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Abstract

Image segmentation is an important stage in any image processing process. Regions
of interest in the image are extracted from the image and are used to interpret the

information in the image.

This study investigates the image segmentation of X-ray images and aims at separat-
ing the bone from the rest of the X-ray. Basic edge detection techniques and Active
Shape Models are the image segmentation techniques analyzed. The performance
of these methods is tested using error functions and best-fit curves. The process is
modified to automate it to decrease human involvement. These are the initial steps

of an automatic bone fracture detection algorithm.

Basic edge detection techniques consist of texture analysis and morphological oper-
ations on the image to find edges. In this thesis, the bone can be separated from the
X-ray image using the bone boundary. The bone boundary can be found using edge
detection techniques. The advantages of these techniques are examined and their
drawbacks are explained. A study of these techniques shows their inadequacies in
detecting the edges in certain bones, creating the need to find a robust and efficient

way of finding bone boundaries.

Active Shape Models, presented in Cootes and Taylor |9, [10], is a method of finding a
shape in an image. Active shape models are used to fit a shape, learnt from training
images, to a test image. The algorithm is trained using X-ray images by manually
selecting landmark points on the images. The shape of the bone is learnt using
these images and then the model tried to fit the shape to a test image. Performance
of these models is tested and variations on the model are studied. Interpretation
of the results of experiments shows the best way to use Active Shape Models to
segment X-ray images. It is proved that this technique extracts the bone in the

X-ray effectively.
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Nomenclature

ROI — Region of Interest. The regions that need to be extracted from an image.

The location of desired information in an image.

ASM — Active Shape Models. A statistical method used to segment images and in

other applications.

ACM — Active Contour Models. A statistical method used to segment images and

in other applications.

Training Images — The set of images used to train the Active Shape Model to learn

the shape.

Test Image — The image that needs to be segmented using the shape learnt from
training images.

Mean Shape — The average shape formulated using the shapes in the training
images.

GVF — Gradient Vector Flow

MRF — Markov Random Fields

IGD — Intensity Gradient Density

GO — Gabor Orientation



Chapter 1

Introduction

1.1 Introduction to Image Processing

Image Processing is a form of signal processing where images and their properties can
be used to gather and analyze information about the objects in the image. Digital
image processing uses digital images and computer algorithms to enhance, manip-
ulate or transform images to obtain the necessary information and make decisions
accordingly.

Examples of digital image processing include improvements and analysis of the im-
ages of the Surveyor missions to the moon [I5], magnetic resonance imaging scans
of the brain and electronic face recognition packages. These techniques can be used
to assist humans with complex tasks and make them easier. A detailed analysis of
an X-ray can help a radiologist to decide whether a bone is fractured or not. Digital

image processing can increase the credibility of the decisions made by humans.

1.2 Introduction to Medical Imaging

Image processing techniques have developed and are applied to various fields like
space programs, aerial and satellite imagery and medicine [15]. Medical imaging
is the set of digital image processing techniques that create and analyze images of
the human body to assist doctors and medical scientists. In medicine, imaging is
used for planning surgeries, X-ray imaging for bones, Magnetic resonance imaging,
endoscopy and many other useful applications [31]. Digital X-ray imaging is used in
this thesis project. Figure shows the applications of digital imaging in medical

imaging.



(c) Sagittal and (d) transversal MRI brain slices

Figure 1.1: Medical Imaging [17]

Since Wilhelm Roentgen discovered X-rays in 1895 [14], X-ray technology has im-
proved considerably. In medicine, X-rays help doctors to see inside a patient’s body
without surgery or any physical damage. X-rays can pass through solid objects with-
out altering the physical state of the object because they have a small wavelength.
So when this radiation is passed through a patient’s body, objects of different den-
sity cast shadows of different intensities, resulting in black-and-white images. The
bone, for example, will be shown in white as it is opaque and air will be shown in
black. The other tissues in the body will be in gray. A detailed analysis of the bone
structure can be performed using X-rays and any fractures can be detected. Conven-
tionally, X-rays were taken using special photographic films using silver salts [28].
Digital X-rays can be taken using crystal photodiodes. Crystal photodiodes contain
cadmium tungstate or bismuth germanate to capture light as electrical pulses. The
signals are then converted from analogue to digital and can be viewed on computers.
Digital X-rays are very advantageous as they are portable, require less energy than

normal X-rays, less expensive and are environmentally friendly [28].

A radiologist would look at the X-rays and determine if a bone was fractured or not.
This system is time consuming and unreliable because the probability of a fractured
bone is low. Some fractures are easy to detect and a system can be developed
to automatically detect fractures. This will assist the doctors and radiologists in
their work and will improve the accuracy of the results [28]. According to the
observations of [27], only 11% of the femur X-rays were showing fractured bones. So
the radiologist has to look at a lot of X-rays to find a fractured one. An algorithm to

automatically detect bone fractures could help the radiologist to find the fractured



bones or at least confidently sort out the healthy ones. But no single algorithm can
be used for the whole body because of the complexity of different bone structures.
Even though a lot of research has been done in this field, there is no system that
completely solves the problem [I4]. This is because there are several complicated
parts to this problem of fracture detection. Digital X-rays are very detailed and
complicated to interpret. Bones have different sizes and can differ in characteristics
from person to person. So finding a general method to locate the bone, and decide if
its fractured or not, is a complex problem. Some of the main aspects to the problem
of automatic bone fracture detection are bone orientation in the X-ray, extracting

bone contour information, bone segmentation, extraction of relevant features.

1.3 Description of the Problem

This thesis investigates the different ways of separating a bone from an X-ray. Meth-
ods like edge detection and Active Shape Models are experimented with. The aim
of this thesis is to find an efficient and reasonably fast way of separating the bone
from the rest of the X-ray. The bone that was used for the analysis is the tibia bone.
The tibia, also known as the shinbone or shankbone, is the larger and stronger of
the two bones in the leg below the knee in vertebrates and connects the knee with

the ankle bones. Details of the X-ray data used are provided in the next section.

1.4 X-ray Data

The X-ray data used in this thesis project consists of 12 digital X-ray images. These
images were X-rays of the full body that were then segmented to get the X-ray of the
tibia. The experiments discussed in the following chapters are conducted on these
segmented images. The size of the images were reduced to increase the speed of the
programs. All the images were resized to the same dimensions to ensure uniform
processing on all of them. Figure shows the full-body X-ray and the segmented
and scaled tibia bone X-ray. The images shown in the thesis will be these scaled

and segmented images of the tibia.



(a) Full-body X-ray (b) Tibia X-ray

Figure 1.2: X-ray data used for the thesis.

1.5 Structure of the document

The thesis has been divided into six chapters. Chapter 1 introduces image process-
ing and medical imaging. A detailed description of the problem is included in this
chapter along with the X-ray data used. Chapter 2 explains the various stages in-
volved in a generic image processing operation and defines the scope of this project.
Background information about the topic and the methods used to solve the problem
are compared in Chapter 3. In Chapter 4, Active Shape Models and the associated
variables and parameters are explained. Chapter 5 reports the results of the exper-
iments conducted on the X-ray data using the Active Shape Models described in
the previous chapter. Conclusions and ideas for future research constitute Chapter
6. Appendices and Bibliography are included at the end. Nomenclature of all the

important concepts is provided at the beginning of the thesis paper.



Chapter 2

Theory Development and Scope

Definition

2.1 Theory Development

A typical digital image processing system consists of image segmentation, feature
extraction, pattern recognition, thresholding and error classification. Image process-
ing aims at extracting the necessary information from the image. The image needs
to be reduced to certain defining characteristics and the analysis of these charac-
teristics gives the relevant information. Figure shows a process flow diagram of
a typical digital image processing system, showing the sequence of the operations.
Image segmentation is the main focus of this thesis. The other processes are briefly
described for completeness and to inform the reader of the processes in the whole

system.

Input Image —3{ Image Segmentation —3 Feature Extraction |—3 Pattern Recognition — Thfes*““"””_ﬁ an;l Output
Errar Classification

Figure 2.1: Process flow diagram of a typical digital image processing system

2.1.1 Image Segmentation

Image segmentation is the process of extracting the regions of interest from an
image. There are many operations to segment images and their usage depends on
the nature of the region to be extracted. For example, if an image has strong edges,
edge detection techniques can be used to partition the image into its components

using those edges. Image segmentation is the central theme of this thesis and is done



using several techniques. Figure shows how one of the coins can be separated
from the image. Figure 2.2h. shows the original image and Figure 2.2b. highlights
the boundary of one of the coins. These techniques are analyzed and the best

technique to separate bones from X-rays is suggested.

(a) The original image (b) Image segmentation

Figure 2.2: Basic Image segmentation [23]

When dealing with bone X-ray images, contour detection is an important step in
image segmentation. According to [31], classical image segmentation and contour
detection can be different. Contour detection algorithms extract the contour of
objects whereas image segmentation separates homogeneous sections of the image.
A detailed literature review and history of the image segmentation techniques used

for different applications is given in Chapter

2.1.2 Feature Extraction

Feature extraction is the process of reducing the segmented image into few numbers
or sets of numbers that define the relevant features of the image. These features
must be carefully chosen in such a way that they are a good representation of
the image and encapsulate the necessary information. Some examples of features
can be image properties like the mean, standard deviation, gradient and edges.
Generally, a combination of features is used to generate a model for the images.
Cross validation is done on the images to see which features represent the image
well and those features are used. Features can sometimes be assigned weights to
signify the importance of certain features. For example, the mean in a certain
image may be given a weight of 0.9 because it is more important than the standard
deviation which may have a weight of 0.3 assigned to it. Weights generally range
from 0 to 1 and they define how important the features are. These features and their

respective weights are then used on a test image to get the relevant information.

To classify the bone as fractured or not,[27|measures the neck-shaft angle from the

6



segmented femur contour as a feature . Texture features of the image such as Gabor
orientation (GO), Markov Random Field (MRF) and intensity gradient direction
(IGD) are used by [22] to generate a combination of classifiers to detect fractures in
bones. These techniques are also used in [20] to look at femur fractures specifically.

Best parameter values for the features can be found using various techniques.

2.1.3 Classifiers and Pattern Recognition

After the feature extraction stage, the features have to be analyzed and a pat-
tern needs to be recognized. For example, the features mentioned above like the
neck-shaft angle in a femur X-ray image need to be plotted. The patterns can be
recognized if the neck-shaft angles of good femurs are different from those of frac-
tured femurs. Classifiers like Bayesian classifiers and Support Vector Machines are
used to classify features and find the best values for them. For example, [22] used
a support vector machine called the Gini-SVM [22] and found the feature values
for GO, MRF and IGD that gave the best performance overall. Clustering, nearest
neighbour approaches can also be used for pattern recognition and classification of
images. For example, the gradient vector of a healthy long bone X-ray may point
in a certain direction that is very different to the gradient vector of a fractured long
bone X-ray. So, by observing this fact, a bone in an unknown X-ray image can be

classified as healthy or fractured using the gradient vector of the image.

2.1.4 Thresholding and Error Classification

Thresholding and Error Classification is the final stage in the digital image process-
ing system. Thresholding an image is a simple technique and can be done at any
stage in the process. It can be used at the start to reduce the noise in the image or
it can be used to separate certain sections in an image that has distinct variations
in pixel values. Thresholding is done by comparing the value of each pixel in an
image and comparing it to a threshold. The image can be separated into regions
or pixels that are greater or lesser than the threshold value. Multiple thresholds
can be used to achieve thresholding with many levels. Otsu’s method [21] is a way
of automatically thresholding any image. Otsu’s method uses the variance of the
image to determine the threshold. Otsu’s method finds this threshold value, ¢ that
minimizes the variance, o2 (t), within the two pixel set, one set with values greater
than t and the other with values less than ¢. The variance o2 () can be calculated

o® (t) =m (t) o7 (1) + 2 (t) 05 (1)

where o2 (t)and o3 (t)are the variances of the two pixel classes and 7, (t)and 7, (t)are
the number of pixels in each class. Thresholding is used at different stages in this

thesis. It is a simple and useful tool in image processing. The following figures

7



show the effects of thresholding. Thresholding of an image can be done manually
by using the histogram of the intensities in an image. It is difficult to threshold
noisy images as the background intensity and the foreground intensity may not be
distinctly separate. Figure [2.3] shows an example of an image and its histogram
that has the pixel intensities on the horizontal axis and the number of pixels on the

vertical axis.

Histogram of image
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(a) The original image (b) The histogram of the image

Figure 2.3: Histogram of image [23]

Figure shows the original image and the histogram of the image. Figure
shows thresholding done on the image displayed in Figure 2.4h. is the original
image, [2.4p. is the image using a threshold of 50. So the pixel values that are greater
than 50 are set to 1 and those less than 50 are set to 0. As 0 and 1 are shown as
black and white respectively, and as most of the image has pixel values greater than
50 (according to the histogram in [2.3p.), the image in [2.4b. is mostly white. The
image in . is the original image thresholded with a value of 150. Here the pixel
values that are less than 150 are set to 1 and the ones greater than 150 are set to 0.
This is the opposite of what is done in 2.4p. and is done to show that the grains of
rice can be separated from the image in this way. The final image, Figure 2.4d., is a
combination of two thresholds applied to the original image. So it is a combination
of the images [2.4p. and [2.4c. This is multi-level thresholding as it has two threshold

levels.



S il
i
P . Dl 3@"&'@
(a) The original image (b) Thresholded image (I>50)

\‘\ ul‘”l';f\‘\ “,"'l';,

sIWAS NV, . N4 \\'\/
'\':}-r"/ e ‘;'- -l',.._‘ \/k
l"‘ I

7. | N l
(J)-' W : (,

(¢) Thresholded image (I<150) (d) Thresholded image (I>50
and I<150)

Figure 2.4: Thresholding in images [23]

2.2 Scope Definition

The previous section gave an overview of a typical digital image processing system
and this section will define the scope of this thesis. This thesis focuses on the image
segmentation of the X-ray of the tibia and aims at separating the bone from the
X-ray. So the input image is the X-ray of the bone and the region of interest is the
tibia. This thesis also aims at separating bones in general from X-rays, so techniques
that work well for a particular kind of bone are mentioned but not given importance.

A generic method that will work for all bones is investigated, and tested on the tibia.



Chapter 3
Literature Review and History

The first section in this chapter describes the work that is related to the topic. Many
papers use the same image segmentation techniques for different problems. This
section explains the methods, discussed in this thesis, used by researchers to solve
similar problems. The subsequent section describes the workings of the common
methods of image segmentation. These methods were investigated in this thesis and
are also used in other papers. They include techniques like Active Shape Models,
Active Contour/Snake Models, Texture analysis, edge detection and some methods

that are only relevant for the X-ray data.

3.1 Previous Research

3.1.1 Summary of Previous Research

According to [14], compared to other areas in medical imaging, bone fracture detec-
tion is not well researched and published. Research has been done by the National
University of Singapore to segment and detect fractures in femurs (the thigh bone).
[27] uses modified Canny edge detector to detect the edges in femurs to separate it
from the X-ray. The X-rays were also segmented using Snakes or Active Contour
Models (discussed in and Gradient Vector Flow. According to the experiments
done by [27], their algorithm achieves a classification with an accuracy of 94.5%.
Canny edge detectors and Gradient Vector Flow is also used by [29] to find bones in
X-rays. [31] proposes two methods to extract femur contours from X-rays. The first
is a semi-automatic method which gives priority to reliability and accuracy. This
method tries to fit a model of the femur contour to a femur in the X-ray. The second
method is automatic and uses active contour models. This method breaks down the
shape of the femur into a couple of parallel, or roughly parallel lines and a circle at
the top representing the head of the femur. The method detects the strong edges in
the circle and locates the turning point using the point of inflection in the second

derivative of the image. Finally it optimizes the femur contour by applying shape

10



constraints to the model.

Hough and Radon transforms are used by [I4] to approximate the edges of long
bones. [14] also uses clustering-based algorithms, also known as bi-level or localized
thresholding methods and the global segmentation algorithms to segment X-rays.
Clustering-based algorithms categorize each pixel of the image as either a part of
the background or as a part of the object, hence the name bi-level thresholding,
based on a specified threshold. Global segmentation algorithms take the whole
image into consideration and sometimes work better than the clustering-based algo-
rithms. Global segmentation algorithms include methods like edge detection, region
extraction and deformable models (discussed in [3.4)).

Active Contour Models, initially proposed by [19], fall under the class of deformable
models and are used widely as an image segmentation tool. Active Contour Models
are used to extract femur contours in X-ray images by [31], after doing edge detection
on the image using a modified Canny filter. Gradient Vector Flow is also used by
[31] to extract contours and the results are compared to that of the Active Contour
Model. [3] uses an Active Contour Model with curvature constraints, to detect
femur fractures, as the original Active Contour Model is susceptible to noise and
other undesired edges. This method successfully extracts the femur contour with a

small restriction on shape, size and orientation of the image.

Active Shape Models, introduced by Cootes and Taylor [9], is another widely used
statistical model for image segmentation. Cootes and Taylor, and their colleagues
|5 6l [, 1T} [12] [10], released a series of papers that completed the definition of the
original ASMs by modifying it, also called classical ASMs by [24]. These papers
investigated the performance of the model with gray-level variation, different reso-
lutions and made the model more flexible and adaptable. ASMs are used by [24] to
detect facial features. Some modifications to the original model were suggested and
experimented with. The relationships between landmark points, computing time
and the number of images in the training data were observed for different sets of
data. The results in this thesis are compared to the results in [24]. The work done
in this thesis is similar to [24] as the same model is used for a different application.
[18] and [I] analyzed the performance of ASMs using the aspects of the definition
of the shape and the gray level analysis of grayscale images. The data used was
facial data, from a face database and it was concluded that ASMs are an accurate
way of modeling the shape and gray level appearance. It was observed that the
model allows for flexibility while being constrained on the shape of the object to
be segmented. This is relevant for the problem of bone segmentation as X-rays are
grayscale and the structure and shape of bones can differ slightly. The flexibility
of the model will be useful for separating bones from X-rays even though one tibia

bone differs from another tibia bone.

The working mechanisms of the methods discussed above are explained in detail in

11



the following sections in this chapter. So this section gave an overview of the usage

of the methods and the following sections will describe how these methods work.

3.1.2 Common Limitations of the Previous Research

As mentioned in previous chapters, bone segmentation and fracture detection are
both complicated problems. There are many limitations and problems in the seg-
mentation methods used. Some methods and models are too limited or constrained
to match the bone accurately. Accuracy of results and computing time are conflict-

ing variables.

It is observed in [I4] that there is no automatic method of segmenting bones. [I4]
also recognizes the need for good initial conditions for Active Contour Models to
produce a good segmentation of bones from X-rays. If the initial conditions are not
good, the final results will be inaccurate. Manual definition of the initial conditions
such as the scaling or orientation of the contour is needed, so the process is not
automatic. [I4] tries to detect fractures in long shaft bones using Computer Aided
Design (CAD) techniques.

The tradeoff between automizing the algorithm and the accuracy of the results,
using the Active Shape and Active Contour Models, is examined in [3I]. If the
model is made fully automatic, by estimating the initial conditions, the accuracy
will be lower than when the initial conditions of the model are defined by user
inputs. [3I] implements both manual and automatic approaches and identifies that
automatically segmenting bone structures from noisy X-ray images is a complex

problem.

This thesis project tackles these limitations. The manual and automatic approaches
are tried using Active Shape Models. The relationship between the size of the

training set, computation time and error are studied.

3.2 Edge Detection

Edge detection falls under the category of feature detection of images which includes
other methods like ridge detection, blob detection, interest point detection and scale
space models. In digital imaging, edges are defined as a set of connected pixels that
lie on the boundary between two regions in an image where the image intensity
changes, formally known as discontinuities [I5]. The pixels, or a set of pixels, that
form the edge are generally of the same or close to the same intensities. Edge
detection can be used to segment images with respect to these edges and display
the edges separately [26][15]. Edge detection can be used in separating tibia bones
from X-rays as bones have strong boundaries or edges. Figure is an example of

basic edge detection in images.
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(a) The original image (b) Sobel edge detection (c) Canny edge detection

Figure 3.1: Basic Edge Detection [23]

3.2.1 Sobel Edge Detector

The Sobel operator, used to do the edge detection, calculates the gradient of the
image intensity at each pixel. The gradient of a 2D image is a 2D vector with the
partial horizontal and vertical derivatives as its components. The gradient vector
can also be seen as a magnitude and an angle. If D, and D, are the derivatives in
the x and y direction respectively, equations [3.1] and show the magnitude and
angle(direction) representation of the gradient vector, VD. It is a measure of the
rate of change in an image, from light to dark pixel in case of grayscale images,
at every point. At each point in the image, the direction of the gradient vector
shows the direction of the largest increase in the intensity of the image while the
magnitude of the gradient vector denotes the rate of change in that direction [15][26].
This implies that the result of the Sobel operator at an image point which is in a
region of constant image intensity is a zero vector and at a point on an edge is a

vector which points across the edge, from darker to brighter values.

VD= /D24 D? (3.1)

© = arctan(D,/D,) (3.2)

Mathematically, Sobel edge detection is implemented using two 3x3 convolution
masks or kernels, one for horizontal direction and the other for vertical direction in
an image, that approximate the derivative in the horizontal and vertical directions.
The derivatives in the x and y directions are calculated by 2D convolution of the
original image and the convolution masks. If A is the original image and D, and D,
are the derivatives in the x and y direction respectively, equations and show
how the directional derivatives are calculated [26]. The matrices are a representation

of the convolution kernels that are used.
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-1 0 1

D,=| -2 0 2 |xA (3.3)
-1 0 1
1 2 1
D,=| 0 0 0 |*xA (3.4)
-1 -2 -1

where * denotes a 2D convolution operation.

Figure [3.2] shows the original bone image and the Sobel filtered image. As seen in
Figure [3.2p., the Sobel operator detects two edges, one of the flesh and the other of
the bone. This is a problem that needs to be addressed and solved as only the bone

boundary is needed.

(a) The original image (b) Sobel output

Figure 3.2: Sobel Edge Detection

3.2.2 Prewitt Edge Detector

The Prewitt edge detector is similar to the Sobel detector because it also approxi-
mates the derivatives using convolution kernels to find the localized orientation of
each pixel in an image. The convolution kernels used in Prewitt are different from
those in Sobel. Prewitt is more prone to noise than Sobel as it does not give weight-
ing to the current pixel while calculating the directional derivative at that point
[15]|26]. This is the reason why Sobel has a weight of 2 in the middle column and
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Prewitt has a 1 [26]. The equations and show the difference between the
Prewitt and Sobel detectors by giving the kernels for Prewitt. The same variables,
as in the Sobel case, are used. The kernels to calculate the directional derivatives

are different.

-1 0 1

Dy=|-101]|x4 (3.5)
~1 0 1
1 1 1

D,=| 0 0 0 |xA (3.6)
—1 -1 -1

where * denotes a 2D convolution operation.

Figure [3.3] shows the original bone image and the Prewitt filtered image. As seen
in Figure [3.3p., the Prewitt filter gives a similar output as the Sobel operator by
detecting two edges. Both techniques, Prewitt and Sobel, are not useful because the
complete bone can’t be separated from the X-ray as the edge boundaries are not

continuous.

(a) The original image (b) Prewitt output

Figure 3.3: Prewitt Edge Detection
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3.2.3 Roberts’ Edge Detector

The Roberts edge detectors, also known as the Roberts’ Cross operator, finds edges
by calculating the sum of the squares of the differences between diagonally adjacent
pixels [26][15]. So in simple terms, it calculates the magnitude between the pixel in
question and its diagonally adjacent pixels. It is one of the oldest methods of edge
detection and its performance decreases if the images are noisy. But this method is
still used as it is simple, easy to implement and its faster than other methods. The

implementation is done by convolving the input image with 2 x 2 kernels:

1 0 —
d 0 -1
0 —1 1 0

Figure [3.4) shows the original bone X-ray and the output of the Roberts’ edge

detector.

(a) The original image  (b) Roberts’ output

Figure 3.4: Roberts Edge Detector

3.2.4 Canny Edge Detector

Canny edge detector is considered as a very effective edge detecting technique as it
detects faint edges even when the image is noisy. This is because in the beginning
of the process, the data is convolved with a Gaussian filter. The Gaussian filtering
results in a blurred image so the output of the filter does not depend on a single noisy

pixel, also known as an outlier. Then the gradient of the image is calculated, same
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as in other filters like Sobel and Prewitt. Non-maximal suppression is applied after
the gradient so that the pixels that are below a certain threshold are suppressed. A
multi-level thresholding technique, same as the example in 2.4} involving two levels
is then used on the data. If the pixel value is less than the lower threshold, then
it is set to 0 and if its greater than the higher threshold then it is set to 1. If a
pixel falls in between the two thresholds and is adjacent or diagonally adjacent to a
high-value pixel, then it is set to 1. Otherwise it is set to 0 [26]. Figure shows
the X-ray image and the image after Canny edge detection.

(a) The original image (b) Canny output

Figure 3.5: Canny Edge Detector

The basic edge detection techniques are very basic and have some drawbacks. The
first problem is that two edge boundaries are detected when only one of them is
needed. The bone in the image needs to be separated, so only the boundary of
the bone in required. Another level of edge detection and thresholding, something
similar to[3.3.3] will be required to overcome this problem. As shown in the images,
there are many other edges that are not relevant but are still detected. So it would be
beneficial if the image were thresholded, before edge detection of any kind, to reduce

noise. But noise is unpredictable and so a general solution may not be possible.

Another instance where these methods will not work is when there are other struc-
tures or elements in the image. For example, in Figure 3.6) the X-ray image has
the fibula and the tibia bones and also a mark on the top left corner. The image
in Figure [2.4b. clearly illustrates the possible problems with edge detection. Edge

detection can’t distinguish between the two bones or the mark so it detects all the
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edges in the image. This will get worse as the number of objects in the image grows.
If these techniques don’t work for a simple bone like the tibia, they will not be

effective at all with complex bone structures like the rib-cage.

Due to these drawbacks, a more general, robust and effective solution needs to
be experimented and established. The desired solution should be able to segment
the bone out of the image even through noisy input images. It should also avoid

detecting other components in the images like the skin boundaries or other bones.

(a) The original image (b) Edges in the image

Figure 3.6: Possible problems with edge detection techniques

3.3 Image Segmentation

3.3.1 Texture Analysis

Texture analysis attempts to use the texture of the image to analyze it. Texture
analysis attempts to quantify the visual or other simple characteristics so that the
image can be analyzed according to them [23]. For example, the visible properties of
an image like the roughness or the smoothness can be converted into numbers that
describe the pixel layout or brightness intensity in the region in question. In the
bone segmentation problem, image processing using texture can be used as bones

are expected to have more texture than the flesh.

Range filtering and standard deviation filtering were the texture analysis techniques

used in this thesis. Range filtering calculates the local range of an image whereas

18



standard deviation filtering calculates the local standard deviation [23]. In the case
of range filtering, each pixel in the output image is the range, difference between
the highest and the lowest pixels, of the corresponding input pixel and the pixels
surrounding it. The standard deviation filter does a similar operation but it calcu-
lates the standard deviation of the pixels surrounding the corresponding pixel in the
input image.

These operations should make the location of the bone clear as they operate on each
pixel locally. Figure [3.7h. shows the original image and 3.7b. and [3.7c. show the
output of the range and standard deviation filters respectively. As observed from
the images, this technique works similar to the edge detection techniques because
it detects the flesh and bone boundaries. A method that uses range and standard

deviation filters and separates the bone and skin boundaries using thresholding is
discussed in section [3.3.3]

(a) The original image (b) Range fitlered image (c) Std filtered image

Figure 3.7: Range and Standard Deviation filtering

3.3.2 Feature Recognition and Segmentation

The bone and the skin were expected to have different textures. This method is
based on sampling the bone and the skin so that their properties can be studied
and the bone can be separated from the X-ray using these properties. 20 samples
of bone and skin each were taken from different places in different images and were
studied. The bone had more texture than the skin and standard filtering displayed
that. Figure[3.8h. and b. are examples of one of the bone samples and the standard
deviation filtered output respectively. Figure [3.9n. and b. are examples of one of
the flesh samples and the standard deviation filtered output respectively.
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(a) Bone sample (b) Std filtering

Figure 3.8: Bone samples and standard deviation filtering

-
(a) Flesh sample (b) Std filtering

Figure 3.9: Flesh samples and standard deviation filtering

The samples of bone and flesh were analyzed and a pattern that differentiated be-
tween them was observed. Figure [3.10] is a plot of the means of the standard
deviation filtered outputs of the 20 samples. The bone samples are represented us-
ing the red plus signs and the flesh samples are represented using the blue circles.
Even though there is no clear clustering the value of approximately 6000 can be

used to separate bone and flesh.
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Figure 3.10: Plot of the means of the standard deviation filtering of 20 bone and
flesh samples

This method was tried as a bone separation technique and the original image and the
output is shown in Figure[3.11l The performance of the method is dismal because it
is not a robust method and is based on sampling and experimentation. The cutoff

between bone and flesh properties is not well-defined in the graph as there is no
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clear clustering of the two. So a small change in intensities in an image will result
in that part of the image being wrongly classified as bone or flesh. The performance
of this method is worse compared to that of the edge detection techniques and the

standard deviation or range filtering.

(a) The original image (b) Segmented image

Figure 3.11: Feature Recognition and Segmentation method

3.3.3 Filtering and Thresholding

This method is based on the data used in this thesis and was formulated while
working with texture analysis techniques discussed above in section It is
observed that the X-ray images have two major boundaries, one on the skin and
the other of the bone. In any ideal X-ray the bone boundary is brighter than the
boundary of the skin. This can be used to separate the two and extract only the
boundary of bone. Only the bone boundary is needed to isolate the bone from the
image, so the other elements in the image are not needed. This method tries to
overcome the problem presented by the edge detection techniques of detecting two
edges. Figure [3.12] shows a process flow diagram of the process used to implement
this technique.
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Input Image Filtering — Thresholding 1 eé@a Thresholding 2 4 Output

Figure 3.12: Filtering and Thresholding method

The X-ray image is range filtered or standard deviation filtered. These filters are
those mentioned in section and both of them work well. Then the image is
thresholded with a low threshold. This first threshold is low as it reduces the noise
in the signal. The output of this stage is similar to the output of the edge detectors
as it detects both the skin and the bone edges. This output is referred to as the
mask as it is used to mask the original image. In the next stage of the process, the
mask is multiplied point-by-point to the original image. The output of this stage
shows the information in the original image at the edges in the mask, preserving
the intensities of the pixels at the edges. A second thresholding stage is applied to
separate the bone boundary as it is brighter than the skin boundary. This threshold
is higher than the one in the first thresholding stage. Figure [3.13] shows the outputs
at different stages of the process. The final image, to the extreme right, shows the

separated bone in comparison to the input image to the extreme left.

Original Image Filtering and Thresholding (Mask) Original times Mask Second Threshold
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Figure 3.13: Separation using filtering and thresholding
The working of this method can be explained with the graphs of the sum of columns

in the different images. Figure |3.14pb., shows the plot of the column-wise sum of the

original image. This is expected as the image is mostly black on the sides and has a
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lot of bright content in the middle. So the plot is like a bell curve. The bone which
is part of the bell curve needs to be separated. Figure|3.14c. shows the column-wise
sum of the image after standard deviation filtering has been applied. This acts like
a weighting function for the image. It shows the location of the relevant data on the
image. The plot of the multiplication of the mask and the original image is shown in
Figure[3.14d. The second threshold can be easily decided using this image. It clearly
shows the location of the relevant data. The peaks in this plot are the boundaries of
the bone, so the data at those locations in the original image is the bone boundary.
Then the bone can be easily separated using the boundary to get the data on the

boundary and between the two edges.

(a) The origi- (b) Plot of original image
nal image
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(c) Filtered image (d) Image before second thresholding

Figure 3.14: Plots of the sum of columns of images

Although this method will work well for most X-rays, it is very constrained. It
assumes that the bone edges are distinctively brighter than the skin edge. This
may not be the case if the bone and the skin edges have similar intensities. The
technique works for tibia bones but it may not work for other bones. This is because
the technique uses some properties like the orientation of the bone in the image that
may be different for different bones. It also needs values of two thresholds which
the user may have to estimate. These thresholds change depending on how noisy
the image is and also the pixel distribution of the components of the image. So a

technique that depends on the shape of the bone, and not on the properties of the
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image, is needed.

3.4 Deformable Models

The methods like edge detection, texture analysis and the filtering and threshold-
ing method are all basic image segmentation methods. As observed before, these
methods work well for ideal data under strict constrains. Deformable models are
statistical modeling methods that try to lock on to a shape in the image, after the

shape has been learnt from a set of training images.

Snakes [19], also called Active Snakes or Active Contour Models , are an example
of deformable models. These iterative algorithms try to minimize the sum of the
“external energy” and the “internal energy” in an image. The external energy is
also called the image energy [27]. The internal energy consists of two terms, one
representing the tension along the snake and the other represents the bending of the
curve on the image. The external energy is related to the accurate overlay of the
model to the image as it is related to weighting the edges of the image. The algorithm
attempts to minimize the sum of these two energies using a set of Fuler equations
[27]. The snake does not perform well with images that have curves or sharp bends
in them [24]. There are many modifications suggested and implemented to improve
the performance of the model. [2] suggests a way to improve the initial guess of the
model by determining a global minimum. The accuracy of the model depends on the
initial guess which depends on a local minimum in the active contour energy. The
method discussed in [2] combines segmentation and denoising models and devises a
fast way of getting a good initial guess. Figure shows the performance of the

active contour model.

Figure 3.15: Performance of ACM model [2]
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3.5 Active Shape Models

Active Shape Models work on shapes learnt from training images and then try to
locate the shape in a test image. These statistical models don’t need handcrafted
models, but they need the training of images. ASMs extract critical information
of the training images at the landmark points given by the user [24]. ASMs were
introduced and modified with a series of papers. Many other authors have extended
the model, and have used it for different applications. ASMs are described in detail

in the next chapter. A few modifications are listed below.

In the classical ASM, Cootes and Taylor [9] used a shape model that was derived
from single multivariate Gaussian distribution, but in [8], Cootes et al. experiment
with a shape derived from a mixture of multivariate Gaussians [24]. Cootes et al.
[4] also compare the performance of ASMs and Active Appearance Models (AAMs)
and observe that AAMs need fewer landmark points than ASMs [24]. But ASMs

are faster to train and experiment than AAMs.

Rogers and Graham [25] make the ASM more powerful by using advanced least-
square techniques to minimize the deviation between the actual shape and the sug-
gested shape [24]. The classical ASM may not work under certain circumstances as

it takes outliers into considerations.

Van Ginneken et al. [30] do a classification analysis and their method automatically
selects the optimum set of good descriptors for image profiles. The standard image

profile search is replaced with a k-nearest-neighbour classification [24].

There are also many implementations of the ASM algorithm. The code used in this
thesis is the modified version of the code by Ghassan Hamarneh. It is based on the

research on ASMs and the extensions made by Hamarneh et al. [I8, (11, [16] [17].
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Chapter 4

Active Shape Models

This chapter describes the workings of a typical ASM. Although there are many ex-
tensions and modifications made, the basic ASM model work the same way. Cootes
and Taylor [9], gives a complete description of the classical ASM. Section in-
troduces shapes and shape models in general. Section describes the workings
and the components of the ASM. The parameters and variations that affect the
performance of the ASM are explained in Section The experiments that are
performed in this thesis to improve the performance of the model are also described
in this section. The problem of initialization of the model in a test image is tackled
in Section Section elaborates on the training of the ASM and the definition
of an error function. The performance of the ASM on bone X-rays will be judged

according to this error function.

4.1 Shape Models

A shape is a collection of points. As shown in Figure[4.1] a shape can be represented
by a diagram showing the points or as a n x 2 array where the n rows represent
the number of points and the two columns represent the z and y co-ordinates of
the points respectively. In this thesis and in the code used, a shape will be defined
as a 2n x 1 vector where the y co-ordinates are enlisted after the x co-ordinates as
shown in [4.I¢. A shape is the basic block of any ASM as it stays the same even if
it is scaled, rotated or translated. The lines connecting the points are not part of
the shape but they are shown to make the shape and order of the points more clear
[24].
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A sample shape
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Figure 4.1: Example of a shape

The distance between two points is the Euclidean distance between them. Equa-
tion [4.1] gives the formula for Euclidean distance between two points (1, y1) and
Z2,Y2. The distance between two shapes can be defined as the distance between
their corresponding points [24]. There are other ways of defining distances between
two points like the Procrustes distance but in this thesis, the distance means the

Euclidean distance.

Ve — )2 + (w2 — 21)? (4.1)

The centroid T of a shape x can be defined as the mean of the point positions
[24]. The centroid can be useful while aligning shapes or finding an automatic
initialization technique (discussed in [4.4). The size of the shape is the root mean
distance between the points and the centroid. This can be used in measuring the
size of the test image which will help with the automatic initialization (discussed in
7).

The first stage in the ASM comprises of training images to learn the shape that
has to be found in the test image. In the training stage, aligning different shapes is
important to get the mean shape. Aligning shapes is trying to get all the shapes in
the same orientation. This means that all the shapes must have approximately the
same position in the X-Y plane or translation, the same size or scaling and the same
rotation. In the bone detection example, the bone can be anywhere in an X-ray
image, so the shape of the bone has to be learned after aligning the training bone
shapes. The bones can be anywhere in the image, can be of different sizes (although
they are the same type of bones) and can be slightly at an angle. These are common
variations in X-rays caused due to the different orientations of the patient’s body

when the X-ray is being taken.
Algorithm 1 was used by [24] to align images. This method is effective and can be

used in bone segmentation.

The similarity transform is a transform that does scaling, translation and rotation
but does not affect the image in other ways. Equation shows the similarity
transform T that rotates the point (z,y) by 6, scales it by s and translates it by

(iUu Z/t) [24]
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Algorithm 1 Aligning shapes
input set of unaligned shapes

1. Choose a reference shape (usually the 1% shape)
2. Translate each shape so that it is centered on the origin

3. Scale the reference shape to unit size. Call this shape Zj, the initial mean
shape.

4. repeat

(a) Align all shapes to the mean shape
(b) Recalculate the mean shape from the aligned shapes

(c) Constrain the current mean shape (align to Ty, scale to unit size)
5. until convergence (i.e. mean shape does not change much)

output set of aligned shapes, and mean shape

ry | T scos(f)  ssin(f) T
T(y> N (?/t )+<—ssin(9) SCOS(Q)) (y) (4.2)

A shape model defines the allowable set of shapes. This is learnt from the variations
of the training images. Figure [£.2h. shows the unaligned shapes models of the tibia

learnt from the training images. Figure |4.2b. aligns the shapes using algorithm 1.
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(a) Unaligned shapes (b) Aligned shapes

Figure 4.2: Aligning Shapes

4.2 Active Shape Models

The ASM has to be trained using training images. In this project, the tibia bone
was separated from a full-body X-ray (as shown in and then those images were
re-sized to the same dimensions. This ensured uniformity in the quality of data
being used. The training on the images was done by manually selecting landmarks.
Landmarks were placed at approximately equal intervals and were distributed uni-
formly over the bone boundary. Such images are called hand annotated or manually

landmarked training images.

Figure [4.3|shows the original image and the manually landmarked image for training.
While performing tests using different number of landmark points, a subset of these

landmarks points is chosen.

After the training images have been landmarked, the ASM produces two types of
sub-models [24]. These are the profile model and the shape model.

1. The profile model analyzes the landmark points and stores the behaviour of the
image around the landmark points. So during training, the algorithm learns
the characteristics of the area around the landmark points and builds a profile
model for each landmark point accordingly. When searching for the shape in

the test image, the area near the tentative landmarks is examined and the
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(a) The original im- (b) Manually land-
age marked image

Figure 4.3: Manually landmarked images

model moves the shape to an area that fits closely to the profile model. The

tentative location of the landmarks is obtained from the suggested shape.

2. The shape model defines the permissible relative positions of landmarks. This
introduces a constraint on the shape. So as the profile model tries to find the
area in the test image that tries to fit the model, the shape model ensures that
the mean shape is not changed. The profile model acts on individual landmarks
whereas the shape acts globally on the image. So both the models try to correct

each other until no further improvements in matching are possible.

4.2.1 The ASM Model

The aim of the model is to try to convert the shape proposed by the individual
profiles into an allowable shape. So it tries to find the area in the image that closely
matches the profiles of the individual landmarks, while keeping the overall shape

constant.

The shape is learnt from manually landmarked training images. These images are

aligned and a mean shape is formulated with the permissible variations in it [24],

T=7T+ Pb (4.3)

where

2 is the generated shape vector by the model.
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T is the mean shape, the average of the aligned training shapes x;, defined as

Nshapes
1

> @ (4.4)

nshapes i=1

T =

®is the eigenvector matrix of the covariance matrix S of the training image shape

points

1 Nshapes
Sy = ——— (z; —T)(2; — )" (4.5)
Nshapes — 1 23
Using principal components approach, the eigenvalues of the matrix are sorted from
largest to smallest. A certain number of eigenvalues are retained according to their
magnitude. The eigenvectors corresponding to these eigenvalues are kept. The other

values are ignored.

4.2.2 Generating shapes from the model

As seen in Equation different shapes can be generated by changing the value of
b. The model is varied in height and width, finding optimum values for landmarks.
Figure 4.4 shows the mean shape and its whisker profiles superimposed on the bone
X-ray image. The points that are perpendicular to the model are called “whiskers”
and they help the profile model in analyzing the area around the landmark points.
The shape created by the landmark points are used for the shape model and the
whisker profiles around the landmark points are used for the profile model. A profile
and a covariance matrix is built for each landmark. It is assumed that the profiles
are distributed as a multivariate Gaussian and so they can be described by their

mean profile g and the covariance matrix S, [24].
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Figure 4.4: “whisker” profiles of training images

4.2.3 Searching the test image

After the training is over, the shape is searched in the test image. The mean shape
calculated from the training images is imposed on the image and the profiles around
the landmark points are search and examined. The profiles are offset +3 pixels
along the whisker, which is perpendicular to the shape, to get the accurate area
that closely resembles the mean shape [24]. The distance between the test profile g

and the mean profile g is calculated using the Mahalanobis distance given by

Distance = (g — E)TSg_l(g -9) (4.6)

If the model is initialized correctly (discussed in, one of the profiles will have the
lowest distance. This procedure is done for every landmark point and then the shape
model confirms that the shape is the same as the mean shape. The shape model
assures that the profile model has not changed the shape. If the shape model were
not employed, the profile model may give the best profile results but the resulting
shape may be completely different. So, as mentioned before, the two models restrict
each other. A multi-resolution search is done to make the model more robust. This
enables the model to be more accurate as it can lock on to the shape from further
away. S0 the model searches over a series of different resolutions of the same image,
called an image pyramid. The resolutions of the images can be set and changed
in the algorithm |17, 24]. Figure shows a sample image pyramid. The sizes of

the images are given, relative to the first image. A general picture, and not a bone
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X-ray, was chosen to clearly show how a typical image pyramid looks.

(a) 1 (b) 3/4 (c) 1/2 (d) 1/4

Figure 4.5: A sample image pyramid. (Picture taken by author)

4.3 Parameters and Variations

The performance of the ASM can be enhanced using optimizing the parameters
that it depends on. Number of landmark points and number of training images are

investigated in this thesis.

The number of landmark points is an important variable that affects the ASM. The
profile model of the ASM works with these landmark points to create profiles. So
the position of landmark points is as important as the number of landmark points.
In the training images, landmark points are equally spaced along the boundary of
the bone. Images are landmarked with 60 points and subsets of these points are
chosen to conduct experiments. The impact of the number of landmark points on
computing time and the mean error (defined in Section is tested by running
the algorithm with a different number of landmarks. As the number of landmark
points is increased it is expected that the computing time increases and the error

decreases. The results are explained in Chapter [f

A training set of images is used to train the ASM. As the number of training images
increases, the model becomes more robust and intelligent. The computing time is
expected to increase as it will take time to train and create profile models for each
image. However, as the number of training images increases the mean profile and
the model performs better so the error is expected to decrease. The model in this

thesis has 12 images, 11 are used to train the ASM and 1 is used as a test image.

Figure gives an overview of the ASM. Figure [£.6p. shows the unaligned shape
learnt, from the training images. Figure [4.6p. displays the aligned shapes. The
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whisker profiles, of one of the training images, calculated by the profile model are
shown in Figure [1.6c. The mean shape calculated from the training images is shown
in Figure [4.6{d. The final output of the ASM is shown in Figure [4.6.
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Figure 4.6: Summary of the ASM

The results are interpreted in Chapter |5/ and are compared with the results in [24].
The data used in [24] was face data but comparing them with the results in this
thesis is relevant because [24] also uses the ASM model.
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4.4 Initialization Problem

The Active Shape Model locks on to the shape learnt from the training images into
the test image. It creates a mean shape profile from all the training images using
landmark points. But the ASM starts off where the mean shape is located, but it
may not be near the bone on a test image. So the model needs to be initialized or

started somewhere close to the bone boundary in the test image.

Experiments were conducted to see the effect of initialization on the error and the
tracking of the shape. It was observed that if the initialization is poor, which means
that the mean shape starts away from the bone in test X-ray, the model does not
lock on to the bone. The shape and profile models fail to perform as the profile
model looks for regions similar to those of the training images in the regions away
from the bone. So it is unable to find the bone as it is looking in a different region
altogether. The error increases considerably if the mean shape is 40-50 pixels away
from the bone in the test image. Figure [{.7h. shows the initialization. The pink
contour is the mean shape and it starts away from the bone, so the result is a poor

tracking of the bone.

il Prgess

(a) Initialization of ASM (b) Result of ASM
Figure 4.7: Poor initialization and Result
Figure [4.8| a. shows the initialization that has been changed to make it better. The
pink contour on the right is the original initialization and it is changed to a better

position to the left by visual inspection. The result shown in [4.8/b. shows how the

improved initial position can give a good result.
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(a) Improved initialization (b) Better result

Figure 4.8: Improved initialization

Now that the importance of a good initialization has been established, the different
aspects of initialization have to be inspected. The aim of initialization is to place
the mean shape close to the bone in the test image. The same variables were used
in the similarity transform to align shapes, namely translation, rotation and scaling,

are the variables used to initialize the model.

The code used in the thesis gives an option to manually select an initialization so
the user can place the mean shape according to the bone in the test image. To make
the algorithm more useful, an automatic initialization can be built into it. In the
data used in this project, the tibia was separated from the X-ray and all the images
were scaled to the same dimensions. So the scaling of the mean shape and the test
image was not a problem. Also, the images were carefully segmented so that the
tibia is vertically in the center, approximately. Chapter [6] gives suggestions to tackle
problems of initialization in the vertical (y) direction and scaling.

The initialization in the horizontal (x) direction is tested. The idea is to find the
bone boundaries and start the ASM at that location. Getting the boundary of the
bone was the problem for which ASM was used, so its not easily solvable. This time
only an approximation of the bone boundary needs to be made as the model will

correct itself.

A simple solution is to detect edges of the image (discussed in Section [3.2) and
initialize the model at several locations and test the performance. This is not an

intelligent way of addressing the problem and will also increase the computing time.
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The method of filtering and thresholding (discussed in Section can be modified
and used to get a method to initialize the model. Figure [4.9] shows a bone image
and the sum of the columns of the image. The peaks in the plot of the column
sums is the location of bone boundaries. The plot of the sums can be used to locate
the bone boundary and the mean shape can be placed accordingly. The sum of the
columns is divided into groups of 50 and the maximum values in each group are
separated. This ensures that out of two peaks that are close together, only one peak
is considered. The red line shows the mean of the two peaks, hence showing the
middle of the bone. The mean of the mean shape can be calculated using the mean

of the rows and columns and the model can be placed in the position denoted by
the red line in Figure [4.9]b.
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Figure 4.9: Bone and its column sums (as shown in Section [3.3.3))

Figure [£.10h. shows the model initialized using edge detection techniques. The
model is placed at many different locations close to the bone boundary. Figure
4.10b., on the other hand, illustrates the initialization using the method discussed
above. The approximation to the bone boundary is accurate and the result of the

ASM will be better if the model is initialized on the red contour. The blue contour,
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in both images, displays the position of the mean shape without any alterations.

Figure 4.10: Initialization methods

Although this method seems to work correctly for certain kinds of images, its per-
formance is not accurate all the time. For example, for images where the bone is not
straight, the sum of the columns will not have distinctive peaks and so the detection
of the boundaries of the bone will be difficult. The graph of the sum of columns
will have more than one peak. Figure shows an image where the initialization
method does not work well as its expected to, because the plot of the column sums
does not have two distinctive peaks as seen in Figure [£.1Ip. So the red contour
which is the initialization computed by the method is an insignificant improvement

on the blue contour which is the mean shape.
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(b) Column sum plot

(c) Initialization

Figure 4.11: Poor initialization (example 1)

Another example where the method does not perform well is shown in Figure
The bone image is shown in Figure [4.12h. The plot of the sum of all the columns
is shown in Figure [{.12b. It shows three distinctive peaks instead of two so the

initialization (red contour) is worse compared to the blue contour (mean shape). So
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this method will work for bones that are vertical in the bone images. Suggestions to
improve this method or the initialization of images in general are given in Chapter
0

(b) Column sum plot

(c) Initialization

Figure 4.12: Poor initialization (example 2)
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4.5 Model Training and Evaluation

4.5.1 Manually landmarked images

X-ray data does not have an error function or a way to measure the performance of
the ASM. Hence an error function needs to be defined to measure the performance.
So, the bone in the X-ray images is manually segmented and those images are
considered to be the “ideal” solution to the image segmentation problem. Although
this is not a good definition for an error function, the performance of the algorithm
can be tested according to it. So the output obtained from the ASM is compared to
these images, which will be called the “solution” images in this thesis. Figure [4.13
shows the original image and the solution image derived from the original. The
solution images are binary images that display the bone boundary in white while

the background is set to black.
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(a) Original image  (b) Solution image

Figure 4.13: The solution images

4.5.2 Distance Transform

As the solution images are binary images, the distance transform can be used to
estimate the goodness of fit of ASM output. If the matrix X;,defines a binary
image, then for each pixel in X;,the distance transform, also known as Euclidean
distance transform, assigns a number that is the distance between that pixel and
the closest non-zero pixel. As the solution images are binary, the distance transform
will contain the distances from all points to the part of the model close to them. So

the pixels that defined the shape in the solution image will have a value of 0 in the
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distance transform matrix, as the distance from them to the nearest white pixel is
0. As the distance transform shows the distance between each pixel and the nearest
non-zero pixel, and because the output matrix has the same dimensions as the input

matrix it can be used to define an error function for the ASM output.

(a) Original Image (b) Distance trans-
form

Figure 4.14: The distance transform of an image

4.5.3 Defining the error

The distance transform is used to formulate an error function. The error function
compares the distance between the solution image and the ASM output. This can be
done easily by checking the value of the distance transform matrix at the landmark
points of the ASM output. This is another reason why landmark points should be
chosen carefully. The error is calculated at the landmark points and then the mean