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ABSTRACT 
 
A country’s ability to sustain and grow its industrial and commercial activities is 

highly dependent on a reliable electricity supply. Electrical faults on transmission 

lines are a cause of both interruptions to supply and voltage dips. These are the 

most common events impacting electricity users and also have the largest financial 

impact on them. This research focuses on understanding the causes of 

transmission line faults and developing methods to automatically identify these 

causes. 

 

Records of faults occurring on the South African power transmission system over a 

16-year period have been collected and analysed to find statistical relationships 

between local climate, key design parameters of the overhead lines and the main 

causes of power system faults. The results characterize the performance of the 

South African transmission system on a probabilistic basis and illustrate differences 

in fault cause statistics for the summer and winter rainfall areas of South Africa and 

for different times of the year and day. This analysis lays a foundation for reliability 

analysis and fault pattern recognition taking environmental features such as local 

geography, climate and power system parameters into account. 

 

A key aspect of using pattern recognition techniques is selecting appropriate 

classifying features.  Transmission line fault waveforms are characterised by 

instantaneous symmetrical component analysis to describe the transient and steady 

state fault conditions. The waveform and environmental features are used to 

develop single nearest neighbour classifiers to identify the underlying cause of 

transmission line faults. A classification accuracy of 86% is achieved using a single 

nearest neighbour classifier.  This classification performance is found to be superior 

to that of decision tree, artificial neural network and naïve Bayes classifiers.  

The results achieved demonstrate that transmission line faults can be automatically 

classified according to cause. 
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CHAPTER 1 
 

1. INTRODUCTION 
 

This chapter motivates the reasons for undertaking the research and defines the objectives and scope of the thesis. 

 

Modern society is dependent on an electrical supply that is both reliable (Alvehag & 

Soder, 2011) and compatible with the needs of equipment connected by utility 

customers (Cigre, 2011).  

A country’s ability to sustain and grow its industrial and commercial activities is 

highly dependent on a reliable electricity supply. Supply interruptions and voltage 

dips are the two most common events impacting customers and also have the 

largest financial impact on customers. These events disrupt commercial activities 

and manufacturing processes, resulting in decreased output and profitability 

(Chowdhury & Koval, 2000).  

 

Long duration interruptions have the greatest impact, as borne out by major events 

such as the New York and Italian blackouts of 2003 as well as the extensive 

interruptions that occurred in South Africa in early 2008. However, shorter 

interruptions and voltage dips also have an economic impact on customers due to 

processes or services being interrupted (Cigre, 2011). 
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Transmission lines play an important role in providing an electricity supply to 

customers that is both reliable and within voltage dip compatibility levels of 

customer equipment. Faults on transmission lines are a root cause of both 

interruptions and voltage dips (Cigre, 2011).  The focus of this thesis is on the 

characterisation and classification of transmission line faults with the aim of 

improving the reliability of transmission power lines.   

 

1.1 Improving Transmission Reliability 

Historically, deterministic criteria have been used for the planning and design of 

transmission systems. Reliability can be improved by increasing capital and 

operational and maintenance expenditure to reduce the frequency and duration of 

faults; this however risks over-investment and consequently higher electricity tariffs 

to be paid by customers (Chowdhury & Koval, 2000).  The need for a reliable 

electricity supply is balanced by the need to minimise the cost of operating the 

transmission system.  

 

Deterministic methods do not account for the stochastic nature of failures, customer 

demand or power system behaviour (Chowdhury & Koval, 2000). Probabilistic 

techniques for power system simulation and analysis have been developed to 

account of the stochastic nature of power system behaviour (Edimu, et al, 2011). 
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Decreasing the time taken to restore a line after a fault has occurred is another way 

in which transmission system operators can improve network reliability.  During the 

course of a typical fault on a transmission line, the network control operators will 

estimate the probable location of a fault based on available system information and 

measurements. A field operator is dispatched to determine the location and cause 

of a fault prior to restoring the line (Xu, et al, 2005).  This process may be 

completed within a few minutes or may take several hours to complete. In the event 

where the root cause is uncertain, an extensive section of line may be patrolled 

prior to the line being restored.  

Understanding the causes of line faults and the impact these have on the reliability 

of the transmission system can play an important role in decision-making for 1) 

planning and design, 2)    maintenance and 3) operation of the network to improve 

reliability.  

Automatic classification of faults according to cause has primarily been explored as 

a means to reduce the time it takes to restore a distribution line to service (Xu & 

Chow, 2006) as well as identifying the cause of power quality disturbances i.e. 

voltage dips (Bollen, et al, 2007). 

 

1.2 Objective and Research Hypothesis 

Based on the identification of the benefits of a fault classification system and the 

work that has been done towards such an approach, a hypothesis arises to the 

effect that: 
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Transmission line faults can be classified according to their underlying event 

cause using statistical pattern recognition techniques; however this requires 

knowledge of the external environment influencing the event.    

The overall aims of the research is to 1) improve  understanding  of the impact that 

the climate and environment has on the  causes and frequency of faults on the 

South African transmission network; 2) identify electrical fault waveform 

characteristics relevant to identifying fault causes and 3) ultimately automate the 

classification of transmission line faults using statistical pattern recognition 

techniques. 

To achieve this aim, the following research questions are addressed: 

• What are the primary causes of faults on transmission lines on the South 

African transmission network and how do they impact the fault frequency 

performance? 

• Can significant variables related to interruption performance be identified? 

• Can event characteristics be identified that are relevant features for 

automatically classifying transmission line faults according to underlying 

cause? If so, which characteristics are these? 

• Can faults be classified using only electrical waveform characteristics? 

• What classification performance is achieved?  

 

1.3 Thesis Structure  
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Chapter 2 describes the primary causes of transmission line faults on the South 

African transmission system.  Chapter 3 presents an analysis method relating 

frequency of faults on overhead lines to local climate.   Fault analysis by time-of-day 

and time-of-year (season) is presented. The statistical significance of the 

differences between mean fault frequencies for fault causes, climate, time of day 

and season is established.  Chapter 4 investigates the characterisation of 

measured fault waveforms.  Chapter 5 discusses the classification of transmission 

line faults according to underlying causes and Chapter 6 concludes with a 

summary of the findings and an assessment of the research hypothesis.  
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CHAPTER 2 
 

2. CAUSES OF TRANSMISSION LINE FAULTS  
 

This chapter discusses the existing literature pertaining to transmission line faults and their analysis. Statistical 
pattern recognition is reviewed, including the characterisation and classification of power system events. 

 
The geographic location of a power system plays an important role in the frequency 

and causes of faults to which it is exposed (Pahwa, et al , 2007). 

Vosloo investigated fault causes on the South African transmission system and 

concluded that the majority of transmission network faults are “…in one way or 

another connected to natural phenomena such as weather and climate or occurs as 

a consequence thereof.”  (Vosloo H , 2005).  In 2004 a list of primary fault causes 

and sub-categories was introduced by Eskom to allow analysis of faults that could 

be traced to the root cause of faults (Vosloo H , 2005), as listed in table 2.1.  
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Table 2.1: Causes of Transmission faults. 

Primary Category Sub-Category 

Bird Streamer 

  Pollution 

  Nest 

Fire Veld 

  Cane 

  Refuse 

  Fynbos 

  Reed 

Lightning   

Pollution Bird pollution 

  Fire 

  Industrial 

  Marine 

Tree Contact Alien 

  Indigenous 

Unclassified   

Other   

 

Faults due to ‘other’ causes include events due to occurrences such as failure of 

hardware, poor workmanship, tree contact, impact of foreign objects, theft and 

vandalism.  

Wind and lightning have been identified as two major weather-related causes of 

outages (Alvehag & Soder , 2011).  The Eskom classification, in contrast, does not 
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include wind as a major cause of faults in South Africa as the transmission system 

is only rarely affected by extreme wind conditions with a low frequency of 

occurrence. The primary categories of fault causes identified in in table 2.1, while 

not an exhaustive list of all possible fault causes, provide an appropriate list of fault 

causes commonly occurring on the South African transmission network. The 

classifications used by a utility will consider faults that occur on their network 

(Pahwa, et al , 2007). The major fault causes identified are birds, lightning, fire and 

pollution (Vosloo H , 2005).   

 

2.1 Characteristics of Major Fault Causes  

2.1.1 Bird 

Birds predominantly cause flashovers on power lines in three ways i.e. bird 

streamers, pollution and electrocution (Vosloo, et al, 2009) along two different 

flashover paths illustrated in figure 2.1. 
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Figure 2.1: Two different flashover mechanisms and paths are demonstrated 
(Vosloo et al. 2009) 

 

2.1.2 Bird Streamer 

Bird streamers were first identified as a cause of unknown transmission line faults in 

California in the 1920’s (Michener, 1928).  Flashovers are caused by large birds 

(vultures, herons, hadeda, ibis and the bigger raptors) excreting long streamers 

which short circuit the air gap between the structure and the conductor  (Van 

Rooyen, et al, 2003). 
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Flashovers using simulated streamers have been successfully reproduced under 

laboratory conditions in the USA (West, Brown and Kinyon 1971) and South Africa 

(Burger & Sarduski, 1995). 

Experiences with bird streamer flashovers have been documented by Burnham in 

Florida (Burnham, 1995), who provided a list of characteristics associated with bird 

streamer occurrence. Single-phase-to-ground faults due to bird streamers have 

also been reported on Turkey’s 420kV transmission lines (Iliceto, et al, 1981) and 

on South Africa’s transmission and distribution networks (Van Rooyen, et al, 2003).  

Birdguards (anti-perching devices) have been employed extensively as a solution 

on transmission towers in Turkey (Iliceto, et al, 1981) and Eskom implemented a 

national program to fit birdguards on transmission lines throughout South Africa on 

lines with a high frequency of bird streamer faults. 

 

In table 2.2 the characteristics identified in (Burnham, 1995) in are associated with 

three spheres of electricity transmission planning and operation i.e. network 

planning, network control and field services.  



11 

 

Table 2.2: Bird Streamer Event Characteristics associated with interested sector 
of electricity transmission. 

Interested 
sphere 

Event characteristics 

 • Presence of large bodied birds  

• A lack of natural roosting spots such as trees 

• Presence of dead or injured birds near structures after an 
outage 

• Outages which can be explained by bird behaviour and 
structure design: 

o Birds prefer outside end of crossarms 

o Birds avoid high voltage stress 

o Birds avoid side of structure facing parallel lines 

o Birds prefer side of structure facing water, lakes, 
swamps canals, fields etc. 

o Structure must offer  roost above energized parts 

o Short air gaps are more susceptible 

• Features of flashed insulators/hardware/structure: 

Flashed insulator with dropping residue 

o  Absence of flashmark on insulator 

o flashmark on crossarm or conductor hardware or only 
one end of an insulator 

Fi
el

d 
se

rv
ic

es
 

• Instantaneous relay actions  with successful reclosure, limited 
to one or two per night tending to occur in the same area 

N
et

w
or

k 
pl

an
ni

ng
 

N
et

w
or

k 
co

nt
ro

l 

• Bimodal temporal distribution of outages — distinct peaks at 
06:00 and 22:00 

• Seasonal pattern related to presence of birds or their feeding 
habits 
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One of the key attributes of bird streamer faults is a clear diurnal and seasonal 

pattern of occurrence.  Although the variation has operational significance, it also 

affects planning because the time-based distribution of incidents affects the 

probability of multiple outages at the same time. 

The diurnal and seasonal patterns associated with bird streamers provide an 

indication of characteristics by which this type of fault may be identified by 1) 

operators or 2) classification systems. 

2.1.3 Bird Pollution 

Streamers from smaller birds do not bridge the air gap on towers; instead these 

cause a pollution coating to build-up along the insulator string. Unlike the streamer 

mechanism that bridges the air gap and initiates faults immediately, the polluted 

insulators flash over along the insulator surface when appropriate wetting occurs 

some time later (Macey, et al, 2006).  

2.1.4 Electrocution 

The interactions between birds and power lines differ according to the voltage of the 

line. Faults due to the electrocution of birds bridging the conductors-to-tower air gap 

by the wings and body occur primarily at voltages of and below 132kV where 

clearances are smaller than on higher voltage lines (Van Rooyen, et al,  2003). An 

implication of this is that fewer faults due to the electrocution of birds would be 

expected on transmission networks when compared to distribution networks. 
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2.1.5 Lightning 

Rainfall in South Africa is generally divided into two seasons namely 1) winter 

rainfall in the western and south west part of the country and 2) summer rainfall in 

the central, northern and eastern regions. Rainfall in the southern part of the 

country is distributed throughout the year (Jandrell , et al, 2009) 

Summer rainfall in South Africa is generally associated with summer thunderstorms 

and lightning i.e. convectional rainfall (Jandrell, et al, 2009).  The lightning incidence 

is very low for the winter rainfall region, which is characterised by frontal activity, 

and in the all-year rainfall region in the south.   Lightning, therefore has a seasonal 

pattern of occurrence, primarily occurring during summer. 

Eskom previously operated a LPATS (Lightning Position and Tracking System) 

system to detect lightning. Since 2006 this has been replaced by FALLS (Fault 

Analysis and Lightning Location System) operated by the South African Weather 

Services due to the previous system reaching the end of its life and not meeting 

operational requirements  (Evert & Schulze , 2005). 

2.1.6 Fire 

Air normally acts as an isolation medium between live conductors and the ground 

due to its di-electric properties. During a fire the properties of air change due to 

smoke and particles that occur between the lines and the ground, possibly resulting 

in a flashover. Three theoretical models have been proposed to explain the reasons 

for this and these relate to 1) reduced air density, 2) presence of conductive 

particles in the air and 3) conductivity of the flames (Sukhnandan & Hoch, 2002). 
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Faults are commonly caused by veld and sugar cane fires under lines and line 

servitudes are cleared of vegetation to reduce the risk of fires under transmission 

lines.  Veld fires affecting transmission lines commonly occur during the winter 

months in South Africa (Vosloo H, 2005). 

To minimise the problem of line faults due to fires Eskom uses the Advanced Fire 

Information System (AFIS) (Davies, et al, 2008). AFIS utilises the data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and 

Aqua earth orbiting satellites as well as the SEVIRI (Spinning Enhanced Visible and 

Infrared Imager) sensor to detect fires. The AFIS system alerts users of fires near 

transmission infrastructure, archives fire events and allows access and retrieval of 

the archive via a web-based application. This has led to the following benefits 

(Mcferren & Frost, 2009): 

• Improved management of flashovers  

• Better overview of fires and 

• Increased planning decision-support for vegetation management close to 

transmission lines. 

2.1.7 Environmental Pollution of Insulators 

The pollution flashover mechanism is mainly a function of the properties of the 

insulator surface.  For hydrophilic surfaces, such as glass and ceramics, the 

surface wets completely so that an electrolytic film covers the insulator; 

hydrophobic surfaces, such as silicone rubber, cause the water to bead into 
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separate droplets preventing the formation of a continuous layer (Macey, et al, 

2006). 

The two main pollution processes are (Macey, et al, 2006): 

• Pre-deposited pollution of salt and industrial particulates that accumulates 

over time and needs to be wetted to form a conducting electrolyte. Although 

the effect of bird deposits is similar to this effect, it’s classified under birds 

because it helps to identify mitigation approaches. 

• Instantaneous pollution that is already a conducting electrolyte. 

Methods and techniques to assess the severity of pollution at a particular site 

include: surface deposit technique to determine the level of pollution on an 

insulator, directional dust deposit gauges, site severity classification and automated 

insulator pollution monitoring (Macey, et al, 2006). 

2.1.8 Analysing Transmission Line Faults 

Transmission line fault and reliability statistics have been reported as faults per year 

(faults/year) as well as being scaled by line length i.e. faults per 100 kilometres of 

line per year (faults/100km/year) (Chowdhury & Koval , 2000).  Assessing and 

reporting faults in this manner provides useful information to utilities for: 1) 

establishing performance benchmarks for future reliability 2) developing reliability 

criteria and design standards and 3) identify deteriorating line performance over 

time and identifying lines/networks that require reinforcement (Chowdhury & Koval,  

2000) 
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Bird streamer, fire and lightning faults have distinct seasonal variations of 

occurrence, which affects the seasonal reliability performance of transmission 

networks.   Seasonal performance has been reported in the USA for the Mid-

Continent Power Pool by reporting statistics for winter and summer (Chowdhury & 

Koval, 2008). 

Herman and Gaunt (2010) introduce a time dependent characterisation of 

interruptions that recognises the impact of time-of-day and season on fault cause. A 

4 by 4 matrix characterising interruptions by time-of-day and season is presented 

that represents statistics for frequency according to six-hourly time blocks and 

seasons. 

Table 2.3: 4 by 4 matrix representing fault statistics (Herman & Gaunt, 2010) 

 

Table 2.3 illustrates fault statistics (e.g. fault frequency) represented in a 4 by 4 

matrix as mean (σ) and standard deviation (µ).  This type of characterisation allows 

a time-dependant probabilistic approach to be used for network reliability analysis 

(Edimu,  et al, 2013). 
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2.2 Waveform Characterisation for Event Classification 

Characterisation of event waveforms (e.g. voltage dips) is applied to reduce data, 

interpret and characterize events for analysis and management of power quality 

(IEC, 2008). Methods proposed and used for this purpose include the ABC 

classification (Bollen, 2003) and the South African NRS048-2 voltage dip 

characterisation (NERSA, 2007). The aim of characterisation  here is  to describe 

events  with a limited number of parameters (Koch, et al, 2001).  

 

Characterisation can also be conducted with the aim of doing automatic 

classification of disturbances (Bollen, et al, 2007).  The aim of characterisation is 

then “to find common features that are likely related to specific underlying causes in 

power systems” (Bollen, et al, 2009). A number of signal processing techniques, 

including root mean square (rms), Fourier and wavelet transforms (Fernandez & 

Rojas, 2002), have been used to extract features and characterize events for 

automatic classification. These techniques are used to address a number of issues 

that are relevant to characterising disturbances, including: finding the fundamental 

voltages/currents and their harmonics; detecting transition points in waveforms; 

waveform segmentation and feature extraction (Gu & Styvaktakis, 2003).   

A number of methods have been applied for the characterisation of voltage dip 

events. Characterisation for voltage dips is usually done to reduce data, interpret 

and characterise events (Minnaar, et al, 2010). Methods applied for segmentation 

and characterisation of voltage dip waveforms events include the rms method, User� 14/1/30 12:05 PM
Deleted: Fourier
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Fourier and S-transforms, wavelet analysis, multi-resolution S-Transform as well as 

the Park vector (Gargoom, et al, 2005).  

2.2.1 RMS Method 

The general equation used to calculate RMS is: 

 

 Event identification via RMS is done by comparing change in magnitude with a 

predetermined threshold. Application of RMS requires simple signal processing and 

is recognised as being very efficient. It is widely used in power quality instruments 

that monitor RMS 

The importance of phasor information is recognised and introduced via a method to 

deduce phasors from RMS voltages for analysis purposes (Bollen et al, 2003). 

For analysis purposes a method of segmentation based of rate of change is 

introduced (Styvaktakis et al, 2002) and finds application in a classification system 

based on RMS voltage only. 

2.2.2 Short-Time Fourier Transform 

The short time Fourier transform of a signal v[k] is: 
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Where ω=2πn/N, N is the length of v[k], n=1……N, and w[k-m] is a selected 

window that slides over the analysed signal 

The STFT has limitations due to its fixed window length, which has to be chosen 

prior to the analysis. This drawback is reflected in the achievable frequency 

resolution when analysing non-stationary signals with both low and high-frequency 

components (Gargoom et al, 2005). 

2.2.3 Multi-resolution S-Transform 

The S-Transform is described as being either a phase-corrected version of the 

wavelet transform or a variable window Short Time Fourier transform that 

simultaneously localizes both real and imaginary spectra of the signal (Perez & 

Barros, 2006). It is defined by convolving the analysed signal, v[k], with a window 

function. The S-transform of a discrete signal v[k] can be calculated as: 

 

Where k,m and  n = 0,1……N-1  and V[m+n/N] is the Fourier transform of the 

analysed signal v[k]   ω=2πn/N, N is the length of v[k] 

2.2.4 Park Vector – DQ Transform 

Park’s vector is based on the instantaneous vector sum of all of the three phase 

vectors (v1, v2, v3).  The Park transform finds general application in the field 

oriented control of induction motors. The vector components (vd, vq) are given by 

(Gargoom et al, 2005): 
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2.2.5 Wavelet Analysis 

The wavelet transform is based on the decomposition of a signal into daughter 

wavelets derived from the translation and dilation of a fixed mother wavelet.  The 

general formula is given by:  

The most popular applications of wavelets are (Fernandez & Rojas, 2002): 

• Power system protection 
• Power quality 
• Power system transients 
• Partial discharge 
• Load forecasting 
• Power system measurement 

 

2.2.6 Application of Characterisation Methods 

The majority of studies have focussed on identifying characteristics by which 

various events may be classified according to the disturbance type e.g. dips, 

transient and swells (Gu & Styvaktakis, 2003).  It has been recognised that while 

this work is relevant for developing methods, its practical value is limited (Bollen, et 

al, 2007). A further challenge in waveform characterisation is a shortage of data 

with many studies utilising synthetic data for characterisation and classification 
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purposes, leading to results with limited application to real-world scenarios (Bollen, 

et al, 2007). 

Characterising events according to their underlying causes is of more practical 

value, as it allows utilities to respond appropriately to individual events as well as 

put solutions in place to mitigate against specific causes, but limited work has been 

published in this regard. Characterisation and classification of faults due to causes 

internal to the power system (e.g. transformer energizing, load changes and motor 

starting) has been explored and characterised via rms and  Kalman filtering  

(Styvaktakis, et al, 2002).  Characterisation via rms has the following 

disadvantages: dependency on window length and time interval for updating values, 

the magnitude and duration of an event may vary with a change in selection of 

these two parameters; no phase angle and no point-on-wave for start of event 

information is available  (Gu & Styvaktakis, 2003). 

Characterisation and analysis of external faults based on the voltage and current 

waveforms has been investigated for causes such as lightning, tree and animal 

contact and cable faults (Barrera, et al, 2012). Features are obtained from voltage 

and current waveforms recorded at distribution substations (12.47kV) for a relatively 

small sample of 180 events. Features obtained through waveform characterisation 

by Barrera et al (2012) include: maximum zero sequence current and voltage, fault 

insertion phase angle (FIPA), maximum change of current and voltage magnitudes 

(phase and neutral) as well as maximum arc voltage. 
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2.3 Statistical Pattern Recognition and Classification 

Pattern recognition can be described as the science of information procedures that 

are able to classify, describe and label measurements (Jonker, et al, 2003)  

A traditional description of a pattern recognition system includes stages such as: 

sensing, data pre-processing (e.g. segmentation), feature extraction and 

classification (Duin, et al, 2002). This is illustrated in Figure 2.2 

 

Figure2.2: Description of a Pattern Recognition System (Duin, et al, 2002) 

 

Issues that need to be addressed when developing a statistical pattern recognition 

system may include: choice of features and feature extraction, training classifiers 
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with small and unbalanced data sets and making use of prior knowledge (Duin, et 

al, 2002).  

Design of classifiers may be done along a number of strategies depending on the 

information available.   For applications where the class-conditional probabilities are 

known, the optimal Bayes decision rule can be used for classifier design.  

Parametric problems are those where the form of the class conditional densities is 

known (e.g. Gaussian) but some parameters are unknown.  Where the form  of the 

class-conditional probabilities are unknown then it is described as a non-parametric 

problem and the density function can either be estimated or the decision boundary 

directly constructed from the training data (e.g. k-nearest neighbour). For the 

majority of real-world classification problems, the underlying cause probabilities and 

class-conditional probabilities are unknown (Jain, et al, 2000).  

Irrespective of the classifier used, the performance depends on the number of 

training samples available and values of these samples. The goal of a classification 

is not to maximise the classification on the training set but to generalise its 

classification performance to data which was not included in the training set. 
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2.4 Classification of Power System Events 

Extensive work has been conducted internationally towards developing pattern 

recognition techniques for recognition of power system events.  This includes 

identifying the presence and classifying the faulted phases e.g. single-phase-to-

ground fault or phase-to-phase (Ziolowski, et al, 2007) and fault location (Mora-

Florez, et al, 2009). These studies make use of both simulated and measured data 

from fault recorders on power systems. Much less work has been conducted with 

the aim of identifying the underlying causes of events (Gu & Styvaktakis, 2003). 

One such study uses the CN2 induction algorithm to determine a set of 

classification rules to identify four causes (lightning, tree, cable and animal caused 

faults) for distribution networks (Barrera, et al, 2012).  

A number of efforts have been made to classify events that occur on distribution 

power systems according to their root causes.  Work focusing on identifying animal-

caused faults on distribution systems includes: using discrete wavelet transforms in 

combination with artificial immune systems (Xu & Chow, 2008), Bayesian networks 

(Teive, et al, 2011), artificial neural networks (Chow, et al, 1993) and fuzzy systems 

(Meher & Pradhan, 2010).  Artificial neural networks (ANN) and linear regression 

have been used to classify tree- and animal-caused faults based on distribution 

utility outage data (Xu & Chow, 2006).  Other methods applied to automatically 

diagnose the root cause of faults include support vector machines (Barrera, et al, 

2012), expert systems for classifying events from measurements i.e. voltage step 

change, transformer energizing (Styvaktakis, et al, 2002), as well as linear 

discriminant analysis (Cai & Chow, 2009). The majority of these studies have 
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focused on outages and faults on distribution networks, with very few studies aimed 

at root cause identification of transmission line faults (Ravikumar, et al, 2008).  

2.4.1 Feature Subset Selection 

Feature subset selection is the process of finding a subset of the original features 

that generates a classifier with the highest possible accuracy. This is done by 

selecting from an existing set of features as opposed to constructing new features 

(Kohavi & John, 1997).  Feature subset selection may be done using domain 

knowledge to select ad hoc features or by feature selection methods, which can be 

divided into 3 categories (Guyon & Elisseef, 2003): 

 1) filter methods select/rank features based on criteria that are independent of a 

classifier (this often results in features which are not optimised for a specific 

classifier); 2) wrapper methods select an optimal subset of features tailored to a 

given classifier and 3) embedded methods that conduct feature selection as part of 

the process of training a specific classifier (i.e. the training and feature selection 

cannot be separated).  

Feature selection is usually applied to meet one or more of the following objectives 

(Guyon, 2008): 

• Improve classification performance 

• Reduce computational requirements 

• Reduce data storage requirements 

• Reduce cost of future measurements 

• Improve data or model understanding. 
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2.5 Conclusions 

This review has identified birds, lightning, fire and pollution as the primary causes of 

faults on South African transmission lines.  Seasonal patterns of occurrence are 

recorded for fire, lightning and bird streamer faults, with bird streamers also 

showing a distinct diurnal pattern of occurrence. 

Analysis to recognise the impact of season and time-of-day has been found for 

faults occurring in the USA and South Africa. A 4 by 4 matrix for time-dependent 

analysis is highlighted. 

The characterisation of fault waveforms to identify fault causes has been shown to 

have practical value; however efforts in this direction have been limited due to a 

shortage of measurement data. Characterisation has been conducted for internally 

caused faults as well as distribution faults with limited datasets of voltage and 

current measurements.     The following features have been identified as applicable 

for characterising fault waveforms: maximum zero sequence current and voltage, 

fault insertion phase angle (FIPA), maximum change of current and voltage 

magnitudes (phase and neutral) as well as maximum arc voltage. 

A description of a statistical pattern recognition system has been presented along 

with a discussion on factors that need to be considered in the design thereof: 

choice of features, feature extraction as well as the training and design of the 

classifier. 
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Work conducted to classify faults according to cause has used a number of 

classifiers including: artificial neural networks, the CN2 algorithm, fuzzy systems, 

expert systems, support vector machines and linear discriminant analysis. 
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CHAPTER 3 
 

3. ANALYSIS OF TRANSMISSION LINE 
FAULTS IN RELATION TO WEATHER AND 
CLIMATE 

 

This chapter presents an analysis method relating frequency of faults on overhead lines to local climate. Fault 
analysis by time-of-day and time-of-year (season) is presented and the statistical significance of the differences 
between mean fault frequencies for fault causes, climate, time of day and season is established. 

 

This analysis proposes the characterisation of power system performance by 

weather and climate. Since many of the causes of faults are characterised by 

seasonal or diurnal variation, the mean and variance of the frequency of faults can 

be analysed for a 4 by 4 matrix of time-of-year or season, and time-of-day (Herman 

& Gaunt, 2010). The steps of the analysis are: 

• Associate each transmission line to a rainfall area i.e. thunderstorm or frontal 

• Characterise transmission system fault records according to the major cause 

types 

• Characterise faults by time-of-day and seasonal quadrants. 

For all causes of faults, the fault incidence is generally scaled by the line length, 

representing the exposure to the stress or cause of fault. For this case the grid 

management regions names adopted in Eskom serve as geographic indicators that 

can be used to link individual lines to the regional severity as depicted in maps. 

3.1 Database and Management 
User� 14/1/17 1:00 PM
Deleted: Management of Data
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Fault data records were collated in spreadsheet format with standardised line 

descriptions, geospatial information system (GIS) number assigned to lines, line 

length, line design and operating voltages, start date and time of event, original fault 

description, assigned fault cause and sub-cause, and Eskom Transmission grid 

region. The issues and processes documented for gathering and cleaning up the 

fault data on the Eskom transmission network for analysis purposes include (Vosloo 

2005): 

• A lack of knowledge concerning fault mechanisms in earlier years 

• Incorrect application of line naming convention  

• Changes in line configuration  

• Vague descriptions by operators, e.g. storm, where there is no indication of 

whether the fault is due to a lightning strike or wetting of a polluted insulator and 

consequent fault 

• Recording of “fire” as a cause where investigation records indicated that the fire 

had been put out prior to the fault occurring. 

The data was complemented with data from the Eskom GIS database on 

transmission lines which includes geographic co-ordinates for each transmission 

tower (longitude, latitude, height above sea level). 

The event spreadsheet was inspected to ensure that all relevant fields were 

populated, naming conventions were standardised and the GIS number assigned 
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matched the line description. The GIS number assigned to lines was utilised as the 

reference for consistent linkage of events to lines. 

The ground flash density (Ng) map displayed in figure 3.1 illustrates Ng in 20 km 

squares.  Ground flash density per line is calculated for each square, and each 

tower within a square is assigned a value for flash density equal to that for the 

square within which it is located. The flash density per line is calculated by 

averaging Ng across the towers that comprise a transmission line. 

For the purpose of this analysis, the country was divided into two areas indicating 

the dominant nature of rainfall activity that is present i.e. frontal rainfall activity (F) 

occurring during winter and thunderstorm rainfall activity (T) occurring during 

summer.   

 

Figure 3.1: Ground flash density (Ng) map with transmission lines of South 
Africa for 2006-2010 (Eskom, 2010). 
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A database was constructed that: 

• grouped Eskom’s transmission grid regions according to the thunderstorm 

and frontal activity areas illustrated in figure 3.1. The geographic areas 

assigned to the management regions can be divided neatly with the southern 

and western grid management regions  (which cover the western lower lying 

parts of South Africa) falling in the frontal activity areas and the other four 

grid management regions falling into the thunderstorm activity area; 

• linked the transmission lines with grid regions; and 

• linked fault data with respective transmission lines. 

The construction of the database in this manner ensures that 1) data integrity is 

kept with respect to line and regional data, and 2) event data can be analysed with 

respect to geographic context.  

The original faults dataset consisting of 12229 events was reduced to 11753 for 

analysis due to: 

• Events occurring on lines without GIS numbers assigned, and 

• Events occurring on lines not described in the lines dataset extracted from 

the GIS database. 
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3.2 Transmission System Results and Discussion 

3.2.1 Fault Data 

A total of 12229 faults occurred on the Eskom transmission overhead lines during 

the period 1993 to the end of 2009. Figure 3.2 illustrates the breakdown of fault 

causes according to the primary categories in table 2.1. This fault data was 

collected by field operators, reviewed and cleaned up as described in section 3.1. It 

forms the basis for a) the fault analysis conducted and b) the source of data for 

automatic classification. 

 

Figure 3.2: Transmission Line Fault Causes - 12229 faults from 132 kV to 
765kV. 
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The four most significant individual causes of faults are birds, lightning, fire and 

pollution, together causing 89% of all faults. 

The average fault frequency for the two rainfall areas, as well as the entire country, 

depicted in table 3.2 shows that lines located within the summer rainfall area of 

South Africa have a higher fault frequency than those within the frontal activity area. 

Table 3.2: Fault Frequency Statistics. 

Rainfall Activity 
Total Line 

Length (km) 
Fault frequency 

(faults/100km/year) Std Dev 

Thunderstorm 18416 2.856 0.649 

Frontal 7906 1.581 0.265 

Whole country 26322 2.458 0.451 

 

The fault frequency statistics for the major voltage levels are presented in figure 

3.3.   

These results provide indicative values of fault performance for transmission lines 

at the respective voltage levels within the identified rainfall areas for planning future 

networks.  Analysis is conducted along voltage levels due to differences in   design 

features at respective voltage levels e.g. clearances, which may influence 

performance with respect to different fault types. 

3.2.2 Fault Frequency by Rainfall Activity Area – 400kV lines 

Lines operated at 400kV comprise the bulk of the South African transmission 

system with extensive exposure to both frontal and thunderstorm activity. Figure 3.3 

illustrates quite clearly that the average fault frequency for 400kV lines in the 



34 

 

thunderstorm activity area is significantly higher than those located in the frontal 

rainfall areas.  

 

Figure 3.3: Fault frequency per 100 km per year per rainfall activity area 

 

Visually inspecting the fault frequency of 400kV lines based on the primary fault 

causes shown in figure 3.4, indicates the following: 

• The fault frequency for faults caused by fire and lightning is  higher in the 

thunderstorm rainfall area than in the frontal rainfall area 

• The fault frequency of pollution faults is higher in the frontal rainfall area 

compared with the thunderstorm rainfall activity  

• There are insignificant differences in fault frequency for bird streamers and 

“other” fault causes between the two rainfall areas 
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• using the dominant rainfall activity as a climatic indicator for characterising 

faults appears to be useful because rainfall and lightning are associated 

together in the thunderstorm region, and rainfall and fire are indirectly related 

in that the absence of rain during the winter months leads to dry conditions 

with high levels of light combustible fuels e.g. dry grass.   

 

Figure 3.4: Average 400kV line fault frequency statistics by fault cause per 
100 km per year 

 

The frequency of faults due to fire, lightning and pollution are directly related to the 

existing local climate as represented by the nature of the rainfall activity in the area. 

Further, this analysis provides a clear indicator of the fault causes for which local 
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climate plays a much smaller role in the frequency with which they occur e.g. bird 

streamers.  

This analysis identifies where relationships exist between local climate and causes 

of power system faults. The impact of local climate on transmission line 

performance is illustrated by the differences in overall line performance and the line 

performance for individual fault causes in the two climatic regions.  

3.2.3 Time-of-day and time-of-year analysis 

The time-of-day and time-of-year analysis for networks and specific fault causes 

can be graphically represented using bar charts that associate seasonal and time-

of-day intervals with interruption indices in a similar manner to the 4 by 4 matrix 

intervals proposed for system reliability studies (Herman & Gaunt, 2010).  Using a 

limited number of fault causes and time-season categories ensures sufficient 

events for statistically significant samples while achieving a useful distinction 

between them. Table 3.3 presents the diurnal and seasonal fault frequency data 

(mean and standard deviation) for the 400kV lines in a 4 by 4 matrix.   
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Table 3.3: Season and time dependant characterisation (mean and standard 
deviation) of the frequency of bird streamer faults on the South African 400 kV 

networks 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400 kV     

Season 1: Jan-Mar 0.104; 0.032 0.026; 0.018 0.003; 0.006 0.04; 0.024 

Season 2: Apr-Jun 0.11; 0.055 0.056; 0.022 0.004; 0.006 0.061; 0.035 

Season 3: Jul-Sep 0.064; 0.025 0.032; 0.014 0.005; 0.008 0.037; 0.02 

Season 4: Oct-Dec 0.078; 0.034 0.009; 0.006 0.005; 0.007 0.027; 0.014 

 

For ease of illustration, the 4 by 4 matrix data is represented as bar graphs in 

figures 3.5-3.10 of this chapter. 

Figure 3.3 illustrates the diurnal and seasonal patterns commonly associated with 

bird streamers on the 400 and 275kV networks.  
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3.2.4 Bird Streamer 

  

Figure 3.5: Season and time dependent frequency of bird streamer faults on the 
South African 400 and 275kV networks 
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Fault frequency on the 400kV network is at its peak of 0.11faults/100km/year from 

January to September in the early hours of the morning until 06:00.  

Table 3.3 and figure 3.5 present the diurnal and seasonal mean and standard 

deviation of fault frequency/100km/year for bird streamers on 400kV and 275kV 

transmission lines. 

Bird streamer faults on the 275kV network have a greater frequency of occurrence 

than on the 400kV network. The peak frequency for the 275kV network is nearly 

double the peak frequency occurring on the 400kV network. The underlying causes 

for this could be related to the tower design and clearance distances used on the 

towers. This is supported by findings indicating that increased vertical clearance 

between the conductor and the tower results in fewer bird streamer faults (Vosloo et 

al. 2009).  

Eskom embarked on a project to install birdguards on transmission lines with a high 

incidence of faults due to bird streamers from 2000-2002.  The impact of these 

birdguards is shown in figure 3.6, which illustrates the sharp drop in bird streamer 

faults on the transmission lines which have been fitted with these devices.  

Birdguards are typically fitted to feeders with a higher exposure to birds, resulting in 

more bird-related faults when compared to the general population of feeders on the 

transmission network. 
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Figure 3.6: Fault frequency on 400kV, 275kV and 220kV lines fitted with 
birdguards 

 

Figure 3.6 illustrates that the average fault frequency for these lines declined from 

2.38 faults/100km/year before birdguards were fitted to 1.35 faults/100km/year after 

birdguards were installed from 2000 onwards.  The performance of lines where it 

was deemed necessary to install birdguards was significantly higher than the rest of 

the lines on the transmission network. 
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3.2.5 Fire 

Results are illustrated in figure 3.7 for the 400kV network that falls within the 

thunderstorm rainfall activity region.  

 

Figure 3.7: Season and time dependent frequency of fire-caused faults on the 
South African 400kV network 

 
 
The fault frequency statistics indicate, as expected, higher levels during the drier 

winter months from April to September with the peak of these faults falling in the 

three months from July to September. The seasonal and diurnal patterns of fire-

caused faults for the 275kV network (not shown) are similar to those for the 400kV 

network. 
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3.2.6 Pollution 

 
The results for insulator pollution-caused faults on the 400kV network are illustrated 

in figure 3.8, showing that the highest incidence occurs in the early morning hours 

during the period January to March. 

 

 
Figure 3.8: Season and time dependent frequency of pollution faults on the 

South African 400kV network 
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3.2.7 Lightning 

The results of the time dependent characterisation of faults due to lightning for 

400kV networks across South Africa are presented in figure 3.9. The results 

indicate higher levels of lightning initiated faults in afternoons and evenings during 

the periods Season 1 (January to March) and Season 4 (October to December).  

 

 
Figure 3.9: Season and time dependent frequency of lightning faults on the 

South African 400kV network 

 

These months coincide with the summer thunderstorms in South Africa and the 

results indicate a significant increase in the frequency of faults on the 400kV 

network, which increase from approximately 0.01 faults/100km/year during the 

winter months up to 0.069 faults/100km/year during the summer rainfall periods.   
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3.2.8 Normalisation of the lightning initiated fault data 

Allocating scaling factors such as the line length and the lightning incidence (ground 

flash density, Ng) to all lines in the transmission network, the fault incidence can be 

identified, normalised to ‘per 100 km of line and Ng=1’ for lightning incidence. 

The lightning fault data, normalised to Ng=1 in this manner, relates frequency of 

fault directly to the overall lightning exposure of the transmission lines (Minnaar, 

Gaunt, & Nicolls, 2012).  Figure 3.10 illustrates the normalised lightning fault data 

for the 400kV lines in the thunderstorm activity region of South Africa. The 275kV 

lines, all located in the thunderstorm activity area, can be analysed in the same 

manner.   

 

Figure 3.10: Season and time dependent frequency of lightning faults on the 
South African 400kV network in the thunderstorm activity region normalised to 
Ng=1 
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A comparison of the two sets of results indicates that for all times of year and time 

of day, the 275kV network experiences more lightning initiated faults than the 

400kV network relative to the exposure of the lines to lightning flashes. 

 

3.3 Establishing the Statistical Significance of variations in fault frequency  

Analysing the fault frequency data by rainfall area produces results that indicate 

variations due to the influence of the climate. Similarly variations are produced due 

to the time-of-day and season. The statistical significance (to the 0.05 level) of the 

impact of rainfall area, voltage, time-of-day and season on fault frequency on the 

220kV, 275kV and 400kV networks was tested by means of one- and two-way 

analysis of variance (ANOVA), for which results are given in table 3.4 (‘yes’ 

indicates statistically significant).  
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Table 3.4: Statistical Significance of factors influencing fault frequency 

  Voltage level (kV) Thunderstorm Region Frontal Region 

Variable           

All faults 
Combined 220, 275, 400 Yes   Yes   

    Season Time of Day Season Time of Day 

 Fire 220 na na No No 

Lightning 220 na na No Yes 

Fire 400 No No No Yes 

Fire 275 No Yes na na 

Lightning 400, 275 Yes Yes Yes No 

Bird Streamers 400 Yes Yes Yes Yes 

Bird Streamers 275, 220 No Yes No Yes 

Pollution 400, 275, 220 No Yes No No 

Other 400, 275, 220 No No No No 

 

The results show that while figure 3.5 indicates a visibly different response by 

season for bird streamer faults on the 275kV network, this difference is not 

statistically significant in the present dataset. 

The 4 by 4 matrix (as illustrated via bar graphs in figures 3.5-3.10) allows 

statistically significant classification of fault frequency according to climate, season 

and time-of-day for the major causes of faults. This is a quite different relationship 

from considering all faults combined which do not show statistically significant 

variations. The full dataset of fault frequency on the South African transmission 

network for 220kV, 275kV and 400kV lines is presented in Appendix A. 
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The analysis of this dataset provides a statistical analysis of the fault performance 

of a large transmission system over an extended period.   High data volumes are 

available for fault types which occur frequently across the network or in particular 

areas.  This significant volume of data implies that statistical analysis can be 

conducted with a high degree of confidence for the entire network. 

3.4 The classification of fault frequency by climate, season and time-of-day 
and voltage level for the major causes of faults provides insight into 
specific areas where fault types that occur less frequently (e.g. pollution) 
may be analysed in a specific area. The dataset may be relatively sparse 

on certain fault causes across the entire network, however in the areas 
where these fault types are prevalent (e.g. pollution in certain coastal 
areas) the analysis identifies this and allows for remedial action to be 
taken. Analysis of a single class of faults 

In addition to the analysis of the characteristic season and time of faults, the 

dataset allows analysis within a single class of faults.  For example, having defined 

the incidence of lightning faults on 400kV lines in the thunderstorm region in terms 

of the faults/kmNg to remove the variation caused by line length and lightning 

intensity, it was found there was significant scatter in the parameters.  Figure 3.11 

shows that there appear to be at least two (maybe more) families of lines with 

different failure performance, separated by the dashed line.   
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Figure 3.11: Lightning faults on 400kV transmission lines in the thunderstorm 
rainfall activity area (Group 1- Poorly Performing Lines, Group 2 – Rest of Lines) 
with Y = number of faults per Kilometres Ng and R2=coefficient of determination 

 

The population of lines was split according to the performance to investigate 

whether there are common factors distinguishing the groups from each other.  The 

analysis shows there are such factors, including altitude and tower footing 

resistance, indicating the possibility of improving line performance by intervention 

on existing lines and the specification of alternative tower designs and installation 

parameters for future lines.  

The information of the poorly performing lines (Group 1) was passed on to the 

Eskom transmission division to investigate remedial actions to improve the fault 

performance of these lines. 
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3.5 Conclusions  

The primary causes of faults on the South African transmission system are 

identified as bird streamers (38%), lightning (26%) and fires (22%). 

An analysis method is presented that relates the frequency of faults on overhead 

lines to the climate of the area in which the line is located and the causes of power 

system faults.  

The effectiveness of birdguards in reducing fault frequency ascribed to bird 

streamers has been clearly demonstrated. 

Faults analysed by time-of-day and time-of-year (season) provide fault frequency 

statistics that represent more information than average annual frequency, taking the 

network performance into account during different time periods. The statistical 

significance of the differences between mean fault frequencies for fault causes, 

climate, time of day and season is established.  

The information derived from the collection and analysis of fault frequency data 

leads to three very different applications.  One will be better modelling of the whole 

system's reliability, using interruption duration and network loading data similarly 

classified by a 4 by 4 matrix, with substantial implications for both planning and 

system operations.  A second application group will be on design and selection of 

parameters for specific lines and identifying lines with relatively poor performance 

needing to be improved.  Thirdly, the approach lays a foundation for future work to 



50 

 

be conducted into reliability analysis and electrical fault pattern recognition taking 

local geography, climate and power system parameters into account. 
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CHAPTER 4 
 

4. WAVEFORM CHARACTERISATION OF 
TRANSMISSION LINE FAULTS  

 
This chapter describes the characterisation of transmission line fault waveforms by instantaneous symmetrical 
component analysis for transient and steady state fault conditions. A set of characteristics are developed as a 
feature set for fault cause classification. 
 

Characterisation and analysis of external faults based on the voltage and current 

waveforms has been investigated for causes such as lightning, tree and animal 

contact and cable faults (Barrera, et a,. 2012). Several features considered by 

Barrera et al (2012) have been retained in this study, albeit in a modified form. 

Maximum zero sequence current and voltage is defined in this study, relative to pre-

fault levels. This enables measurements taken at different voltage levels to be 

considered together, as well as relating these maximum values to pre-fault 

conditions. The fault insertion phase angle (FIPA) is considered here as the large 

dataset will give a clear indication of the relationship between fault types and fault 

peak. 

Features utilised by Barrera et al (2012) but not considered here include: 

• Maximum change of current and voltage magnitudes (phase and neutral), 

calculated over a time period one quarter of a cycle before and after the fault 

initiation.  These features were found to be relevant to distinguishing cable 

faults, which are not considered in this work. 
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• Maximum arc voltage. This feature is only applicable to single-phase to 

ground faults. 

This chapter describes the characterisation of transmission line fault waveforms 

using instantaneous symmetrical component analysis. A total of twenty one 

individual waveform characteristics are extracted for use as input features to 

classify faults. 

 

4.1 Waveform Characterisation  

Fault measurements were available for 2672 out of the 11753 faults in the dataset. 

Fault measurements were checked to ensure that they provided adequate pre-fault 

data and measurements were available for all voltage and current channels. The 

measurement data utilised in this study is taken from 78 digital fault recorders 

(primarily SIMEAS-R and Siemens P513 devices), on the Eskom transmission 

network at 220kV, 275kV and 400kV over a period of 13 years from 1995 until 

2008.  Current and voltage waveforms are sampled at 2500 Hz.  

A similar database of fault measurements, sourced from Scottish Power, was 

utilised by Styvaktakis (2002) for analysis and expert system classification of faults. 

Fault measurements of this nature are primarily used to determine the correct 

operation of protection equipment and the underlying causes are not routinely 

associated with individual measurements. 

User� 14/1/15 8:33 AM
Deleted: also utilises a database of fault 
measurements from Scottish Power.  
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4.1.1 Management of Waveform Data 

The original waveform data recorded on digital fault recorders is stored in the 

IEEE C37.111 Common Format for Transient Data Exchange (COMTRADE). 

These files each represent a unique fault event measurement. The following data is 

extracted for characterisation: sampling rate, start date, start time, faulted phase, 

distance-to-fault, red phase  current and voltage , white phase  current and voltage , 

blue phase current and voltage, neutral phase current and voltage, number of 

samples and time. 

The data is imported into a Matlab structure with each of the abovementioned items 

stored within the structure.  An array of structures is compiled with each individual 

measurement being a unique structure in the array (file name is associated for 

identification). This is implemented to enable bulk signal processing of waveform 

data by repeating the same calculations inside a loop to obtain the desired   

waveform characteristics. 

4.1.2 Symmetrical Component Analysis 

The Fortescue symmetrical component transformation is applicable to the steady 

state conditions that follow the fault transient condition (Fortescue 1918).   

The zero (0), positive (1), and negative (2) sequence components of the voltage are 

given in terms of the phase voltages (a,b,c) by: 
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where
 

and Va, Vb, Vc are phase voltages.
 

Lyon (1954) found that the same approach of symmetrical component 

transformation can also be used to analyse faults in the transient condition. This 

study utilises instantaneous symmetrical component analysis for feature extraction 

as it allows a fault to be analysed during both the steady state and transient 

conditions. 

A symmetrical sequence component transformation is implemented in the Matlab 

Simulink environment, built around the discrete 3-phase sequence analysis block.  

 

The code to calculate waveform characteristics utilises structure arrays in Matlab, 

so as to make possible the bulk signal processing necessary for 2672 waveforms.  

The Simulink model calculating sequence components from phase voltage and 

current data is then called from inside a ‘for’ loop to calculate the necessary 

parameters for each individual measurement, which in turn is also stored inside a 
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second structure array. The same process is then followed to calculate all the 

characteristics described in this chapter. 

 

Figure 4.1:Simulink model-Discrete Symmetrical Components.  

Figure 4.1 illustrates the model implementation calculating the discrete symmetrical 

values for voltages and currents, calculated according to Fortescue (1918). The 

outputs of the Simulink model are discrete waveforms of magnitudes and phase 

angles for the positive, negative and zero sequence current and voltages. 

Sequence component currents and voltages are output in complex format and the 

rates of change for voltage and current sequence components are also exported. 
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These are used to calculate a range of characteristics for transmission line faults to 

be used as features for fault cause classification. 

 

4.2 Identifying the start and end of a fault 

Identifying the both the start and end of a fault is critical to the success of extracting 

features from the waveform. The start of the fault separates the pre-fault conditions 

from the faulted conditions and allows calculation of features only during the faulted 

segment of the measurement.  The three stages of the measurement are illustrated 

in figure 4.2. 
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Figure 4.2: Stages of a fault measurement. 

Figure 4-2 illustrates the stages of a fault using rms profiles. These are pre-fault 

(normal steady state operation), the fault and the interruption stage. The scenario 

illustrated is for a single-phase-to-ground fault.  

Fault detection is based on a detection index similar to a rms-base index used for 

segmentation of rms voltage measurements (Styvaktakis, et al, 2002). The 

1) Pre-fault  
2) fault 
stage  

3) interruption / post-fault stage 
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beginning of the fault is calculated by means of a detection index based on the 

difference between consecutive values of the positive sequence current: 

………………… (1) 

A threshold is set at 12000 kA per second to trigger the start of a fault event. 

Features are calculated from the extracted sequence component waveforms. 

In the majority of the available measurements, the actual measurement continues 

beyond the end of the fault (i.e. after the protection has operated), resulting in 

values that needed to be removed from the measurement.  The end of a fault was 

set using a 40ms moving average of zero sequence current. A fault ‘ends’ when the 

zero sequence moving average drops below a threshold of 15% of the peak zero 

sequence current measured during the fault. Both the fault start and end thresholds 

were determined by trial-and-error until the start point and endpoint of all the fault 

measurements in the dataset were successfully captured.  

 

Factors such as the fault level, pre-fault loading level, type and location of load, 

network configuration or capacitors being switched may have an influence on the 

resultant fault waveforms measured on the same line. Several of the characteristics 

calculated from the measurement waveforms are all calculated to compensate for 

this influence by the use of the following strategies: 1) peak/maximum values are 

calculated relative to pre-fault values, which provide results with reference to 

network conditions prior to the fault and enables measurements from different 

voltage levels to be considered together, 2) maximum rates of change are 
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calculated to identify the influence of the fault flashover mechanism and 3) 

characteristics are calculated to compare the magnitude of characteristics at 

specific time intervals from the start of the fault i.e. the development of the fault. 

 

4.3 Waveform Characteristics 

The waveform features extracted are: 

• Fault type i.e. single-phase-to-ground, phase-to-phase faults  

• Current rate of change (positive, negative and zero sequence sequences)  

• Maximum negative sequence voltage    

• Maximum Zero sequence voltage 

• Maximum sequence current, relative to pre-fault currents (positive, negative, 

zero sequences) 

• Current Magnitude, half cycle after fault initiation (positive, negative, zero) 

• Current Magnitude, one cycle after fault initiation (positive, negative, zero) 

• Fault resistance (1 and 2 cycles after fault initiation) 

• Fault initiation phase angle  

• Sequence Component Fault Current Time Constant (positive, negative, 

zero). 
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4.3.1 Faulted Phases 

This feature is based on the hypothesis that the phases faulted may be a 

consequence of the physical flashover mechanism of the underlying fault cause. An 

example of this can be seen in table 4.1, where pollution-caused faults are almost 

exclusively single-phase-ground-faults.  

The faulted phases according to underlying cause for the 220kV, 275kV and 400kV 

networks are shown in table 4.1. The number of phases faulted is indicated by ‘L’ 

and fault to ground is indicated by ‘N’ so for example a single-phase-to ground fault 

is indicated as ‘L-N’ and a three phase fault as ‘L-L-L’. 

Table 4.1: Faulted phases according to underlying cause. 

Faulted 
Phases Bird streamer Fire Lightning Other Pollution 

Grand 
Total 

L-N 1070 453 534 261 122 2440 
L-L-N 15 33 66 8 1 123 
L-L  25 1 2  28 
L-L-L 30 4 32 4  70 
L-L-L-N 4 3 3 1  11 
Grand Total 1119 518 636 276 123 2672 

 

Table 4-1 illustrates that more than 90% of all faults measured on the South African 

transmission network between 1995 and 2008 were single-phase-to-ground faults. 

4.3.2 Maximum Rate of Change of Current (  

These characteristics are extracted as they provide a picture of the dynamic state of 

the fault during the initial transient stage. 
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This component is calculated as the maximum difference between consecutive 

samples, once the fault has been triggered. This is done for the positive, negative 

and zero sequence components.  The maximum rate of change for each sequence 

component is treated as an individual feature. The measure is shown in equation 2. 

…………………….. (2) 

During the initial stages of a fault, current increases rapidly from pre-fault levels 

until the fault is established. This feature is chosen to establish whether there is any 

difference due to underlying cause in the rate at which fault current rises during the 

initial stages of a fault. The mean (µ) and standard deviation (σ) of maximum rate of 

change of positive, negative and zero sequence currents are shown in table 4.2, 

denoted as Amperes per millisecond (A/ms).   

Table 4.2: Basic Statistics for Maximum Rate of Change of Current 

  220kV 275kV 400kV 
 Characteristic µ σ µ σ µ σ 

 372.86 249.71 653.27 557.28 637.36 658.87 
 381.24 251.81 658.02 536.79 673.24 656.88 
 380.87 281.40 577.51 516.21 635.07 693.86 

 

It is apparent from table 4.2 that the voltage level at which a fault occurs affects the 

maximum rate of change of sequence currents. The mean values increase with 

voltage magnitude at which a fault occurs. While this may be the case, it is 

observed that there is a high level of variance in the maximum rate of change 

across all three voltage levels, indicated by the high standard deviation values. 
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Figure 4.3: Zero Sequence Rate of Change of Current 

Figure 4.3 illustrates an example of Rate of Change of Zero Sequence current with 

the maximum indicated.  

4.3.3 Maximum Negative (Vmax2 / Zero (Vmax0) Sequence Voltage during Fault 

These features provide an indication of the degree of unbalance (Barrera et al. 

2012) during a fault. The maximum negative and zero sequence voltages during a 

fault are calculated relative to their respective pre-fault values: 

……………………… (3) 

The mean (µ) and standard deviation (σ) values for maximum zero and negative 

sequence voltage is shown in table 4.3 

 

 

Fault initiation 

Maximum rate of 
change of current 



63 

 

Table 4.3: Basic Statistics for Maximum Sequence Voltage during Fault 

 220kV 275kV 400kV 
  Characteristic µ σ µ σ µ Σ 

Vmax2 60.38 14.37 70.05 20.01 102.88 26.63 

Vmax0 61.15 21.40 70.03 29.01 116.06 44.40 

 

4.3.4 Sequence Component Currents - ½ Cycle (  and One Cycle Values( ) 

The value of each of the positive, negative and zero sequence component currents 

are measured at time points of ½ cycle and one whole cycle after the fault is 

initiated.  Figure 4.4 illustrates the zero sequence current components at half-cycle 

and one cycle after fault initiation. 

 

 Figure 4.4: Zero sequence current at ½ cycle and one cycle after fault initiation 

 

Table 4.4 shows the mean (µ) and standard deviation (σ) values at ½ cycle and one 

whole cycle for positive, negative and zero sequence currents. 

 

Fault initiation 

I0(0.5) 

I0(1) 
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Table 4.4: Basic Statistics for sequence currents at ½ cycle and one cycle after 
fault initiation. 

  220kV 275kV 400kV 
 Characteristic µ σ µ σ µ σ 
I1(0.5) 3.98 2.66 4.54 9.32 2.63 7.66 
I1(1) 7.59 5.39 8.42 17.73 4.62 14.94 
I2(0.5) 96.27 123.43 103.23 208.64 40.98 54.14 
I2(1) 193.88 215.39 189.14 401.56 77.32 116.98 
I0(0.5) 252.51 251.90 134.07 221.23 116.16 232.06 
I0(1) 529.84 537.35 267.69 510.81 217.59 450.86 

 

4.3.5 Maximum Sequence Current, Relative to Pre-Fault Currents 

Peak values of sequence currents are calculated relative to the pre-fault current 

levels on the feeder.   

…………(4) 

This gives an indication of the total state of change in current relative to the state of 

the network/load prior to fault occurrence.  This may provide more information than 

peak values alone as these values may be impacted by the state of the network. 

Table 4.5 shows the mean (µ) and standard deviation (σ) values for maximum 

positive, negative and zero sequence currents. 

Table 4.5: Basic Statistics for Maximum Sequence Currents. 

  220kV 275kV 400kV 
  Characteristic µ σ µ σ µ σ 

I1max 8.31 5.86 9.62 20.17 8.77 156.99 
I2max 211.88 225.03 217.06 436.95 91.97 152.96 
I0max 585.02 591.39 307.67 571.11 248.97 502.72 
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4.3.6 Fault Resistance (Rfault) 

The underlying mechanism by which a fault is formed and the medium along which 

fault current moves differs for each of the major fault causes. Bird streamer fault 

current flows via the liquid streamer while fault currents due to fires are conducted 

via air and smoke particles.  The resistivities of these mediums differ significantly.  

Fault resistance is calculated one and two cycles after the initiation of the fault. The 

line resistance from the point of measurement to the fault is based on the fault 

impedance values used for the protection settings for each line. The equations used 

to calculate fault resistance are based on the fault calculations (Duncan Glover and 

Sharma 2002) for each fault type, shown in Table 4.6: 

Table 4.6: Fault Resistance calculations. 

Fault Type Equation 

Single Phase to 
Ground Fault s ( L-
N) 

 
     ….. (5) 

 
Phase-to-Phase-to-
Ground Faults (L-L-
N) 

 
     .………(6) 

 
Phase –to-Phase 
Faults (L-L)  

      …..….(7) 

 
Three Phase Faults 
 (L-L-L/L-L-L-N)  

      …….….(8) 

 

The fault resistance statistics are shown in table 4.7. Resistance is calculated in 
ohms. 
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Table 4.7: Fault Resistance. 

  220kV 275kV 400kV 
 Characteristic µ σ µ σ µ σ 

Rfault_onecycle 20.30 14.73 36.23 148.70 41.99 118.06 

Rfault_twocycle 17.94 13.55 31.69 130.15 37.88 124.74 

 

4.3.7 Fault Insertion Phase Angle (FIPA) 

This is a feature calculated based on the premise that external faults are inserted at 

the peak of the waveform (Barrera et al. 2012). In this instance, FIPA is calculated 

with reference to the last zero-crossing prior to the start of the fault.  For multi-

phase faults, FIPA is assumed to be the phase angle closest to the peak. 

Table 4.8: Basic Statistics for Fault Insertion Phase Angle. 

  220kV 275kV 400kV 
 Characteristic µ σ µ σ µ σ 
FIPA 115.55 41.43 125.61 85.43 119.20 75.02 

 

Table 4.8 illustrates that the average fault insertion angle (in degrees) takes place 

after the voltage peak. This is reasonably consistent across voltage levels, however 

the level of variance differs significantly with voltage level.    The mean values 

indicate that FIPA does not differ due to the fault cause and usually occurs 

approximately 30° after the waveform peak. 
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4.3.8 Sequence Component Fault Current Time Constant (τ) 

The Sequence Component Fault Current Time Constant treats the fault waveform 

response in a similar manner to a first order linear time-invariant system. The time 

constant is calculated as the time taken from fault initiation to 0.63 of the difference 

between maximum fault current and pre-fault current for each sequence 

component.  The time constant for each sequence component current is treated as 

an individual feature. This feature is selected as it gives an indication of the 

dynamic response of the transmission line/network to the fault in question.  

 

Figure 4.5: Sequence Component Fault Current Time Constant.  

 

Figure 4.5 illustrates the calculation of the sequence component fault current time 

constant.  

 

 

τ 

0.63∆I + pre-fault 

current 

pre-fault current 

Maximum fault current 

Fault initiation 

∆I 
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Table 4.9: Basic Statistics for Sequence Component Fault Current Time 
Constant. 

  220kV 275kV 400kV 

 Characteristic µ σ µ σ µ σ 

Positive current Time Constant 
(τ1)  

12.81 1.48 26.85 70.01 22.72 71.41 

Negative current Time 
Constant (τ2) 

12.85 1.61 25.92 70.21 21.80 76.20 

Zero current Time Constant 
(τ0) 

13.46 7.14 22.31 46.26 20.27 63.65 

 

Table 4.9 provides shows the mean and standard deviation values of the Sequence 

Component Fault Current Time Constants in milliseconds. These values are very 

similar across sequences phases; however they differ across voltage levels, 

indicating that it is influenced by network design and conditions. 

 

4.4 Discussion 

The mean and standard deviation values for the extracted features provide 

indicative values for the extracted features on 220kV, 275kV and 400kV 

transmission networks. It is observed that the calculated mean values for all the 

features extracted differ significantly (excluding FIPA) between voltage levels. This 

indicates the impact of the power system on the magnitudes and changes in 

voltages and currents in response to faults. The voltage at which a fault occurs 

should therefore be included as a feature to analyse measurement data. 

A second observation is that a high level of variation is present across the majority 

of the features.  In many of these cases this may well be a function of a number of 
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causes as the measurements are drawn from a large network (>28000km of lines) 

where the state of the network may differ significantly even for lines at the same 

voltage level.  

4.4.1 Statistical Significance of Waveform Features 

Analysing the waveform feature data by fault cause indicates that the fault cause 

does influence of the majority of these features. The statistical significance (to the 

0.05 level) of the causes (bird streamer, fire, lightning, pollution and other) on 

single-phase-to-ground faults occurring on 220kV, 275kV and 400kV networks was 

tested by means of analysis of variance (ANOVA), for which results are given in 

table 4.10 (‘yes’ indicates statistically significant). Single-phase-to-ground faults 

were chosen as they represent more than 90% of all faults on the transmission 

network. 
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Table 4.10: Statistical Significance of Causes Influencing Waveform Features 

FEATURE	
   400kV	
   275	
  kV	
   220kV	
  

 yes	
   yes	
   yes	
  

 yes	
   yes	
   yes	
  

 yes	
   no	
   yes	
  
Vmax2 yes	
   no	
   no	
  
Vmax0 yes	
   no	
   no	
  
I1(0.5) yes	
   no	
   yes	
  
I1(1) yes	
   no	
   yes	
  
I2(0.5) yes	
   yes	
   no	
  
I2(1) no	
   no	
   yes	
  
I0(0.5) no	
   no	
   yes	
  
I0(1) yes	
   no	
   yes	
  
I1max yes	
   no	
   yes	
  
I2max  no	
   no	
   yes	
  
I0max  yes	
   no	
   yes	
  

Rfault_onecycle	
   yes	
   yes	
   yes	
  
Rfault_twocycle	
   yes	
   yes	
   yes	
  

FIPA	
   no	
   no	
   no	
  
Positive current Time Constant (τ1) yes	
   yes	
   no	
  
Negative current Time Constant (τ2) no	
   yes	
   no	
  

Zero current Time Constant (τ0) no	
   yes	
   no	
  
 

Table 4.10 indicates statistically significant differences across voltage levels for the 

majority of the waveform features extracted, with the exception of FIPA. This 

indicates that fault causes may be differentiated by a combination of these features. 

 

4.5 Conclusions 

A total of 21 waveform characteristics are extracted from 2672 measured fault 

waveforms. These characteristics are calculated along three main strategies:  1) 

peak/maximum values are calculated relative to pre-fault values, which provide 

results with reference to network conditions prior to the fault and enables 



71 

 

measurements from different voltage levels to be considered together, 2) maximum 

rates of change are calculated to identify the influence of the fault flashover 

mechanism and 3) characteristics are calculated to compare the magnitude of 

characteristics at specific time intervals from the start of the fault. It is shown that 

the waveform features extracted have statistically significant   differences in mean 

values based on the underlying fault cause. 

The voltage level at which a fault occurs influences the majority of the features 

extracted. The voltage level therefore is an important feature to include in utilising 

the available measurement data.  

The development of this characterised waveform dataset addresses some of the 

key concerns raised by Gu and Styvaktakis (2003) with respect to characterising 

event waveforms: 

 1) Each characterised waveform is associated with a fault cause that makes this a 

suitable dataset for conducting feature selection and classification according to 

underlying causes. 

 2) It addresses the limitations faced in many instances with respect to a shortage 

of data, with a dataset consisting of 2672 waveforms across 220kV, 275kV and 

400kV networks. The entire data set is based on measurements from an 

operational transmission system.   
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CHAPTER 5 
 
5. CLASSIFYING TRANSMISSION LINE 

FAULTS  
 
This chapter describes the classification of transmission line faults according to underlying causes. Single nearest 
neighbour classifiers are built using nested subsets and the classification performance is compared to decision tree, 
neural network and naïve Bayes classifiers. 
 

5.1 Introduction  

Broadly, root cause identification of faults can improve transmission network 

reliability in two ways: 

a) applied in a control centre environment it allows the control centre staff to 1) 

make appropriate decisions with respect to reclosing breakers, 2) provide field 

services operators with knowledge about the probable cause of a fault being 

investigated, which gives them insight into signs to search for when investigating a 

fault and 3) despatch crews with appropriate equipment to resolve a fault (Xu & 

Chow, 2006). Appropriate decisionmaking, combined with suitably equipped and 

forewarned field service operators translate into improved network reliability by 

reducing the overall time required to respond and repair transmission line faults.  

b)  accurate identification of fault causes can inform the design and parameter 

selection of new lines (insulator selection, tower design, footing resistance)  as well 

as  identifying lines that perform poorly due to specific causes i.e. identify unknown 

fault causes. Mitigation methods can then be developed to resolve a particular 

problem e.g. birdguards for bird streamer problems or improving footing resistance 

where lightning faults occur more frequently than is deemed acceptable. These 



73 

 

causes may not always be easily identified as field services staff may give vague 

descriptions or may lack knowledge about the fault mechanisms (Vosloo, 2005). 

Accurate identification of fault causes leads to improved network reliability by 

reducing the number of transmission line faults that occur in the long-term. 

This work explores the classification of transmission line faults according to 

underlying cause using pattern recognition techniques.  The individual relevance of 

features is determined with respect to the four major causes and classification is 

treated as a multiclass problem. Features are ranked according to their relevance in 

separating fault causes and classifiers are built by nested subsets.  Nested subsets 

are groups of sets where the larger sets contain all the elements of the smaller sets. 

This concept is illustrated via a Venn diagram in figure 5.1.  

 

Figure 5.1: Venn diagram of Nested Subset (Patterson, 1987) 

 

Figure 5.1 illustrates a nested subset whereby set B includes all the elements of set 

C and set A in turn includes all the elements of set B and C.    
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5.2 Feature Selection and Classification 

The full feature set considered here consists of 28 features, made up of 1) the 

environmental, climatic and diurnal features (these features are referred to as the 

contextual features) discussed in chapter 3 and 2) the twenty-one waveform 

features (waveform features) identified in chapter 4. 

The waveform features extracted are: 

• Fault type i.e. single-phase-to-ground, phase-to-phase faults  

• Current rate of change (positive, negative and zero sequence sequences)  

• Maximum negative sequence voltage    

• Maximum Zero sequence voltage 

• Maximum sequence current, relative to pre-fault currents (positive, negative, 

zero sequences) 

• Current Magnitude, half cycle after fault initiation (positive, negative, zero) 

• Current Magnitude, one cycle after fault initiation (positive, negative, zero) 

• Fault resistance (1 and 2 cycles after fault initiation) 

• Fault initiation phase angle  

• Sequence Component Fault Current Time Constant (positive, negative, 

zero). 

A key finding from chapter 2 is that fault frequencies have statistically significant 

differences with respect to time-of-day, season, and climate (as represented by 

rainfall area). These differences are not uniform across the voltage levels 

considered; hence voltage level is also a feature considered.  
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The contextual feature set also introduces other features considered relevant. 

These are the geospatial information system (GIS) identifier for the line on which 

the fault occurred, the geographic region and average lightning ground flash density 

(Ng). 

The contextual features describing fault occurrence are as follows:  

• Hour of day   

• Month of year 

• Rainfall area 

• Voltage level 

• Line GIS number 

• Eskom transmission grid region  

• Ground flash density. 

In this study, feature selection is used firstly to improve understanding and 

interpretability of the data and secondly to identify features for building good 

classifiers for transmission line fault causes. Feature ranking and classification is 

considered along three scenarios, using: 

a) only the contextual feature set. The earlier analysis has shown statistically 

significant differences in fault frequencies by time of day, climate and season 

b)  only the waveform feature set 

c) combining the waveform and contextual feature sets. 

 

Both feature selection and classification is implemented in the Matlab toolbox 

PRTOOLS (Duin, et al, 2000). 



76 

 

5.2.1 Feature Ranking 

This study starts by selecting features according to the individual relevance to the 

classification problem. Feature ranking is conducted by using the F-statistic, derived 

by analysis of variance (ANOVA) which provides a measure of variance due to a 

feature. This is calculated as the statistical comparison between data sets. This 

provides a basis for building classifiers as well as giving some insight into the 

relevance of individual features for identifying fault cause. 
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Table 5.1: Features ranked by F-statistic 

Feature 
Type of 
Feature F-statistic 

Overall 
Rank 

Contextual 
Rank 

Waveform 
Rank 

Hour Contextual 90.90 1 1 n/a 
Region Contextual 33.09 2 2 n/a 
Month Contextual 32.16 3 3 n/a 

Nominal Voltage Contextual 29.22 4 4 n/a 
Average ground 

flash density (Ng) Contextual 25.45 5 5 n/a 

I2(0.5) Waveform 16.06 6 n/a 1 
τ1 Waveform 11.98 7 n/a 2 

Faulted Phases Waveform 11.58 8 n/a 3 
Vmax2 Waveform 10.44 9 n/a 4 
τ2 Waveform 9.97 10 n/a 5 
I2(1) Waveform 8.33 11 n/a 6 

Vmax0 Waveform 8.12 12 n/a 7 
∆Imax0 Waveform 6.66 13 n/a 8 
I2max Waveform 6.17 14 n/a 9 
∆Imax1 Waveform 6.02 15 n/a 10 
∆Imax2 Waveform 5.24 16 n/a 11 
τ0 Waveform 5.14 17 n/a 12 

1max Waveform 4.97 18 n/a 13 
I0(0.5) Waveform 4.60 19 n/a 14 

Rfault_onecycle Waveform 3.59 20 n/a 15 
I0(1) Waveform 3.53 21 n/a 16 
I1(0.5) Waveform 3.29 22 n/a 17 

Rainfall Area Waveform 2.78 23 6 n/a 
Rfault_twocycle Waveform 2.42 24 n/a 18 

I1(1) Waveform 2.24 25 n/a 19 
I0max Waveform 2.12 26 n/a 20 

GIS Number Contextual 1.71 27 7 n/a 
FIPA Waveform 1.57 28 n/a 21 

 

Table 5.1 illustrates the features ranked overall as well as separate ranking lists for 

contextual and waveform features. It gives a clear picture of the relevance of 

individual features to separating faults according to cause. The waveform features 
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with the highest F-statistic scores are maximum negative sequence current (half 

cycle) and the positive sequence time constant labelled as I2(0.5) and τ1 respectively 

in table 5.1. Both these features provide a measure of the dynamic response to an 

event on a transmission line, which relates to the rate at which sequence currents 

rise to peak fault current.  

 

Table 5.1 indicates that the individual contextual features related to the time of 

occurrence and geographic location of the fault, are highly relevant to identifying the 

underlying cause of the fault. This result ties in with classification efforts on 

distribution systems (Cai, et al, 2010) that only made use of contextual features to 

achieve good classification success for animal- and tree-caused faults.  The ranking 

also gives insight into the relative strength of using the contextual versus waveform 

features to identify fault causes.    

5.2.2 Classification by Nested Subsets 

The classification problem for transmission line faults is here defined as a multiclass 

problem with the five classes being bird streamers, fires, lightning, pollution and all 

other faults. A multiclass classifier is a function   F:X →Y which maps an instance x  

into a label F(x) (Duda, et al, 2000). There are 2 common approaches taken to 

generate F: the first is to construct it through the combination of a number of binary 

classes e.g. logistic regression or support vector machines; the second approach 

(used in this study) is to generate F directly e.g. naïve Bayes algorithms or nearest 

neighbour.  
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The use of single nearest neighbour (1-NN) classifier is proposed for identifying the 

underlying cause of transmission line faults. The 1-NN rule is  a suitable benchmark 

for other classifiers as it 1) requires no user-specified parameters, making it 

implementation independent and 2) provides reasonable classification performance 

for the majority of applications (Jain, et al, 2000). A major aim of this  work is the 

identification of  suitable features for  automatically classifying fault cause, as 

opposed to primarily identifying an optimal classifier or optimising classifiers for 

maximum accuracy or robustness. The reasonable performance and simplicity in 

implementation makes a 1-NN classifier highly suitable in this context.  

 

The single nearest neighbour rule assigns to an unclassified point the classification 

of the nearest previously classified point (Cover & Hart, 1967). 

 

The nearest-neighbour classifier is commonly based on the Euclidean distance 

between a test sample and the specified training samples. Let xi be an input sample 

with p features (xi1,xi2,…,xip) , n be the total number of input samples (i=1,2,…,n) 

and p the total number of features (j=1,2,…,p) . The Euclidean distance between 

sample xi and xl (l=1,2,…,n) is defined as: 

 

For the single nearest neighbour rule, the predicted class of test sample x is set 

equal to the true class ω of its nearest neighbour, where mi  is a nearest neighbour 

to x if the distance: 
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Classification is done by building a series of 1-NN classifiers to determine the 

underlying cause of transmission line faults. The 1-NN classifiers are built 

comprising 5 classes, one for each of the major fault cause i.e. birds, fire, lightning, 

pollution and other.  The classifier finds the nearest point in the training set to the 

unclassified point and assigns this to the corresponding label. An advantage of 

nearest neighbour classification is its conceptual simplicity and ease of 

implementation, making it capable of dealing with complex problems as long as 

sufficient training data is available (Garcia, et al, 2008).  

 

Feature selection for the initial classification is done by building nested subsets (as 

illustrated in figure 5.1) of features of increasing size. Classifiers are built, starting 

with a subset of one feature (the highest F-statistic) and features are progressively 

added by decreasing F-statistic. Subsets are constructed according to the rankings 

illustrated in table 5.1 i.e. the first subset comprises the feature ranked 1, the 

second subset the features ranked 1 and 2 For each of the classifiers, the data is 

split using two-thirds for training data and one third for testing. The classifier is 

trained using the training set and performance is evaluated using the test set. The 

entire data set is randomly split into two-thirds training and one-third test sets thirty 

times and the trained classifier evaluated against each test set to reduce variance 

from the classification results. Evaluation of the classifier is done in this manner so 

that enough test data is available for the faults causes that occur rarely i.e. other- 

and pollution- caused faults. Classification in this manner is conducted according to 

User� 14/1/30 1:49 PM
Formatted: Centered



81 

 

the three scenarios identified i.e. 1) the contextual features; 2) the waveform 

features and 3) the combined feature set. 

 

Two combining rules are implemented for classification using all the features. 

These are: 

Combining-rule 1) The waveform and contextual feature sets are combined by 

relevance using the overall ranking as indicated in table 5.1 

Combining-rule 2) The waveform and contextual feature sets are combined by 

adding (in order of decreasing relevance) a feature from each set, starting with the 

contextual set. Once the contextual features are all added, the remaining waveform 

features are then added to form additional subsets. 

5.2.3 Assessing Classifier Performance  

The common basis for many of the performance measures of classifiers is based 

on the confusion matrix.  For a 2-class classifier (e.g. Yes/No) and a test dataset a 

two-by-two confusion matrix can be built, shown in table 5.2 (Kubat, et al, 1998).  

Table 5.2: Confusion Matrix 

 Predicted Positive 
Class 

Predicted Negative 
Class 

Actual Positive 
Class 

True Positive (TP) False Negative (FN) 

Actual Negative 

Class 

False Positive (FP) True Negative ( TN) 
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The most common performance measure calculated from this matrix is Accuracy 

(Acc), which is the proportion of the total number of predictions that were correct: 

……………..(9)   

 

A consideration for many real-world applications is determining classifier 

performance of imbalanced datasets i.e. when one of the classes represents only a 

small portion of the total data set. Using Accuracy as a performance measure is 

insufficient as a classifier will show good performance by simply ignoring the 

presence of the minority class.  The fault performance of the transmission system is 

imbalanced across the four major fault causes.   

 

Two measures commonly used when classifying unbalanced datasets are Precision 

(p), the percentage of positive predictions made that are correct and Recall (r), 

percentage of true positive cases that were correctly identified. 

Another measure with its foundation in information retrieval and text classification 

(Nan, et al, 2012) is the F-measure1, which is the harmonic mean of Precision and 

Recall. This provides a balanced measure of the performance of a classifier and will 

be used to provide insight into balanced classification success for each fault cause. 

 

                                            
1 It should be noted that the F-measure is defined independently from the F-statistic used in ANOVA. 

F-measure and F-statistic are two completely independent measures defined and used in different 

ways. 
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………….. (10) 

 

The measures used to assess classifier performance are overall classification 

Accuracy as well as the F-measure for each fault cause. 

5.2.4 Overall Classification Accuracy 

The overall classification accuracy rates indicate that a classification accuracy of up 

to 90% is achieved when only using the contextual features. This classification rate 

is achieved using the five highest ranked contextual features.  

Figure 5.1 illustrates overall classification accuracy for contextual, waveform and all 

features. The features are added according to the respective decreasing rankings 

shown in table 5.1 for waveform and contextual features and then according to the 

combining rules defined in section 5.2.2 e.g. features for ACC_All_rule1 are added 

according to combining-rule 1. 
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Figure 5.1:Classification Accuracy. 

 

The best classification accuracy rate achieved when only considering the waveform 

features is 0.801, using the seven highest ranked waveform features. This shows 

that reasonably good classification performance can be achieved using only the 

waveform features. This performance does not match that achieved using only 

contextual features or a combination of contextual and measurement features. 
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5.2.5  Classification Performance using Waveform Features  

The best overall classification accuracy rate is achieved using the best seven 

waveform features. This shows that reasonably good classification performance 

can be achieved using only the waveform features. 

 

 

Figure 5.2: F-measure for fault causes 

 

Figure 5.2 (features added by decreasing F-statistic) illustrates the classification 

success by F-measure for each of the major fault causes. Scores of above 0.75 are 

achieved using  only the  two highest ranked features for bird, fire and lightning 

caused faults. The  F-measure for pollution-caused faults is generally lower than 

the first three classes. However, it needs to be considered that pollution  represents 

a highly imbalanced set. 
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The  performance of  the ‘other’ class  of faults is the poorest for most of the feature 

sets used and is more dependent on the appropriate feature set being selected for 

achieving reasonable classification performance. 

5.2.6 Classification Performance using Contextual Features 

The classification performance achieved using contextual features is significantly 

better once five or more features are used to build the nearest neighbour classifier. 

F-measure scores above 0.8 are achieved for all classes of faults with bird 

streamers having the highest score of 0.917.   

 

 

Figure 5.3: F-measure using contextual features. 
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Figure 5.3 illustrates the F-measure performance achieved with a 1-NN classifier 

built with contextual features, with features added by decreasing F-statistic. 

 

5.2.7 Classification Performance using Combined Features 

The classification performance achieved when combining features indicates that 

combining the waveform and contextual features does not result in an improved 

rate of classification performance over that achieved by using only the contextual 

features. Figures 5.4 illustrates the F-measure performance achieved using 

combining-rule 1and demonstrates deterioration in classification performance once 

waveform features are added to the five highest ranked contextual features. The 

exception is the balanced performance for pollution-caused faults which shows a 

slight improvement in classification performance. 
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Figure 5.4: F-measure using waveform and contextual features combined by rule 1. 

Applying  combining-rule 2 does not the improve  the balanced performance for any 

of the fault causes, however good classification performance is achieved using as 

few as  one feature from each feature set, as illustrated in figure 5.5.  
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Figure 5.5: F- measure using waveform and contextual features combined by rule 2 

 

The best classification accuracy is achieved using six features (the top three ranked 

from the waveform and contextual sets). These features are: Hour, Negative 

sequence current (half cycle after fault initiation), Region, Positive sequence 

fault current time constant, Month and Faulted Phases. 
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5.3 Comparing Classifier Performance 

The best performance achieved with the 1-NN classifier using nested subsets is 

compared with the classification performance of several common classifiers with 

feature selection conducted by sequential forward (SFS) and sequential backwards 

(SBS) wrapper selection based on best performance for a particular classifier. The 

classifiers used for the comparison are radial basis neural network, decision tree 

and naïve Bayes classifiers. The implementation of these classifiers is done utilising 

the existing models within the PRTools toolbox (Duin, et al., 2000). Overall 

accuracy is compared as well as F-measure for individual fault causes.   

 

SFS and SBS are implemented for an individual classifier based on the 28 

waveform and contextual features. The features identified in the selection process 

are used to train and test the respective classifiers. For each classifier, the data is 

split using two-thirds for training data and one third for testing. The classifier is 

trained using the training set and performance is evaluated using the test set. The 

entire data set is randomly split into two-thirds training and one-third test sets thirty 

times and the trained classifier evaluated against each test set to reduce variance 

from the classification results. Evaluation of the classifiers is done in this manner so 

that enough test data is available for the faults causes that occur rarely i.e. other- 

and pollution- caused faults. 

 

5.3.1 Results 

The overall accuracy and F-measure for each classifier per fault type is shown in 

table 5.3. 
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Table 5.3: Classification performance using wrapper selection methods 

 

The classification results shown in table 5.3 demonstrate that the best performance 

achieved with the 1-NN classifier is between 12-14% higher than achieved with any 

of the other classifiers using either forward or backward selection. The 1-NN 

classifier is also shown to have considerably better classification performance when 

considering the minority causes (pollution and other causes together make up less 

than 10% of all faults).  

 

CLASSIFIER 
Feature 
Selection ACC 

F-
measure 
Birds 

F-
measure 
Fire 

F-
measure 
Lightning 

F-
measure 
Pollution 

F-
measure 
Other 

Decision tree SFS 0.7366 0.7795 0.8221 0.6668 0.3089 0.1665 

Decision tree SBS 0.7258 0.7711 0.8129 0.647 0 0.201 
Neural 
Network SFS 0.7378 0.7832 0.8075 0.6657 0.2959 0.1556 
Neural 
Network SBS 0.7397 0.7847 0.8104 0.731 0.2805 0.1502 
Naïve Bayes 
classifier SFS 0.7403 0.7995 0.7765 0.6776 0.2857 0.14 
Naïve Bayes 
classifier SBS 0.7378 0.7778 0.7984 0.6767 0.3383 0.1501 
1-NN 
(combining 
rule 2) 

Nested 
subsets 0.8612 0.8896 0.8778 0.8418 0.7493 0.7372 
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5.4 Discussion and Conclusions 

The use of a single nearest neighbour classifier has been proposed for the 

classification of transmission line faults according to underlying cause. 

 

The results achieved by building a series of 1-NN classifiers by nested subsets of 

decreasing relevance has shown that the 1-NN classifier is a suitable classifier for 

the identification of transmission line fault causes.  

 

Classifiers developed using only the contextual features demonstrate the highest 

level of balanced classification performance (90%).   The relevance of this is that in 

many instances where no physical evidence of the fault is present, operators assign 

fault causes based on contextual information e.g. a fault during a thunderstorm may 

not necessarily be due to lightning but is often classified as such (Barrera et al. 

2012). This practice has relevance when considering the success achieved with 

contextual feature set as these features overlap directly with the evidence available 

to operators. It is also relevant when considering the lower classification accuracies 

achieved when considering waveform features as the waveform evidence may point 

to a different result from the contextual evidence. 

 

It has been found that using only waveform features to build a classifier produces 

reasonable success levels, even with only the single most relevant feature.  While 

this is an important finding with respect to identifying and using fault waveform 

features for fault identification, the classification performance achieved may not be 

adequate for practical applications. A guide for an acceptable Accuracy rate can be 



93 

 

set at 80% as a minimum threshold for practical classification applications. This 

level of accuracy is achieved using a) only contextual features and b) combining 

contextual and waveform features.  

 

The concern with classifying faults only considering the contextual features is that 

actual measurements (or an observation) of the event is not considered when 

identifying faults. In practice, physical observations are used as far as possible to 

confirm fault cause e.g. flashover markings on towers. 

 

Classification has been conducted on faults occurring on the South African 

transmission network. These results demonstrate the classification of faults at 

transmission level voltages and can be extended to other networks where 1) 

accurate and extensive fault records and waveform measurements are available, 2) 

fault types are well documented and understood and 3) climatic factors are 

considered. 

 

For automatic classification of transmission line faults according to underlying 

cause it is recommended that measured fault waveform features be used to 

construct fault cause classifiers, where measurements are available.   

 

The classification performance of 1-NN classifier has been compared with radial 

basis neural networks, decision trees and naïve Bayes classifiers and it has been 

shown to have superior classification performance with respect to overall accuracy 

and F-measure for the minority fault causes. 
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CHAPTER 6 

6. CONCLUSIONS 
 

This chapter presents an assessment of the research hypothesis, highlights the contributions made and discusses the 
significance of the results and future work.  

 

This thesis has focussed on the analysis and classification of transmission line 

faults. Emphasis has been placed on improving the understanding of the impact of 

the primary causes of line faults on the transmission network to assist in decision-

making for planning and design, network maintenance and operation of the 

network. 

The first focus area of this thesis analyzed faults to develop fault frequency 

statistics that present more information on the network performance than average 

annual frequency.  

 

The second focus area investigated measured fault waveforms for characteristics 

linked to the fault cause and building a suitable feature set classifying faults using 

statistical pattern recognition techniques.   

 

The overall aims of the research was to 1) improve  understanding  of the impact 

that the climate and environment has on the  causes and frequency of faults on the 

South African transmission network; 2) identify electrical fault waveform 

characteristics relevant to identifying fault causes and 3) ultimately automate the 
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classification of transmission line faults using statistical pattern recognition 

techniques. 

 

6.1 Assessing the hypothesis 

The basic hypothesis that this research addressed is: 

Transmission line faults can be automatically classified according to underlying 

event cause using pattern recognition techniques. However, this requires 

knowledge of the external environment influencing the event.    

The original hypothesis is assessed by reviewing the original research questions, 

these are:  

1) What are the primary causes of faults on transmission lines on the South African 

transmission network and how do they impact the fault frequency performance? 

The primary causes of transmission line faults on the South African transmission 

network have been identified as bird streamers, lightning, fire and pollution. Results 

have been presented for the impact of these causes across the network voltage 

levels and with respect to the external environment such time-of-day, time-of-year 

and rainfall area. 

2) Can significant variables related to interruption performance be identified? 

Fault statistics presented in terms of a 4 by 4 matrix, linked to rainfall area has 

shown that time-of-day, time-of-year and climate (indicated by rainfall area) 

represent variables which affect the interruption performance    
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3) Can event characteristics be identified that are relevant features for 

automatically classifying transmission line faults according to underlying cause? 

If so, which characteristics are these? 

It has been shown that both contextual and waveform features can be identified 

which have a varying degree of relevance to performing classification of events. 

The accuracy of classification using these features has been demonstrated by 

building classifiers using nested subsets. Best classification is achieved using only 

contextual features; however classification in this manner does not make use of any 

measurements. Taking waveform features based on measurements into account 

classification, accuracy of 86% is achieved using the following set of contextual and 

waveform features: Hour, Negative sequence current (half cycle after fault 

initiation), Region, Positive sequence fault current time constant, Month and Faulted 

Phases. 

4) Can faults be classified using only electrical waveform characteristics? 

The highest classification accuracy achieved using only waveform features is 80%. 

This indicates that faults can be classified for underlying cause using only waveform 

features with a reasonable level of success. However this performance is inferior to 

classification accuracies achieved when using waveform features in combination 

with contextual features. 

The classification performance achieved here is based on measurements taken on 

a transmission system. These results would need to be tested on data from 

distribution system voltages, which are typically 132kV and lower, to verify 

classification accuracy and choice of features at these voltage levels.  
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5) What classification performance is achieved?  

Classification results from this study demonstrate that the best classification 

accuracy is achieved when using contextual features (which are representative of 

the external environment) either independently or in combination with features 

derived from fault waveforms. The best classification accuracy using contextual 

features is 90%, against 86% for classification using a combination of waveform 

and contextual features. 

The possible misclassification of fault causes by human operators makes it 

impossible to determine with certainty whether the higher classification success 

achieved using contextual features would still be retained if these errors could be 

addressed.  

The hypothesis can thus not be validated in its present form and is revised as 

follows: 

Transmission line faults can be automatically classified according to 

underlying event cause using pattern recognition techniques. However, this 

requires knowledge of the external environment influencing the event for best 

classification performance.    

Considering the research hypothesis in this form it is shown that the best 

classification results are achieved when external features are considered. 
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6.2 Contributions 

The contributions and novel elements of this thesis are: 

• An analysis method is presented that relates the frequency of faults on 

overhead lines to the climate of the area in which the line is located and the 

causes of power system faults 

• An approach to analysis of power system faults that presents a statistically 

significant set of fault data by cause, climate, season and time of day 

• The statistical significance of the differences between mean fault frequencies 

for fault causes, climate, time of day and season is established  

• Establishing a basis for the inclusion of non-electrical characteristics of faults 

in reliability analysis and  root cause  identification of transmission line faults  

• The development of waveform features to characterise faults: 1) across  

multiple voltage levels, 2) at specific  time intervals from fault initiation and 3) 

according to the influence of the fault flashover mechanism 

• The ranking and selection of contextual and waveform features for identifying 

the causes of transmission line waveforms 

• The classification of transmission line faults by Single Nearest Neighbour 

classification has been proposed and demonstrated 

• It has been shown that transmission line faults can be classified using only 

contextual features as well as a combination of contextual and waveform 

features. 
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6.3 Significance of Results 

The information derived from the collection and analysis of fault frequency data 

leads to two applications.   

One will be better modelling of the whole system's reliability, using interruption 

duration and network loading data similarly classified by a 4 by 4 matrix, with 

substantial implications for both planning and system operations.  A second 

application is the design and selection of parameters for specific lines and 

identifying lines with relatively poor performance needing to be improved.   

The research work undertaken has touched on several questions raised with 

respect to the classification of power system events and has developed results that 

can be utilised to address these, including: 

1) Manual analysis of faults is a labour intensive exercise that consumes 

considerable man hours.  Automated techniques with high accuracy levels have the 

potential to provide significant man hour savings to utilities. 

2) The identification of faults is a complex problem that requires significant 

knowledge and experience to undertake successfully.  These skills are often in 

short supply, with the result that inexperienced staff will make significant errors in 

diagnosing fault causes.  

3) Many faults do not leave physical evidence (e.g. flashover marks or animal 

carcasses) of its cause.  Operators may often assign speculative or generic causes 

to these faults. An expected error is hence built into any set of fault analysis due to 

this uncertainty. Automatic classification techniques using both contextual and 
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waveform features provides a means to determine causes based on both the 

external environment and the physical evidence of the waveform. 

The classification of faults plays a role in the design and management of networks. 

Incorrect classification leads to uncertainty in diagnosing appropriate solutions to 

improving network reliability performance and can also lead to wasteful financial 

expenditure due to implementing solutions that are inappropriate to mitigating the 

real cause of faults. The design of new networks within close proximity of existing 

networks is often done on the basis that these networks will be exposed to similar 

conditions and these will then be designed and tailored to minimise the impact of 

prevalent fault causes e.g.  birdguards will be included at  the outset or clearance 

will be  increased to minimise bird streamer faults. The result of incorrect fault 

cause identification is a) wasteful expenditure and b) higher fault frequencies as the 

causes of faults are not addressed. 

A second major impact of automatic fault identification relates to the immediate 

operational response to faults. In a typical scenario, once a fault has occurred an 

operational crew is dispatched to patrol the line, identify the fault and conduct 

corrective work to bring the line back into operation. Automatic classification can 

provide information for dispatchers to ensure that teams are appropriately equipped 

to resolve a fault and bring the line back into operation. Another scenario is that 

lines are often not brought back into service immediately until a complete line 

inspection is conducted due to uncertainty of the fault cause and concern that the 

equipment may be damaged. An early identification of the fault would allow a line to 

be brought back into service sooner. 
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Both the abovementioned scenarios would lead to improvement in network 

reliability due to decreased interruption durations. 

Finally, line faults are a major cause of voltage dips.  The management of voltage 

dips and their impact on customers is an important aspect of any utilities 

management of power quality. Fast and accurate identification of the causes of dips 

enables a utility to manage the impact of voltage dips on customers.  

6.4 Future Work 

The main conclusions drawn from this work are based on the analysis of 

measurements from an operational transmission network, each associated with a 

cause.  Measurements from lower voltage levels more typical of distribution 

systems (≤132kV) are required for testing of automatic classification using 

waveform features at these levels. 

A classification accuracy of 90% is achieved using only the identified contextual 

features. This result indicates that this automatic classification approach can be 

applied to determine fault causes where voltage and current measurements are not 

available.  

Looking at the operational application of these results, an opportunity exists for 

integrating classification into the operational measurement and analysis systems of 

utilities. The questions that arise are whether these systems collect and store data 

in a manner that facilitates the process of automatic classification.  
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APPENDIX A: FAULT FREQUENCY DATA FOR 
SOUTH AFRICAN TRANSMISSION LINES 
 

Fault data is tabulated per cause for the relevant network voltages and rainfall 
areas. 

220 kV Lines 

Bird streamer  

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

220 kV         

Season 1: Jan-Mar 0.3915; 0.2065 0.0242; 0.0634 0.0097; 0.0399 0.1160; 0.1009 

Season 2: Apr-Jun 0.3238; 0.2333 0.1160; 0.1089 0.0048; 0.0199 0.1450; 0.1496 

Season 3: Jul-Sep 0.1788; 0.1544 0.1257; 0.1770 0.1015; 0.1284 0; 0 

Season 4: Oct-Dec 0.4882; 0.2386 0.0290; 0.0405 0.0242; 0.0634 0.1257; 0.0657 

 

Lightning 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

220 kV         

Season 1: Jan-Mar 0.1469; 0.0929 0.1202; 0.0273 0.1849; 0.0359 0.2907; 0.1001 

Season 2: Apr-Jun 0.0647; 0.0273 0.1202; 0.0273 0.1667; 0 0.2450; 0.0483 

Season 3: Jul-Sep 0.0693; 0.0323 0.1202; 0.0273 0.1712; 0.199 0.2314;.0273 

Season 4: Oct-Dec 0.1058; 0.0577 0.1157; 0.0199 0.2214; 0.0634 0.2450; 0.0483 

 



113 

 

Fire 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

220 kV         

Season 1: Jan-Mar 0;0 0;0 0;0 0;0 

Season 2: Apr-Jun 0;0 0;0 0;0 0;0 

Season 3: Jul-Sep 0;0 0.0048; 0.0199 0.0242; 0.0698 0;0 

Season 4: Oct-Dec 0;0 0;0 0;0 0.0145; 0.0598 

 

Pollution 

 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

220 kV         

Season 1: Jan-Mar 0.0145; 0.0323 0; 0 0; 0 0.0097; 0.0273 

Season 2: Apr-Jun 0.0097; 0.0273 0; 0 0;0 0; 0 

Season 3: Jul-Sep 0.0338; 0.0825 0; 0 0; 0 0.0097; 0.0399 

Season 4: Oct-Dec 0.0145; 0.0434 0; 0 0; 0 0.0048; 0.0199 

 

Other 

 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

220 kV         

Season 1: Jan-Mar 0.0338; 0.0508 0; 0 0.0145; 0.0323 0.0242; 0.0634 

Season 2: Apr-Jun 0.0290; 0.0819 0.0435; 0.0423 0;0 0.0193; 0.0359 

Season 3: Jul-Sep 0.0097; 0.0273 0.0387; 0.1052 0.0338; 0.0825 0.0145; 0.0598 

Season 4: Oct-Dec 0.0532; 0.1616 0.0145; 0.0323 0.0338; 0.0585 0.0242; 0.0483 
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275 kV Lines 

 

Bird streamer  

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

275kV         

Season 1: Jan-Mar 0.2018; 0.0743 0.0410; 0.0338 0.0131; 0.0186 0.1268; 0.0790 

Season 2: Apr-Jun 0.1964; 0.0576 0.0479; 0.0312 0.0131; 0.0147 0.1399; 0.0644 

Season 3: Jul-Sep 0.0874; 0.0380 0.0379; 0.0282 0.0147; 0.0153 0.0820; 0.0414 

Season 4: Oct-Dec 0.1013; 0.0457 0.0394;0.0354 0.0070; 0.0094 0.0657; 0.0335 

 

Lightning 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

275kV         

Season 1: Jan-Mar 0.1395; 0.0578 0.1352; 0.0292 0.3872; 0.1063 0.4040; 0.0676 

Season 2: Apr-Jun 0.0738; 0.0155 0.1206; 0.0128 0.1966; 0.0161 0.2551; 0.0335 

Season 3: Jul-Sep 0.0672; 0.0215 0.1148; 0.0101 0.1813; 0.0187 0.2492; 0.0260 

Season 4: Oct-Dec 0.1381; 0.0443 0.1454; 0.0425 0.4164; 0.1116 0.4420; 0.0814 

 

Fire 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

275kV         

Season 1: Jan-Mar 0; 0 0.0023; 0.0052 0.0178; 0.0502 0.0008; 0.0032 

Season 2: Apr-Jun 0.0116; 0.0160 0.0417; 0.0403 0.1701; 0.1732 0.0232; 0.0296 

Season 3: Jul-Sep 0.0170; 0.0179 0.0990; 0.0592 0.2861; 0.1377 0.0348; 0.0267 

Season 4: Oct-Dec 0.0046; 0.0103 0.0170; 0.0190 0.0603; 0.0544 0.0085; 0.0131 
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Pollution 

 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

275kV         

Season 1: Jan-Mar 0.0046; 0.0092 0.0008; 0.0032 0.0015; 0.0044 0.0015; 0.0044 

Season 2: Apr-Jun 0.0124; 0.0150 0.0031; 0.0074 0.0023; 0.0069 0.0139; 0.0320 

Season 3: Jul-Sep 0.0108; 0.0243 0.0031; 0.0087 0.008; 0.0032 0.0116; 0.0290 

Season 4: Oct-Dec 0.0054; 0.0114 0.0015; 0.0064 0.0015; 0.0064 0.0023; 0.0052 

 

Other 

 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

275kV         

Season 1: Jan-Mar 0.0240; 0187 0.0247; 0.0236 0.0325; 0.0259 0.0325; 0.0291 

Season 2: Apr-Jun 0.0077; 0.0067 0.0209; 0.0228 0.0263;0.0301 0.0170; 0.0179 

Season 3: Jul-Sep 0.0101; 0.0136 0.0193; 0.0208 0.0216; 0.0282 0.0077; 0.0081 

Season 4: Oct-Dec 0.0216; 0.0191 0.0209; 0.0242 0.0464; 0.0384 0.0410; 0.0297 

 



116 

 

400 kV Lines Thunderstorm Rainfall Area 

Bird streamer 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV 
Thunderstorm         

Season 1: Jan-Mar 0.1226; 0.0586 0.0314; 0.0243 0.0035; 0.0078 0.0506; 0.0349 

Season 2: Apr-Jun 0.1261; 0.0926 0.0593; 0.0254 0.0035; 0.0069 0.0721; 0.0505 

Season 3: Jul-Sep 0.0564; 0.0329 0.0244; 0.0232 0.0076; 0.0124 0.0384; 0.0234 

Season 4: Oct-Dec 0.0732; 0.0443 0.0110; 0.0130 0.0064; 0.0092 0.0296; 0.0207 

 

Lightning 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV 
Thunderstorm         

Season 1: Jan-Mar 0.0477; 0.0301 0.0052; 0.0062 00.0732; 0.0571 0.0726; 0.0401 

Season 2: Apr-Jun 0.0070; 0.0103 0.0041; 0.0061 0.0052; 0.0086 0.0128; 0.0103 

Season 3: Jul-Sep 0.0035; 0.0060 0.0012; 0.0033 0.0145; 0.0161 0.0035; 0.0049 

Season 4: Oct-Dec 0.0337; 0.0257 0.0099; 0.0144 0.1005; 0.0381 0.0878; 0.0516 

 

Fire 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV 
Thunderstorm         

Season 1: Jan-Mar 0; 0 0; 0 0.0058; 0.0105 0.0012; 0.0048 

Season 2: Apr-Jun 0.0052; 0.0093 0.0302; 0.0243 0.1197; 0.1300 0.0081; 0.0132 

Season 3: Jul-Sep 0.0145; 0.0175 0.0808; 0.0548 0.4103; 0.2085 0.0296; 0.0229 

Season 4: Oct-Dec 0.0029; 0.0058 0.00128; 0.0109 0.0465; 0.0345 0.0058; 0.0121 
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Pollution 

 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV Thunderstorm         

Season 1: Jan-Mar 0.0070; 0.0125 0; 0 0; 0 0.0006; 0.0024 

Season 2: Apr-Jun 0.0029; 0.0058 0.0029; 0.0058 0; 0 0.0006; 0.0024 

Season 3: Jul-Sep 0.0064; 
0.00218 0.0122; 0.0199 0.006; 0.0024 0; 0 

Season 4: Oct-Dec 0; 0 0.0006; 0.0024 0; 0 0; 0 

 

Other 

 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV Thunderstorm         

Season 1: Jan-Mar 0.0099; 0.0105 0.0110; 0.0160 0.0163; 0.0215 0.0105; 0.0102 

Season 2: Apr-Jun 0.0093; 0.0262 0.0139; 0.0213 0.0128; 0.0143 0.0064; 0.0060 

Season 3: Jul-Sep 0.0174; 0.0283 0.0163; 0.0135 0.0244; 0.0333 0.0093; 0.0183 

Season 4: Oct-Dec 0.0110; 0.0114 0.0087; 0.0092 0.0291; 0.0274 0.0192; 0.0208 
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400 kV Lines Frontal Rainstorm Area 

Bird streamer 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV Frontal         

Season 1: Jan-Mar 0.0863; 0.0322 0.0211; 0.0264 0.0037; 0.0117 0.0266; 0.0245 

Season 2: Apr-Jun 0.0964; 0.0341 0.0569; 0.0321 0.0046; 0.0073 0.0496; 0.0341 

Season 3: Jul-Sep 0.0844; 0.0353 0.0477; 0.0151 0.0018; 0.0052 0.0385; 0.0313 

Season 4: Oct-Dec 0.0955; 0. 0409 0.0073; 0.0097 0.0046; 0.0092 0.0257; 0.0165 

 

Lightning 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV Frontal         

Season 1: Jan-Mar 0.0477; 0.0301 0.0052; 0.0062 0.0732; 0.0571 0.0726; 0.0401 

Season 2: Apr-Jun 0.0070; 0.0103 0.0041; 0.0061 0.0052; 0.0086 0.0128; 0.0103 

Season 3: Jul-Sep 0.0035; 0.0060 0.0012; 0.0033 0.00145; 0.0161 0.0035; 0.0049 

Season 4: Oct-Dec 0.0337; 0.0257 0.0099; 0.0144 0.1005; 0.0381 0.0878; 0.0516 

 

Fire 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV Frontal         

Season 1: Jan-Mar 0.0009; 0.0038 0.0064; 0.00157 0.0413; 0.0514 0.0110; 0.0205 

Season 2: Apr-Jun 0.0028; 0.0082 0.0018; 0.0052 0.0193; 0.0300 0.0009; 0.0038 

Season 3: Jul-Sep 0.0028; 0.0061 0.0046; 0.00120 0.0119; 0.0161 0.0028; 0.0061 

Season 4: Oct-Dec 0.0018; 0.0076 0.0064; 0.0124 0.0395; 0.0512 0.0009; 0.0038 
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Pollution 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV Frontal         

Season 1: Jan-Mar 0.0762; 0.2275 0.0220; 0.0394 0.0110; 0.0257 0.0138; 0.0270 

Season 2: Apr-Jun 0.0092; 0.0157 0.0073; 0.0167 0.0009; 0.0038 0.0046; 0.0092 

Season 3: Jul-Sep 0.0037; 0.0088 0.0018; 0.0076 0; 0 0.0055; 0.0165 

Season 4: Oct-Dec 0.0046; 0.0107 0.0009; 0.0038 0; 0 0.0009; 0.0038 

 

Other 

S/I 00:00-05:59 06:00-11:59 12:00-17:59 18:00-23:59 

400kV Frontal         

Season 1: Jan-Mar 0.0092; 0.0085 0.0092; 0.0085 0.0102; 0.0115 0.0116; 0.0114 

Season 2: Apr-Jun 0.0116; 0.0254 0.0116; 0.0254 0.0130; 0.0170 0.0089; 0.0148 

Season 3: Jul-Sep 0.0123; 0.0166 0.0123; 0.0166 0.0160; 0.0147 0.0078; 0.0106 

Season 4: Oct-Dec 0.0106; 0.0164 0.0106; 0.0164 0.0102; 0.0052 0.0153; 0.0145 

 

 
 


