conventionally, the classification process is based on a desire
to provide a clean-cut ’yes’ or ’no’ (class ’A’ or ’B’) answer.
However, with the location classification system, since similar-
looking images could sometimes be clustered together, a dif-
ferent approach was needed. Since the input provides a large
amount of redundant data recurring at a high rate (many similar
frames), the necessity of classifying each frame is reduced. In
fact, most of the time, the primary goal is to detect a location
change and only if possible refine the sub-location. Thus the
classifier is designed to ignore any frames whose features are
not extremely close to a cluster centre. In this case a no-class
(unclassified) result is returned. This is achieved by relying on
good shaping and filtering from the clustering algorithm during
the training phase and performing the actual classification using
the nearest neighbour method.

4. Results and Discussion
Preliminary tests of the system revealed some interesting facts,
however, more extensive experiments (with more diverse data)
and fine-tuning are needed to fully quantify its exact limitations.

The tests conducted on the current implementation, con-
sisted of 3 different location data sets: indoor-house; indoor-
office and outdoor-garden. Each of these sets are composed of
a training and a testing video sequence and are formatted as fol-
lows: 24-bit colour, 176 x 144 pixel, 15 fps.

A setting ofσ = 0.1 x10−4 was used for the Gaussian ker-
nel size. Experimentation with this value allowed control over
the amount of classes generated by each training sequence. The
KNN Classifier was set to use 3, 5 and 10 neighbours located
close to the cluster centre. In practice, this had little effect since
the clusters were quite compact in most cases (requirement of
the system) and therefore even a setting of 1 neighbour seemed
to provide adequate classification.

Since the implementation is geared towards an Unsuper-
vised Learning system and hence labelled image sets are not
available, measurement of the performance of the classification
process is awkward. Instead, human observation was used as
a means to compare whether test frames were indeed correctly
classified by each class. This was accomplished by comparing
a list of trained class prototypes with the classified frames for
each cluster. Naturally, it is not feasible to show the matches of
each class for each test sequence, therefore, the demonstration
figures only show a few examples.

Figure 5, shows the cluster map generated for the indoor-
house data set, using 2 features. Each coloured set of dots or
crosses denotes a trained cluster (class). A black square marks
the detected centre of each cluster (based on the peaks of the
summed Gaussian kernel map), while the black stars show a
plot of the classified test points. An interesting revelation from
the cluster map is that separation of the major location types is
achieved with only 2 features. In fact, after further observations,
it was concluded that most environments could be separated into
a general location index in this manner. For further separation
of each location into smaller sub-locations, more features are

Figure 5:Cluster map for indoor-home data set overlaying clas-
sified test points.

required.
Figure 6 shows a prototype image set with example images

associated with each class (extracted from the marked centre
point). In this case, 8 classes were detected, however some of
these classes actually overlap. It is suggested that future imple-
mentations merge overlapping clusters into one class for neat-
ness, however this is not a primary concern as it does not really
affect the matching process.

Figure 6: Example class prototypes for the indoor-home data
set. Class 1 is the top-left image and the sequence follows a
left-to-right, top-to-bottom order.

Finally, figures 7,8 and 9 are the set of classified frames
associated with classes 4,5 and 6 (middle 3 images from fig-
ure 6) respectively. The montages show some inaccuracies with
class 5, however, the mostly the classification for positioning
purposes is quite accurate. One important factor which was
found to affect performance quite extensively was the camera’s
Automatic Gain Control. During transitions between different
rooms, the camera attempted to compensate for the lighting dif-
ferences. This adjustment can cause a sequence of frames to
appear tinted by an unnatural colour and therefore cause an off-



set between the trained cluster and future test frames. For this
reason it is recommended that the AGC of the camera be dis-
abled (if possible).

Figure 7:Classified indoor-home test frames for class 4.

Figure 8:Classified indoor-home test frames for class 5.

Figure 9:Classified indoor-home test frames for class 6.

Some examples of tests conducted on the other two data sets
are shown in figures 10, 11 (indoor-office), 12 and 13 (outdoor-
garden). Figures 10 and 12 are montages of the trained images
associated with an arbitrary cluster from each data set, while

figures 11 and 13 are the set of test images classified as belong-
ing to those classes. Since the office and outdoor images were
more similar, complete separation with just 2 features was not
possible. Therefore, both these sequences were trained with a
2 x 2 mask - totalling 8 features (Hue and Saturation channels).
As is seen, the matching process was fairly successful.

Visualisation of the clusters formed by training the outdoor
scene is provided by the SOM map in figure 14. The dark blue
areas show regions of closeness between the data, while the
brighter colours (red and yellow) show areas where the data
is more sparsely located, therefore outlining cluster borders.
Thirteen clusters were detected, however only about 6 unique
clusters exist. As previously stated, merging of similar classes
would improve the compactness and thus the accuracy of the
detected cluster value.

5. Conclusions
Using simple measures of pixel chromaticity as features, it is
possible to extract information about the location of a camera
in an environment. This was applied to a location-classification
scheme for tracking the movements of a person equipped with a
wearable camera. The extracted information does form clusters
in the feature space and matching of test sequences to trained
cluster maps was accomplished.

The use of an RGB to HSV transform allows greater tol-
erance in the system against lighting variances (nomalised
RGB components are also a viable options), however large
rotations and jerky movements of the camera were found to
cause instability during classification.

Classification using a simplenearest neighboursystem
while using a highly selective training procedure provides
better separation of pattern clusters. Ensuring that the borders
are maximised and that the clusters are as compact as possible
simplifies classification and ensures faster execution.

Care should be used when using feature masks with too
many divisions. As shown, classes of images are separable
without the use of high dimension features. In fact, increasing
the mask size past a 4 x 4 grid significantly reduces the
tolerance of the matching process.

Self-Organising Maps are highly useful for visualising
clusters in data with high dimensions and can also be used
for classification in systems where the number of patterns is
variable.

While this system was suggested for the application of
monitoring a person’s view and therefore position (unob-
structed) in a large complex environment, a range of other
possibilities exist for exploration (e.g. personal visual locator).
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Figure 10:Example from indoor-office data set. Class 1 trained
cluster.

Figure 11:Matched frames for Class 1 (indoor-office) from test
set.

Figure 12: Example from outdoor-garden data set. Class 3
trained cluster.

Figure 13:Matched frames for Class 3 (outdoor-garden) from
test set.

Figure 14: SOM map generated for outdoor-garden data set.
Dark blue areas show compact clusters while yellow and red
areas are cluster boundaries.


