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Abstract

Machine Vision for Froth Flotation
by Jerome Jonathan Francis

16 June 2001

Denoising, motion estimation and segmentation is examined in the context of froth imaging. Froth

floatation is an industrial process seeking to separate valuable minerals from mined ore. Size, shape

and motion of bubbles within froth are useful process indicators and, in principle, may be extracted

via a machine vision system. This thesis examines the issues involved in selecting suitable algorithms

for a real (or near real) time machine vision system.

The segmentation algorithm examined was Watershed segmentation. Watershed segmentation is

a form of non-linear Voronoi tessellation of the image plane. The process of selecting the markers for

optimum segmentation was addressed. The process of selecting good markers is complementary to

the denoising process, since good marker selection implies the rejection of spurious markers caused

by noise. It was determined that using a rolling ball of radius one pixel as a structuring element

for erosion, and greyscale reconstruction of the eroded image, led to the domes being extracted by

subtracting the reconstructed image from the original. The domes selected are the regional maxima

of the original image. The markers are post processed by discarding dark and small markers. Dark

markers may be defined as any marker whose maximum intensity is less than 0.4 of the maximum

intensity pixel in the image.

This emphasises that the intended markers are the highlights of the bubbles. Small point-like

markers were seen to be potentially noise induced. A connected components area opening removed

small point-like markers of five or fewer pixels. The remaining markers may then be dilated to merge

close markers. The structuring element used was a disc of radius 2. The parameters used were selected

by trial and error for the images examined.

A weakness of the watershed segmentation process is described. This involves the over-

segmentation of small bubbles on large bubbles. The extent of the small bubble is over-estimated.

This is a result of the size and relative position of the markers for large and small bubbles respectively.

An attempt to segment an unprocessed froth image using watershed segmentation leads to over-

segmentation of the bubbles. Many of the regions found (with the exception of small bubbles) do

not correspond to actual bubbles on the froth surface. This implies that a noise removal stage is

required. Many denoising algorithms are described in the literature. The problem for froth imaging

is to find an optimum (fast and accurate) denoising algorithm which will eliminate noise and at the

same time preserve the bubble boundaries as far as possible (a contradictory requirement). This edge

preservation requirement leads to the rejection of linear noise elimination processes i.e low-pass filters.

The optimum denoising filter must be then non-linear.
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The non-linear filters examined included anisotropic diffusion, median filters, morphological fil-

ters and Occam filters. All by virtue of being non-linear, are to some degree edge preserving. The

algorithms were quantitatively compared. The simple median filter, wavelet based denoising and

anisotropic diffusion algorithms were fast enough for a real, or near real, time system. In terms of per-

formance, however, anisotropic diffusion is preferred to wavelet based denoising, which is preferred

to the simple median filter. The qualitative test used involved finding the filter which produced the

least over-segmentation. The over-segmentation was visually quantified.

Many different algorithms have been examined for motion estimation of flotation froths. The

algorithms range from correlation based to gradient based optical flow algorithms to algorithms more

resembling image registration.

In a sense the process of finding a motion field is an image registration process. This suggests the

use of the energy in the difference between the inverse warped motion image (at time t +1t) and the

reference image (at time t) as a performance measure of various algorithms. In the absence of this

performance measure, two other possible performance measure suggest themselves. Somehow find

a pair of images with known motion and compare the estimated and actual motion. Alternatively, a

froth image may be artifically warped and an algorithm ranked in terms of how well it estimates the

warping field.

Examination of the motion field and registration error showed that detecting burst bubbles, merged

bubbles or highlight changed events is feasible. The variance of the motion field in the vicinity of the

events is high, and the registration error is significant.

Block matching, optical flow type, and cluster (region) based motion estimation algorithms were

examined. It was demonstrated that embedding block matching algorithms in a hierarchical frame-

work reduced the running time of the algorithms without impacting on the performance. A hierarchi-

cal framework improved the performance of the optical flow algorithm used for large displacements

(motion). The cluster based algorithms, while estimating large displacements well and being fast,

performed relatively poorly.

The algorithms were quantitatively examined. Two hierarchical frameworks were examined. It

was shown that when robustness, speed, performance, especially for large uniform displacement is

considered, then Minimum Absolute Difference (MAD) or Mean Square Error (MSE) based Suc-

cessive Elimination Algorithm (SEA) embedded in Hierarchical Framework 1 is preferred. For

small motion, Horn and Schunk’s algorithm, followed by Minimum Absolute Difference (MAD) or

Mean Square Error (MSE) based Successive Elimination Algorithm (SEA) embedded in Hierarchical

Framework 2 is suggested.

In short, algorithms for fast and reliable denoising, segmentation and motion estimation exist. It

is feasible to detect bubbles merging or bursting or highlights changing shape or aspect.
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Chapter 1

Introduction

Froth flotation is a minerals extraction process which seeks to extract a mineral of interest from its ore

[66]. Presently the froth flotation process is largely controlled by human operators using the visual

characteristics of the froth, especially, bubble size and shape and motion. Based on experience and

training, the operator then adjusts the process, for example, by modifying the reagent addition rate

[52, 66]. A complication is that different operators interpret the visual features in different ways.

Some, or all, of these visual features can, in turn, be measured by a machine vision system optimised

for analysing froth images. A machine vision system then has potential for improving the consistency

of process operation across shifts, compiling a history of froth visual changes which can be compared

to assay results, and as a tool for investigating the relative importance of the visual features used by

operators.

Preliminary investigation of a froth image involved taking a cut across a region of the froth and

examining the intensity profile. A typical froth image is shown in figure 1.1 and an intensity profile is

taken at line 25. A subregion taken from figure 1.1 is shown in figure 1.2(a), the position of the cut in

figure 1.2(b) and the intensity profile in figure 1.2(c). It can be seen that each bubble in the froth has a

bright region (a peak in intensity), or highlight. Where bubbles make contact with each other a valley

forms, which tends to be darker than the surrounding pixels.

One could expect to see an increase in the profile as one ascends the side of a bubble, peaking

at the highlight, and then decreasing until the boundary between two bubbles is encountered. The

observed intensity profile, however, is different, extra extrema are present. The artifacts observed

cannot be explained by some features on the bubbles themselves, which only leaves noise as a possible

explanation. The minima in the intensity profile refer to the edges between adjacent bubbles. Any

method which seeks to remove noise must, as far as possible, maintain the position of the edges. Edge

preservation is important to correctly localise the bubbles within the froth and to accurately measure

the extent of the bubble. Consider the same intensity profile as shown in figure 1.2(c) filtered with a

low-pass filter. The low pass filter is a circularly symmetric Gaussian with sigma σ = 2, and radius

6. The filtered intensity profile is shown in figure 1.3. As expected, the small extrema are severely

attenuated or removed, however the positions of the strong extrema are now uncertain. (A low pass

1
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filter blurs images.) This uncertainty in the positions of stronger extrema leads to difficulties in the

localisation of bubbles, especially since close examination of the intensity profile (figure 1.2(c)) shows

that the boundaries, or edges, between bubbles correspond to the strong minima. This implies that a

denoising method should be as edge preserving as possible. Standard linear denoising techniques

(see [18, 24]) do not preserve edges at all. Non-linear denoising techniques, on the other hand, are

designed with edge preservation in mind (see, for example, [101, 148]).

FIGURE 1.1 An example field of a froth image.

Developing a machine vision system for froth flotation demands that the features used by human

operators be measured from froth images, these features include the size and shape of individual

bubbles. This is an example of the general segmentation problem for which, at present, there is still

no general theory. This can be seen from the many different approaches to segmentation ranging from

texture, colour to statistical modelling based techniques (see [25, 57, 108, 128] for some very different

approaches). Froth image segmentation is complicated by the absence of a background with different

properties, usually segmentation is defined in terms of extracting an object with properties different to

the objects surrounding it [48, 57, 105]. Here one cannot segment on shape (via connected components

for example [17, 30]) since the bubble shape is highly variable (see figure 1.1 for an example froth

image). Each bubble shares its properties with every other bubble making segmentation based on

colour, motion or texture difficult.

While texture could be used to segment a froth image, only large bubbles could be distinguished

from small bubbles lumped together. This is because the texture of a cluster of small bubbles together

will be different to the texture of a large bubble.

Thresholding could be used to find the bubble highlights. The difficulty is that the highlights have

different intensities. This makes the selection of a single threshold capable of finding and correctly

separating all highlights from each other, impossible. A bubble not well illuminated will have a

relatively dim highlight. The dim highlight intensity will be similar to non-highlight pixels in the well

illuminated regions of the image.
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(a) Sub-region of froth image.

(b) Position of intensity cut.
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(c) Intensity profile.

FIGURE 1.2 Extraction of an intensity profile.
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FIGURE 1.3 The intensity profile of a filtered image.
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The difficulties involved in thresholding suggest a region growing segmentation algorithm [110].

Here one would find a point, or points, interior to each bubble, and grow the point(s) into a region, until

the regions encounter each other. The region growing algorithm should, for accuracy and efficiency,

take the intensity shape of the bubble into account. Some segmentation algorithms are examined, not

only with regard to their suitability for the application at hand, but both qualitatively and quantitatively.

One of the features used by operators is the motion of the froth. Ideally, the froth contains a

high proportion of the desired mineral and one wants this froth to overflow the flotation tank for later

collection. The operator typically wants to know not only if this overflowing is occurring, but how

fast it is happening [66]. This requirement raises the difficult problem of motion estimation (just how

difficult can be seen in the volume of papers produced, see [158] for example).

Many motion estimation algorithms are described in the literature, these include block matching

algorithms [9, 39], gradient based optical flow [2, 11, 138] and cluster and segmentation based algo-

rithms [84, 128]. Implicit to these algorithms is the tracking of features from one image to the next.

This is explicit in the correlation and cluster based algorithms [39, 128], and implicit in gradient based

optical flow techniques where edges, and especially corners, are used to determine and propagate mo-

tion estimates [2, 68]. Motion estimation in froth imaging is complicated by bubble bursts, bubble

merges and gross changes in the intensity profile of a bubble. The following figures 1.4, 1.5 and 1.6

illustrate bubble bursts, merges and gross changes in the intensity profile of a bubble.

(a) Even field of frame before burst event - frame
118 of cleaner data.

(b) Even field of frame for burst event – frame 119
of cleaner data.

FIGURE 1.4 A burst event.

The layout of this thesis is subsequently described.

1.1 Thesis layout

This thesis examines image denoising, segmentation and motion estimation in the context of devel-

oping a machine vision system for froth image, and froth image sequence analysis. The text is then

divided into three parts, preceeded by a short description of froth flotation.
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(a) Even field of frame before merge event - frame
22 of cleaner data.

(b) Even field of frame for merge event – frame 23
of cleaner data.

FIGURE 1.5 A merge event.

(a) Even field of frame before intensity change
event - frame 111 of cleaner data.

(b) Even field of frame during intensity change
event – frame 112 of cleaner data.

FIGURE 1.6 An example of a change in bubble intensity profile.



7 Chapter 1. Introduction

Part I examines segmenting froth images in some detail. Some segmentation algorithms are exam-

ined. A variety of methods for generating and subsequent processing of the marker images is

examined. A marker serves to indicate the presence of a bubble. Once a bubble marker is found,

region growing techniques makes finding the extent of the bubble possible (see [13, 65, 110] for

background and examples of marker based segmentation). The denoising and pre-processing

algorithms are examined in terms of their effect on the segmentation process, this leads to seg-

mentation being examined first.

Part II examines the need for a preprocessing stage. This preprocessing stage is concerned with

denoising and enhancing the froth image before further processing.

Part III examines the problem of estimating a dense motion field for a froth motion sequence. A va-

riety of algorithms are examined and qualitatively and quantitatively compared. The problem of

quantitatively comparing motion estimation algorithms is examined. The problem of detecting

bubble bursts and merges is considered. (This will be seen in Chapter two to be relevant to a

froth stability measure.)

Part IV concludes and makes some recommendations for a machine vision system for froth flotation.

The subsequent chapter introduces froth flotation from a non-specialist’s perspective. It is in no

way intended to be exhaustive and does not, for example, examine the chemistry or hydrodynamics

involved in the process. The chapter also serves to describe previous attempts, with varying degrees of

success, at a froth imaging system. Once the background has been described, the goals of this thesis

are stated.
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Chapter 2

Froth Flotation for Electrical Engineers

This chapter is divided into four sections. First, froth flotation is reviewed. Secondly, the potential

benefits of applying machine vision to froth flotation are described. Thirdly, an overview of some

machine vision systems applied to froth flotation, as described in the literature, is given. Finally, the

problems examined by this thesis (and why) is stated.

2.1 What is froth flotation?

A problem in processing mined ore is that the proportion of desired material (for example, platinum)

in the volume of mined material is small. Typical values include 2.6 grams of platinum per ton

(Merensky) and between 3.5 and 29 g/t (UG2) [66]. A means of extracting the desired material (or

in metallurgical parlance, separating or concentrating) is required. Of the variety of concentration

methods available, froth flotation is an example. As the name implies, the process involves floating

particles of the desired material and inhibiting the floatation of particles corresponding to the rest

of the ore body. Two descriptors of this floated material include grade and recovery. In the context

of platinum, grade refers to the proportion of platinum to other solid material floated. Recovery

refers to the amount of platinum in the ore subsequently arriving in the floated product. The ideal

of floatation, or any separation technique, involves maximising these two variables. Other separation

methods include gravity, magnetic separation, electrostatic separation and various forms of floatation

(see [126] for details). Froth flotation has been used for minerals concentration since 1887 [126].

The particular example used here describes flotation of platinum group metals. The description

is fairly typical of flotation in general [126]. Platinum group metals (platinum, palladium, rhodium,

iridium and ruthenium) have wide commercial use, from catalytic converters in motor vehicle exhausts

to jewelry to fuel cells (platinum) [66].

The ore is first crushed to a fine gravel with a pebble diameter of several millimetres. The gravel

is milled to a particular particle size, mixed to a slurry with water and passed through several stages

of flotation to produce a concentrate which contains a higher percentage platinum than the ore. The

concentrate is then smelted to produce platinum (or more correctly, a range of platinum group and

9
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some base metals, for example, nickel) in metallic form. A typical plant, as shown in figure 2.1, is

subsequently described in detail.

Milling occurs in two stages. The ore is first milled and the result screened. Particles deemed

too large are returned to the mill, particles small enough are shunted into the flotation rougher circuit.

Water is added as part of the milling process, this helps to keep the milled product mobile.

Reagents are added to the pulp to promote flotation of the desired product. A conditioning stage, if

needed, is used to provide enough time for reagents to finish reacting with the particles. Reagents are

divided into activators, collectors, depressants and frothers. Activators prepare the particle surfaces

to enable the collector molecules to attach. Activators also assist in collapsing the froth between

flotation stages. Depressants inhibit the flotation of undesired product. Frothers stabilise the froth

by decreasing surface tension. Collectors promote the flotation of the desired product. The exact

mechanism by which the reagents work is poorly understood [52]. It is hypothesised that collectors

make the desired particles (full or part) of desired product hydrophobic (and hence more likely to

float), and depressants the particles of undesirable product hydrophilic (and hence less likely to float).

Since the interaction between reagents and froth is not clearly understood, it is possible that chang-

ing a reagent suite might change froth appearance. A reagent suite is the family of reagents used.

The conditioned pulp is first pumped into a series of interconnected flotation banks. Each flotation

bank consists of a number of serially connected flotation cells. Within each cell the pulp is agitated

by an impeller, and air is pumped into the cell. The impeller prevents sedimentation and serves to

fragment the air entering the pulp. The contents of the cell then forms two layers; a pulp phase

(liquid) and a froth phase (mostly air by volume). The froth then overflows the cell, if the pulp level

is high enough, and is collected into launders to form the concentrate. If all goes well, the concentrate

has a higher percentage of the desired product than the pulp entering the cell. The depleted pulp

leaving the cell is referred to as the tailings of the cell. The tailings of one cell flows into the next cell

of the current flotation bank. The tailings of a flotation bank is subsequently processed.

Flotation banks are differentiated by function. The rougher bank (one or more) receives the pulp

immediately after conditioning. The rougher concentrate has a high concentration of the desired

product and is fed into a cleaner bank. The cleaner concentrate is fed into a recleaner bank. The

cleaner and recleaner improves the grade of the final product. The final concentrate is taken from the

recleaner bank. The final concentrate is thickened, filtered, sometimes dried, and sent off to a smelter.

The thickening process together with filtering removes excess water which is fed back into the process

as a water conservation measure. The filter residue is sent to the smelter. The filtrate is fed back into

the thickening process.

The rougher tailing is fed into a scavenger bank. The scavenger minimises the proportion of

platinum in the final tail. The scavenger tail, or final tail, is then marked for disposal (thickening and

a slimes dam). Again the excess water from the thickener is fed back into the mill to conserve water.

The scavenger concentrate is fed back into the rougher bank. The cleaner tail is fed back into the

rougher bank. The recleaner tail is fed back into the cleaner bank.
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FIGURE 2.1 A flow-sheet for a typical concentrator.
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2.2 Why apply machine vision to flotation?

Current operation of flotation banks involves an operator looking at the froth and then adjusting the

process. The process variables include level, or height of the pulp (liquid), in the flotation bank, the

rate of addition of chemical reagents, and adjusting the airflow (aeration) of the cell. It should be

emphasised that two distinct processes are at work within the operator. The first process extracts the

visual features of the froth. The visual features includes bubble size, colour, shape, movement and

stability. The second process uses these features and infers the state of the flotation cell or bank. Based

on prior experience and training, the operator will then adjust one or more of the process variables, or

may well do nothing.

Since the control is based on the froth visual appearance, and image analysis has advanced enough

to measure some, if not all, of these parameters, a machine vision system to analyse froth appearance

is feasible. The advantages of a machine vision system include,

(i) Consistency across shifts. There is no guarantee that different individuals will quantify visual

features in the same way. Machine vision promises the same visual features measured in the

same way, always.

(ii) Compiling a history of changes in the froth visual appearance as the process variables change.

(iii) Potential as a training tool for operators.

(iv) Visual feature extraction for operator based control.

(v) In the long term, providing some of the the input variables for automatic control of the flotation

process.

The development of the machine vision system was driven by, and provided data for, research

linking froth appearance to the underlying metallurgy. This was the ambit of Craig Sweet and Doug

Hatfield, undertaken at the Minerals Processing Research Unit (MPRU) at the University of Cape

Town (UCT), and Ester Ventura-Medina’s work, undertaken at the University of Manchester (UMIST)

Froth and Foams Research Unit. Ben Wright implemented a prototype real-time machine vision

system to measure some of the visual characteristics of froth [156, 157] (work undertaken at the

Digital Image Processing unit, UCT). Bart Rapacz (in a masters project underway) is working on

extending and refining the prototype real-time machine vision system.

Both the literature [53, 60, 96] and interaction with flotation bank operators indicate froth visual

parameters (as described in table 2.1) useful for inferring the state of the process.
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TABLE 2.1 Some useful froth visual parameters.

Parameter Infers

Ellipticity of bubbles Froth stickiness.

Orientation of bubbles with Bubble loading. (Attachment of milled particles to the bubbles
respect to the weir in the froth.)

Size distribution of bubbles Froth stability, loading and yield of the process.

Motion estimation Is the froth pulling, or flowing, over the weir.

Bubble bursts and coalescence Froth stability.

Colour Not an issue with platinum, except at the first one or two rougher
cells and the recleaners. Colour is useful for other floats eg.
copper and coal.

2.3 A review of some existing machine vision systems for flotation

This section reviews some previous and concurrent1 attempts at at constructing a machine vision sys-

tem for froth images and image sequences. It is difficult to create a time-line showing the development

of the field but as far as possible the dates of submission of papers and the like for publication will be

used to approximately date work.

2.3.1 JKFrothCam

JKFrothCam is a commercial instrument produced by JKTech. The core algorithms are pixel tracing

(a motion estimation algorithm described, in detail, in section 14.3) and texture measurement via the

texture spectrum (described subsequently). The motion estimation algorithm used is pixel tracing

developed by Thornton and Nguyen [107]. The algorithm is essentially a correlation based algorithm

with the space of motion vectors sub-sampled. A single block at the centre of the image is correlated

with the corresponding block, offset, in the next frame. The motion vector finally selected is the one

with the greatest correlation.

The texture measurement used is the texture spectrum [106] as developed by He and Wang [62].

The texture spectrum from a froth image is related to some set of predetermined froth types. Together

with froth speed, an expert system evaluates the current froth type and suggests (or even controls

process) to some pre-determined ideal state. Bubble size is related to the middle peak of the texture

spectrum. The relationship is described as non-linear.
1At least, concurrent to this thesis.
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Discussion

The pixel tracing algorithm does not give a motion estimate for all possible directions of motion.

Pixel tracing is essentially block motion estimation (see [159] for some examples) with a radially

subsampled search space and a single search block. This allows for a fast algorithm.

The texture spectrum is used to identify froth types (the control strategy is to push the flotation

cell(s) to some predetermined froth type).

2.3.2 University of Manchester (UMIST)

Early work by Woodburn in 1994. Work has been done at the froth and foams research unit, under the

direction of Jan Cilliers. The following papers are described,

(i) WOODBURN, AUSTIN AND STOCKTON (1994) [155] describe a bubble segmentation algo-

rithm. The bubbles were extracted using a simple intensity threshold, and bubble area, perimeter

and variance of area measured.

(ii) SADR-KAZEMI AND CILLIERS (1997) [120] describe a marker based watershed method for

extracting the bubble boundaries. The images are pre-processed by applying histogram equal-

isation. The domes of the image are than found by first subtracting from the image a constant

grey-level. The subtracted image is then grey-scale reconstructed. The difference between the

original and reconstructed image yields then the marker image.

Discussion

(a) In (i) above, WOODBURN, AUSTIN AND STOCKTON do not describe the exact techniques used

in the image processing. The paper implies that the features measured were measured from the

thresholded bubble highlights.

2.3.3 University of Nottingham

This was work essentially on coal and tin flotation.

(i) HARGRAVE, MILES AND HALL (1996) [60] demonstrated a correlation between grey level

(pixel intensity) and flotation process variables. The average intensity of pixels brighter than 75

and darker than 175 taken over three images, correlated with the ash content of the concentrate

as well as the mass flow rate.

(ii) HARGRAVE AND HALL (1997) [59] investigated colour and texture in tin flotation. The bub-

bles were segmented via watershed segmentation. A colour profile was generated and shown to

predict grade of the concentrate. The fractal dimension of the bubble size distribution was calcu-

lated. This showed two different dimensions and a breakpoint. This data, with colour informa-

tion, was shown to be good predictors of flow rate via neural network modelling. Hargrave and
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Hall postulate that the first fractal dimension yields information about froth instability (bubble

coalescence and bursts), the second the small bubbles or basic froth structure, and the breakpoint

the relative tradeoff between these two processes. A distortion profile of the bubbles is used as a

descriptor of the speed of the motion of the froth. The distortion profile catalogues the direction

of the semi-major axes of the bubbles. In fast moving froth the bubbles are stretched parallel to

the direction of motion. In slow moving froth the bubbles are stretched perpendicularly to the

direction of motion.

(iii) HARGRAVE, BROWN AND HALL (1997) investigate fractal dimensions as a descriptor of froth

structure [58]. The Sierpinski Carpet is used as a model for froth images. The fractal dimension

of the froth images were calculated from the bubble size distribution,

β = Cα2−D

Where D is the fractal dimension, α the bubble area to remove, β the residual area. The bubble

area removed and residual area are normalised and plotted on log axes. The slope of the line

is the fractal dimension. It was determined that the froth images had two fractal dimensions

(two lines on the log-log plot), separated by a breakpoint (or transition region). The two fractal

dimensions identified two different structures in the froth, a basic structure of smaller bubbles

and an unstable structure of larger bubbles.

(iv) HARGRAVE, SHIRAZI AND HALL (1997) [61] This is an attempt to correlate colour and surface

texture with process performance characteristics (eg. grade, solids and water recoveries etc.). A

feed forward neural network with one hidden layer was used to relate colour and texture with

the process characteristics. Fractals are suggested as a texture measure.

Discussion

(a) HARGRAVE, MILES AND HALL The grey level range determination (75 to 175) is somewhat ad

hoc.

(b) HARGRAVE AND HALL investigate colour and texture – The images are pre-processed by a

“sharpening” filter before the watershed is applied. The sharpening filter is not described.

For that matter the watershed algorithm is not described either – several exist in the literature

[13, 31, 71, 141]. The neural network topology is not described. The fractal dimension is essen-

tially a texture estimation process.

(c) HARGRAVE, BROWN AND HALL The segmentation algorithm used to segment the bubbles prior

to generating the bubble size distribution is not described.

(d) HARGRAVE, SHIRAZI AND HALL Again the nature of the image processing algorithms (with the

exception of the colour analysis) are not described in any detail.
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2.3.4 The Catholic University of Chile (ACEFLOT)

(i) GUARINI, CIPRIANO, SOTO AND GUESALAGA (1995) [53] describe an image processing sys-

tem for measuring froth parameters. Careful lighting ensures that the highlights of the froth are

the bubble centres. The image is transformed into the HSI colour space and the intensity band

further processed. The image is smoothed using a low-pass filter of extent 7 × 7, then stretched

to fully occupy the grey level values from 0 to 255.

The highlights (brightest points on the froth) are found by edge detection (using a 3 × 3 domain)

and comparing the intensity of the edge to a threshold. If less than the threshold the point is

regarded as a candidate highlight. This prevents busy regions from being selected as highlights.

The candidate highlights are finally processed by comparing each candidate highlight pixel to

its 24 neighbours (in a 5 × 5 domain) and only selecting a pixel if the pixel is brighter than its

neighbours. Minima are prevented from being closer than 5 pixels from the centre of the bubble.

The bubble boundaries are selected by scanning radially in 12 directions 30o apart and finding

the minima. The minima are joined (bubble edges are interpolated) using pieces of elliptical

curves.

The measured bubble parameters include: mean diameter, major and minor axes (a shape de-

scriptor), colour and area.

(ii) CIPRIANO, GUARINI, SOTO, BRICENO AND MERY (1997) [26] describe the operation and

some of the algorithmic internals of the ACEFLOT system. The machine vision component of

the ACEFLOT system is very similar to that described in the previous paper by Guarini et al.

[53].

The bubbles are segmented by finding the highlights and moving away in twelve radial directions

and finding minima along the scan direction. The boundary is then on the minima. Motion

and instability is measured. Bubble parameters measured include: area, perimeter, diameter

and circularity. Froth parameters measured include: number of bubbles, density and colour.

An expert system evaluates the bubble and froth parameters, diagnoses a froth condition and

suggests corrective action if any.

(iii) CIPRIAN, GUARINI, SOTO, SEPULVEDA AND BRISENO (1998) [27] describe ACEFLOT. The

details provided resemble those provided in the previous papers.

Discussion

These papers document an attempt at directly measuring relevant froth image structures and relating

these to the underlying process variables.

(a) GUARINI, CIPRIANO, SOTO AND GUESALAGA The low-pass filter is not described. The context

in which this filter is described in the paper, implies a “pill-box” filter. The authors write,
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First a preprocessing step is performed to smooth the image in order to filter out

noise. This is achieved through convolution with a 7 × 7 low-pass mask.

(b) CIPRIANO, GUARINI, SOTO, BRICENO AND MERY The motion estimation algorithm is not

described. It is implied that it is fast [27]. The nature of the instability measurement algorithm is

not described. The authors write,

The foam velocity and stability is evaluated through the processing of consecu-

tive images, at a rate of 20 frames per second. The speed is computed determining the

movement of bubble centres from one frame to the next, averaging the results of 5 con-

secutive frames each time. The stability is a measure of the rate of bubble explosions.

It is estimated comparing two consecutive image frames, and evaluating a measure

of the rate of change in appearance. Again the results of 5 consecutive measures are

averaged to present the result.

2.3.5 University of Amsterdam

(i) DE SWART, VAN VLIET AND KRISHNA (1996) [133] describe a machine vision system for seg-

menting bubbles in the liquid phase (pulp phase) of a bubble reactor. The images were converted

to greyscale and thresholded. Since the images show a gas and liquid phase, the histogram of the

image is bimodal, allowing for the selection of an optimal threshold. The thresholded regions

correspond to the bubbles. The area and diameter of the bubbles are extracted.

2.3.6 University of Cape Town

Work here involved image analysis of graphite and platinum floats.

(i) PAUL SYMONDS (1992) [135, 136] First masters project at UCT. This attempted to segment

the bubbles using a morphological edge detection method. The edges were detected using a

spherical structuring element and subtracting the image from the morphologically closed image.

The edge image is then thinned, and where possible, edge gaps are filled.

(ii) JIA LIU (1995) [89] Second masters project at UCT. This applied watershed segmentation to

froth images. The segmentation was improved by linear low-pass filtering. The images were

smoothed by convolving with a Gaussian kernel. In an effort to reduce over-segmentation, wa-

tersheds at multiple image scales are computed. Comparing the resulting watersheds allows for

over-segmented regions to be detected and, to some degree, compensated for. The segmentations

were compared to hand segmented images. It is demonstrated, via Chi-Squared goodness of fit

tests, that the hand and automatic segmentations compare well. An older form of watershed

using gradient descent is used.
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(iii) MOOLMAN, ALDRITCH, VAN DEVENTER AND BRADSHAW (1995) [96]. This work proceeded

independently of the work in the Digital Image Processing group. This paper is described in the

subsequent subsection (subsection 2.3.7).

(iv) MPRU, ANGLOPLATS, UMIST PROJECT Collaborative project, funded by Anglo American

Platinum Corporation (AngloPlats), between MPRU, UMIST and the Digital Image Processing

Group at UCT. MPRU and UMIST relates features as measured by the machine vision system

to the underlying process parameters. Digital Image Processing develops a real time machine

vision system to measure froth parameters for froth image sequences.

A prototype real time machine vision system was developed [157], using a modern watershed

algorithm (Vincent and Soille’s algorithm [141]).

2.3.7 University of Stellenbosch/Crusader

(i) MOOLMAN, ALDRITCH, VAN DEVENTER AND BRADSHAW (1995) [96] describe a joint effort

between the University of Stellenbosch and UCT. The approach is texture based using Sun and

Wee’s Neighboring Grey Level Dependence Matrix (NGLDM). The textural features extracted

are then related, via linear regression, to various froth measurements, eg. motion, average bubble

size and stability. Grade and intensity (for copper floats) were found to be correlated. A back

propagation neural net was used to determine a relationship between grade, recovery and the

parameters measured by the NGLDM.

(ii) MOOLMAN, ALDRITCH, VAN DEVENTER AND STANGE (1995) [97] use features derived from

Spatial Grey Level Dependence Matrix (SGLDM) and NGLDM as inputs to a Learning Vector

Quantisation neural network. Moolman et al. report better classification of froth types (five

distinct types) using the Learning Vector Quantisation neural network as opposed to the back

propagation network. It was determined that a feature set combining features from both NGLDM

and SGLDM performed significantly better than either alone.

(iii) MOOLMAN, EKSTEEN, ALDRITCH AND VAN DEVENTER (1996) [98] motivate the use of a

machine vision system for floatation froth analysis. The effect of changes in the froth appearance

is related to the state of the flotation process. The paper provides a succinct overview of the effect

the process variables have on froth appearance.

(iv) VAN DEVENTER, MOOLMAN AND ALDRITCH (1996) [29] apply the parameters as extracted

by the machine vision system to a self organising map. This is an attempt to relate disturbances

in the process to the froth appearance.

(v) BEZUIDENHOUT, VAN DEVENTER AND MOOLMAN(1997) [14] identify perturbations in the

flotation process based on machine vision analysis on the froth appearance. It was shown that

problems in the grinding circuit were consistently reflected in the parameters as measured by a

machine vision system.
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(vi) BOTHA, WEBER, VAN OLST AND MOOLMAN(1999) [16] describe an industrial platform for

processing froth images on-line and in real time. Here the watershed algorithm is used for

segmenting the froth image from a marker image. The marker image is extracted (via some

undescribed process), thresholded, and used to modify the homotopy of the original image. This

allows Vincent’s2 fast watershed algorithm to be used for segmentation. Several parameters

are extracted from the segmented regions (bubbles) such as area, euclidian perimeter, elliptic-

ity/circularity, orientation of the major axis and colour. Motion is estimated from the markers.

The markers of the even and then the odd fields are extracted from the digitised interlaced image

and the movement of the corresponding markers from even to odd field is measured to give an

average motion of the bubble.

The Crusader system is commercial, and as such, little information is available. The system started

out as an outgrowth of research done at the University of Stellenbosch. It is likely that most of the

internals of the system are described in the papers above.

Discussion

(a) As MOOLMAN, ALDRITCH, VAN DEVENTER AND BRADSHAW admit in [96],

Although it is difficult to attach physical meaning to the parameters in this method3,

the parameter SNE (small number emphasis of the feature matrix) can be seen as an

indication of the fine texture of the image, whereas LNE (large number emphasis) is a

measure of the coarseness of the texture. SM (second moment of the feature matrix)

is a measure of the homogeneity of the image, and the NNU (non-number uniformity)

and the εN (entropy) parameters are related to the coarseness of the image, but it is

difficult to explain which textural characteristics are explained by them.3

The motion estimation algorithm described, averages over a number of images by temporal rather

than spatial smoothing using a feature of the camera used. This is sensitive to the underlying

incident light distribution on the froth. The smoothing algorithm is not described. It is likely that

this was achieved by reducing the shutter speed. In fact if the smoothing window is too long (the

shutter speed too low) the lighting distribution results. This is similar to the process of baseline

subtraction subsequently described in section 11.3.

(b) BEZUIDENHOUT, VAN DEVENTER AND MOOLMAN, again make the following admission,

Unfortunately, it was not always possible to attribute a physical meaning such as av-

erage bubble size to individual image features3

2Vincent’s fast watershed algorithm is described subsequently in Part I of this thesis.
3My emphasis.
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(c) BOTHA, WEBER, VAN OLST AND MOOLMAN describe their system in outline, but no details are

discussed. For example, the highlight detection algorithm is described as follows,

A robust morphological filtering technique is used to segment out these markers from

an acquired froth image. This marker image is thresholded (in this case a trivial process

due to the nature of the marker extraction algorithm) and used to modify the original

froth image for watershedding.

The phrase “Robust morphological filtering technique” covers a great deal of ground (see [65] for

the range of morphological techniques available).

The actual froth image features are not measured. It is difficult to relate the textural measurements

to the bubble parameters such as size and shape and so on. The NGLDM and SGLDM provide fea-

tures which are used to infer process state via some classification algorithm such as Neural networks,

Learning Vector Quantisation or Kohononen maps. The Botha et al. paper is a considerable depar-

ture from the previous work, and is an implicit acknowledgement of the limitations of a texture based

system for estimating bubble sizes.

2.3.8 University of Mining and Metallurgy, Cracow

(i) KORDEK AND KULIG (1997) [83] related the diffraction patterns of froth images to the “content

of useful component.” Optical apparatus is used to convert the image into the Fourier domain.

A 64 piece photodiode detector then digitises the Fourier image. The photodiode is configured

as a RING-WEDGE detector. The detector plane is divided in two, one half is composed of

wedges originating at the centre of the plane, and the other half is divided in to concentric half

rings also centred on the centre of the plane. The wedges provide some directional information

on orientation of structures in the image. Kordek and Kulig use the ring segment only, citing the

lack of directional information in the froth images.

Kordek and Kulig transform the digitised images into the Fourier domain, filter using two band-

pass filters, and inverse transform. The effect of these two filters are applied to adjust for grey-

level differences between images and to allow for grey levels to be reduced. An inverse cor-

relation between intensity and bubble mineralisation (or loading of the desired component) is

demonstrated.

Discussion

The optical Fourier Transform is really unnecessary given the existence of the Fast Fourier Transform

(an order nlog(n) algorithm) [50, 73] and image acquisition hardware. All computations could have

been performed on a digital computer with considerably better resolution in the frequency domain and

without resorting to unusual hardware. The effect of the RING-WEDGE detectors may be simulated

as well.
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The precise nature and spectral characteristics of the filters applied are not described, nor is the

reasoning behind the choice of these specific filters. It is well known that the use of sharp cut-off

filters (as used here) in the Fourier domain leads to “ringing’ in the spatial domain (see [50]).

2.3.9 The ChaCo project

The Characterization of Flotation Froth Structure and Color by Machine Vision (ChaCo) project is

an European Union funded project. The aim is to develop an on-line optical system for monitoring

mineral froth variation and making optimisation for mineral processing production [147].

Division of Engineering Geology, Royal Institute of Technology, Stockholm

(i) WANG, STEPHANSSON, WANG (2000) [147] describe a system for measuring global froth pa-

rameters, and parameters for individual bubbles within the froth. The systems begins by exam-

ining the quality of individual images and rejects images of low quality. Global properties for

the froth image as a whole are then extracted. Prior to segmentation, the image is enhanced

to minimise the effect of noise. Individual bubbles are then segmented via valley edge finding.

This attempts to detect the boundaries between bubbles. Edge tracing then fills any gaps in the

valley edges bound.

The bubble highlights are extracted via using a dynamic thresholding method (described as

optimal). The authors claim that the bubble highlights4 vary with the size of the bubble. The

size distribution of the highlights then is used to estimate the bubble size distribution.

Discussion The application and broad outline of the system is described. The details of every algo-

rithm within the system are not supplied. The segmentation algorithm described (valley edge finding

followed by edge tracing) is superficially similar to the bubble segmentation algorithm used within

ACEFLOT (see subsection 2.3.4), and similar to work done by Paul Symmonds at UCT (see 2.3.6).

2.4 Thesis goals

The previous section details some machine vision systems for froth flotation. Implemented machine

vision systems usually select image analysis algorithms based on a tradeoff between speed and accu-

racy. Examination of some of previous systems shows this dynamic in action. For example, the Pixel

Tracing method is likely fast, but is not accurate since it does not examine the entire motion search

space.

This thesis attempts direct measurements of the image, or image sequence, features of interest.

The algorithms found, or developed, are ranked in terms of accuracy and speed. Engineering judge-

ment then selects appropriate algorithms for inclusion into a machine vision system.
4The bright spot on each bubble.
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This thesis examines the following,

(i) Marker based segmentation and how markers may be processed to improve segmentation is

considered. Marker processing is expected to improve noise immunity. Paul Symonds and the

ACEFLOT system both employ edge detection to delineate bubbles. Both report gaps in the

delineations and present methods for filling in these gaps. This problem is considered. Since the

UCT segmentation is largely Watershed based, it is necessary to find the limits of this technique.

(ii) It is shown (in Part I) how noise affects the watershed segmentation. It then follows that denois-

ing techniques are needed which will not significantly affect the segmentation of bubbles. Noise

removal is also expected to improve the accuracy of the motion estimation process. The problem

of quantitatively comparing denoising algorithms is also considered. Denoising, while used, has

not featured extensively in the UCT work on froth image analysis.

(iii) Image enhancement algorithms which improve contrast and segmentation are considered.

(iv) The motion estimation techniques, as detailed in the previous section, are either limited, as in

JKFrothCam or the Crusader system, or inferred from other measures (ACEFLOT). These sys-

tems do not provide motion estimates at each pixel. Motion estimation of froth image sequences

then needs to addressed in a systematic manner. Part of this involves the question of quantitative

comparison of motion estimation algorithms. Motion, as well, has not featured extensively in

the UCT work.

(v) A direct means of bubble burst and merge detection is considered. This is part of measuring the

stability of a froth. This is new to the UCT work. Previous systems used indirect measures to

assess stability (Crusader).



Part I

Segmentation of Froth Images
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Chapter 3

Segmentation: An Introduction

Bubble size distributions are shown in Chapter 2 to be used by operators to control froth. An estimate

of the size distribution may be generated by segmenting individual bubbles and then collating the

bubble areas.

The issue of segmenting froth images will be examined here. Image segmentation is usually

defined in terms of differences. The features of the segmented regions of an image differ from each

other in some sense. Features used include intensity, colour, texture and shape (see [73, 95, 105,

146]). A froth image (see figure 3.1(a)) can be seen to consist of bubbles which have similar features.

The shape, intensity gradients, texture and the like are essentially the same. This does imply that

conventional segmentation strategies are of limited usefulness. This prompts the investigation of

region growing segmentation schemes.

Region growing schemes involve finding a “seed” region (or marker) for each region to be seg-

mented. This marker is the group of pixels which are the nucleus from which the region growing

progresses. The problem of finding markers is not trivial (this should be at least as complex as the

general segmentation problem). The stages followed include some denoising and some form of marker

extraction, marker processing and finally using the markers to segment the froth image.

The domes of an image can be defined as the regional maxima of an image. Consider the domes

of an unprocessed froth image (see figure 3.1)(These domes were extracted by subtracting five, for ex-

ample, from each pixel in the original image, greyscale reconstructing by dilation and then subtracting

the reconstructed from the original image. The constant, five, is arbitrary and is used for illustrative

purposes. Greyscale reconstruction is subsequently described in chapter 4. To aid visualisation, each

dome is set to the corresponding intensity on the original image.) Notice that there are a number of

domes which do not correspond to highlights but are a result of noise. The domes are thresholded to

form the markers. (It should be noted that for printing purposes this is an inverted image – the markers

correspond to the dark regions.) There are two obvious problems with the unprocessed marker im-

age: noise adds spurious domes and fragments larger domes, and not all regional extrema are in fact

valid domes. This suggests denoising the image and rejecting all domes darker than some threshold.

Merging close markers is another possibility.

25
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This part (Chapters 3 and 4) examines the issues behind marker processing, the algorithms needed

for marker based segmentation, and finally, connected components techniques.

This chapter subsequently examines the different watersheds possible (section 3.1), as well as the

notion of connected components and its possible application to froth images (section 3.2). Chapter 4

examines the issues involved in extracting and processing the markers to reduce over-segmentation

(chapter 4).

3.1 Watershed

Watershed segmentation classifies pixels based on distance from a centre, or seed, region. The al-

gorithm is based on finding the watershed basins of an image, if one treats the greyscale image as

a topographical height map. The notion of watershed segmentation has been in existence for some

time( see [12] for some early work on watershed segmentation by Beucher and Lantejoul, circa 1979).

Until Vincent and Soille’s paper [141] a fast method for computing watersheds did not exist. The run-

ning time of the fast watershed is proportional to the number of pixels in the image to be processed

[141]. Prior to the fast algorithm, the computation time was prohibitive, limiting applications of the

technique.

3.1.1 Vincent and Soille

Vincent and Soille proposed a fast watershed segmentation algorithm [141]. The image is, conceptu-

ally, divided into a series of flat regions, where each flat region is of the same intensity. Note that some

of these flat regions may only be one pixel in extent. Starting with the flat regions of lowest intensity,

progressing to the highest intensity, if a flat region touches an already labelled region, the flat region

is added to the labelled region. If a flat region touches a number of labelled regions, the flat region

is partitioned. The pixels within the flat region are assigned to the labelled region they are closest to.

The distance is a geodesic distance, in other words, the distance is the distance of a path completely

contained in the flat region. If a flat region does not touch a labelled region, then it is assigned a new

label, and becomes a new labelled region.

3.1.2 Marker based watershed – Beucher and Meyer

The algorithm is proposed by Beucher and Meyer [13]. Only certain minima of the image are allowed

to be seeds for the growth of watershed regions. These preselected regions (or points) are referred to

as markers. The markers are computed by some outside process. Each marker is assigned a unique

label. The pixels corresponding to the marker positions are assigned the lowest pixel intensity in the

image.

The watershed process proceeds as before with the water level, or flood level, increasing gradually.

Regional minima which before would have become new watershed regions are now simply filled in
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and partitioned by their neighbours. The region growing, or flooding process, assigns unlabelled

pixels the label of the first labelled pixel in their neighbourhood.

Unlike Vincent’s algorithm, distances are not explicitly propagated. This, potentially, may lead to

some difficulties, which are considered in the next subsection.

3.1.3 Some difficulties with conventional watershed algorithms

The watershed algorithm as developed by Vincent and Soille [141] and extended by Beucher and

Meyer [13] for marker based segmentation, exhibits some difficulties.

Vincent’s watershed algorithm is optimised for a 4-connected grid, or for the hexagonal grid (this

optimisation is not made explicit [141]). For these grids the distance between neighbouring pixels

is the same (unity). The 8-connected sampling grid, used in this thesis, is different, the pixels in

directions NW, NE, SE and SW are further away from the centre pixel (
√

2 pixels) than the other

pixels in the neighbourhood (1 pixel). This modification is simple to implement.

Vincent’s algorithm is not marker based, effectively, every minimum in the image is a marker

which becomes a watershed region [141]. If one wished to remove a minimum, for any reason, a

homotopy modification is required [141, 144]. Homotopy modification removes a minimum by first

setting the pixel intensities within the minimum to the maximum intensity on the image (or larger)

and then performing a greyscale reconstruction by erosion of the modified image over the original.

Greyscale reconstruction by erosion is the dual of greyscale reconstruction by dilation, in other words,

greyscale reconstruction by dilation on an image is equivalent to greyscale reconstruction by erosion

on the inverted image [144]. The greyscale reconstruction fills in the entire minimum which has been

masked and removes any effect it might have had on the watershed. Use of a marker based watershed

removes the need for homotopy modification. This suggests using a marker based watershed such as

Beucher and Meyer’s algorithm.

Beucher and Meyer’s algorithm does exhibit some difficulties. Firstly, distances are not explicitly

propagated. In the instance of froth image analysis, few flat regions are present and this does not affect

the segmentation significantly. However, consider the segmentation of a plane with a few isolated

points (pixels) used as markers. Since the labelling of pixels at the boundaries of the watershed

regions is affected by the order in which the neighbourhood is scanned and which pixel is labelled

first, the segmentation could change if these were different. It is reasonable to expect the watershed

segmentation of an image to be unchanged by minor details such as the order in which the pixels in a

neighbourhood are scanned.

This thesis then uses a modified form of Beucher and Meyer’s algorithm in which distances are

explicitly propagated as Vincent suggests. The NE, NW, SE and SW pixels, in a 3 × 3 neighbourhood,

are
√

2 pixels further from the centre pixel than the N, S, E and W pixels. Each labelled pixel (child)

has the distance from the pixel labelling it (the parent pixel), noted. If another parent pixel is closer,

then the child pixel is allowed to change labels (or distances, if the second parent has the same label).

Difficulties common to all watersheds for froth segmentation include “comet-tailing” which oc-
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curs when a small bubble lies on a larger bubble. The ideal segmentation delineates the smaller bubble

only. The traditional watershed on the other hand segments the bubble but exaggerates the smaller

bubble to include part of the larger bubble. This is due to the shape and location of the markers. See

figure 3.2 for an example of comet-tailing. This is likely to happen in all watershed algorithms if

a small marker is close to a larger one, or a small relatively unflooded minimum is close to a large

flooded minimum.

3.1.4 Watershed on the ridge image

This is an attempt to circumvent the problems as described before. A marker based watershed is

used for the segmentation. The markers are extracted by an outside process (marker extraction is

discussed in detail in chapter 4 following). The following ridge extraction schemes are considered:

morphological reconstruction methods, a composite watershed and morphological filter schemes.

Prior to segmentation the image is first de-interlaced, then denoised via Perona and Malik’s al-

gorithm using 4 iterations, a time step of γ = 0.2 and g(·) = e(−(‖∇ I‖/K )2). the parameter K is set

automatically via Canny’s noise estimator (see section 7.1 for a detailed description of Perona and

Malik’s algorithm).

3.1.5 Ridges from greyscale reconstruction

It is possible to modify greyscale reconstruction algorithms to apply to a single line of an image instead

of the image itself. This modification is simple to implement and produces a simple greyscale recon-

struction algorithm. This can be achieved by, for example, modifying Vincent’s sequential greyscale

reconstruction algorithm to only consider pixels on the same scan line as the pixel to be reconstructed

[144]. The difference between the greyscale reconstructed image and the original image yields the

ridges of the image. The ridges of an image will be defined as the local maxima separating local

minima from each other. This is the same as the topographical use of the term (treating images as a

topographical height map). The process described will extract isolated regional maxima (peaks) as

well as ridges. The dual greyscale reconstruction by erosion may be used to find the valleys of an

image by subtracting the original image from the dual greyscale reconstructed image.

The process is as follows,

(i) Extract the ridges of the inverted froth image.

(ii) Compute the markers of the denoised froth image.

(iii) Perform a marker based watershed, using the markers computed above, on the ridge image.

Figure 3.3(a) shows an example of ridges for a froth image. Note that isolated maxima are present.

Figure 3.3(b) shows the markers used for a segmentation. The markers are extracted by finding the

domes of the image. The domes are formed by subtracting a greyscale reconstructed image from

original. The greyscale reconstructed image is formed by greyscale reconstruction by dilation of an
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eroded image under the original. The eroded image is formed by a rolling ball erosion of radius one on

the original image. The issues involved in marker extraction are subsequently explored in chapter 4.

Figure 3.3(c) shows the segmentation overlaid on the original image.

3.1.6 Watershed on the distance function of the ridge image

Examination of the ridge image shows that the bubbles are not completely delineated by the ridge

lines. The question of how to close the gaps in the ridges can be posed. The distance function

of the ridges to the background pixels is computed. (The distance from each background pixel to

the nearest ridge pixel is computed.) The watershed is computed using the denoised image markers

on this distance image. Figure 3.4 shows the ridges, distance function and final watershed on the

distance function using the given markers. The markers used are identical to those used in the previous

subsection.

3.1.7 Discussion

It is easy to see that the watershed algorithm in particular, and region growing algorithms in general,

are specific examples of Voronoi tessellations of the image in question (see [110] for a introduction to

Voronoi tessellations). Close examination of Vincent and Soille’s [38, 141] fast watershed algorithm

show that, at a particular flood level the unlabelled pixels are labelled according to the closest (in

geodesic distance) labelled region (or pixel). This implies (for a computationally naive algorithm)

that all paths from labelled pixels to the unlabelled pixels need to be examined.

Given a path γ , where γk indexes a particular pixel along the path (as an (xk, yk, zk) triple), and

γ0 refers to the first pixel and γN refers to the last pixel.

Path length(γ ) =
(

N
∑

k=1

√

(xk − xk−1)
2 + (yk − yk−1)

2

)

+ α |max(zk : ∀γk)− z0| (3.1)

The value of α is large (� diameter of the image) for a typical watershed segmentation algorithm.

Given an image then, and a set of markers, the distances from any pixel to the markers may be

computed. The distance is then,

0(p0, p1) = argminγ {Path length(γ ) : γ a possible path between p0 and p1} (3.2)

This then makes explicit the relationship between watershed segmentations and Voronoi tessella-

tions of the plane. Specifically, watershed segmentation can be seen to be a form of multiplicative

weighted Voronoi tessellation (see [38, 110] for an overview of Voronoi tessellations).

The watershed on the ridge image generates a good segmentation, but is computationally intensive.
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(a) A typical froth image.

(b) The unprocessed domes of a typical froth image.

FIGURE 3.1 A typical froth image and associated domes.
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(a) Intensity level 90. (b) Intensity level 100. (c) Intensity level 110.

(d) Intensity level 120. (e) Intensity level 130. (f) Intensity level 140.

(g) Intensity level 150. (h) Intensity level 160. (i) Intensity level 170.

(j) Intensity level 180. (k) Intensity level 190. (l) Intensity level 200.

(m) Intensity level 210. (n) Intensity level 220. (o) Intensity level 230.

FIGURE 3.2 An example of comet-tailing. The white lines are watershed lines at different stages of
the watershed segmentation.
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(a) Ridges.

(b) Markers.

(c) Watershed.

FIGURE 3.3 Watershed on the ridge image.
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(a) Ridges.

(b) Distance function, inverted.

(c) Watershed.

FIGURE 3.4 Watershed on the distance function of the ridge image.
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3.2 Connected Components

Connected components can be used to not only find a better set of markers for froth image segmenta-

tion but also to partially segment an image. Examination of a typical froth image (see figure 3.1(a))

shows, for a singe dominant illumination source, one highlight per bubble. This implies that extracting

the domes of an image (see section 4.1) and using these as markers for segmentation is not sufficient

— not every “dome” found will correspond to the highlight. For example, a bright dome is more

likely to correspond to a bubble than a dark one.

Simply put, connected components filtering tags every region in an image with a number of nu-

merical descriptors, for example, area, average pixel intensity, ratio of major to minor axes; and then

removes a region if its tag does not fit some criterion. This can be regarded as a generalisation of

a morphological thinning process [65]. Traditionally connected components are generated by itera-

tively thresholding an image, and extracting the binary connected components. Each binary connected

component is associated with the threshold used to generate it [77].

This section examines some of the algorithms in the literature (some of which are optimised for

speed), and then examines the application of connected components type algorithms to froth image

segmentation.

3.2.1 Algorithms in literature

It should be said that if it is known in advance which properties are required for preserving regions,

then as the thresholding progresses the regions can be processed, and the output image incrementally

built up. If, on the other hand, an interactive algorithm is required with the precise attributes of each

region unknown then a component trees approach is required [77].

Connected components filters can be defined as either morphological openings or thinnings [17].

A morphological filter is an opening if it is anti-extensive, idempotent and increasing. A morpho-

logical filter is a thinning if it is idempotent and anti-extensive. An idempotent filter applied many

times generates the same output as a single application. An anti-extensive filtered image has a domain

(region of support) smaller than, or equal to, the unfiltered image. An increasing morphological filter

is one in which the order of regions is preserved, in other words, if A is a subset of B then the filter

applied to A is a subset of the filter applied to B (8(A) ⊆ 8(B)) [63, 64, 65].

Once all the connected components in an image have been extracted and filtered, the surviv-

ing connected components must be combined to generate the output image. Traditionally, with the

connected components from level sets (iterated thresholding) approach, the output image is sim-

ply the point-wise maximum of all the pixels which overlap in the different connected components

[17, 30, 140]. This is sometimes called the stacking procedure [17].

The work of Vincent, Breen and Jones, and Jones in processing connected components is exam-

ined subsequently.
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3.2.2 Area openings - Vincent

Vincent [142, 143, 140] describes an area opening in order to remove connected components of an

image. This is a specific case of the attribute openings defined by Breen and Jones [17]. All connected

components of area less than some threshold are suppressed. The process is idempotent because once

regions with area less than (or equal to) some threshold are removed, iterating the filter has no further

effect. The process is anti-extensive because the region of support of the filtered regions is smaller (or

the same as) the region of support of the unfiltered regions. The process is increasing (the properties

of morphological filters are described in Appendix B) because:

(i) A ⊆ B, and both survive the area opening, then 8(A) ⊆ 8(B) implies A ⊆ B.

(ii) A ⊆ B, and both are eliminated, then 8(A) ⊆ 8(B) H⇒ � ⊆ �, which holds. � denotes the

empty set. Set theory holds that the empty (null) set is a proper subset of every set [75].

(iii) A ⊆ B, and B survives but A does not, then 8(A) ⊆ 8(B) H⇒ � ⊆ B, which holds.

The case A survives but B does not, cannot happen.

Attribute openings, thinnings and granulometries - Breen and Jones

Breen and Jones [17] generalise the area opening of Vincent (as described in the previous subsec-

tion 3.2.2). Breen and Jones describe an attribute based opening on connected components and then

for non-increasing criteria define a thinning (by definition a thinning has the same properties as an

opening except that it is non-increasing).

Component Trees – Jones

Component trees were proposed by Jones [77] to overcome the limitations of flat filter based con-

nected component approaches. In essence every connected component in an image at every possible

thresholding is identified. The root of the tree is the connected component with as many pixels as

the image — the connected component formed by including every pixel larger than or equal to zero,

for normal greyscale images. The first layer of the tree contains connected components with pixel

intensities larger than or equal to one and so on. A particular node has as its children all connected

components (at higher thresholds) contained within it. Each node in the tree is labelled with (one

or more) attribute signatures which correspond to certain features of the connected components, for

example, area (number of pixels), ellipticity, average grey-level and so on. Any node could be marked

inactive if its attribute signatures are undesirable. An output image can be generated from the compo-

nent tree by reversing the threshold decomposition. If each connected component marked as active is

given the grey-level corresponding to its level (or threshold used to generate the component) then tak-

ing the maximum at each pixel of the output image for every active connected component containing

the pixel results in the output image. Jones describes an efficient implementation [76].
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3.2.3 Discussion

Connected component filtering for greyscale images can be viewed as applying an operator to an

image, finding the regions of support of the non-zero pixels (a thresholding), iterating the operator,

and then stacking the regions of support. It should be noted that the intensity of the regions at different

iterations are different (for example, if candidate regions are extracted by extracting the level sets of

an image). The regions are then combined to yield the output image. This stacking procedure (the

usual definition) computes the pointwise maximum of regions generated by successive iterations.

This essentially reproduces the pixel values of the pixels which are not filtered out by the connected

components operators.

If one can define an index (k) on the operator (A(I ), I an image) then as the index increases,

Ak(I ) ⊆ Ak+1(I ). For example, if Ak(I ) denotes the level set of an image (at level n), then Ak+1(I )

denotes the level set of an image at a lower level (m, m ≤ n). Clearly then, the level set at m contains

the level set at n. In order to allow for extreme cases, for example to create the root node of a con-

nected component tree, Akmax (I ) ⊆ Domain(I ). The operator required must then be an anti-extensive

operator, by definition, since Ak(I ) ⊆ Ak+1(I ) (see Appendix B).

Several operators are possible given the above. For example, eroding an image using rolling balls,

cones and inverted parabola. Each of these structuring elements have a parameter which sets size

(or scale) for example, radius, height and radius, and height respectively. The eroded image is then

greyscale reconstructed by dilation under the original image. The domes of the image are then found

by subtracting the reconstructed form the original image. The domes at a particular scale are then the

result or the operator A.

Consider the following example:

(i) An operator is chosen, for example, the rolling ball erosion, greyscale reconstruction and dome

extraction process described above.

(ii) The operator is iterated (for example, for increasing diameters of the rolling ball).

(iii) After the erosion is applied the image is thresholded to extract the position of non-zero pixels.

This establishes the regions of support of the non-zero pixels.

(iv) Similarly to the connected component tree, a tree can be constructed as follows:

(a) The root node corresponds to pixels where the erosion has been applied with a zero diameter

ball. This ensures the existence of a root node.

(b) Each successive node corresponds to a connected component in the thresholded image.

(c) Each level of the tree corresponds to a particular iteration of the operator.

(d) The parent-leaf relationship of two nodes is set as follows: if a connected component shares

pixels at one iteration with a connected component at the previous iteration then a leaf-parent

relationship exists between these two nodes.
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(v) All the usual processing can then be applied to this tree as in the connected components tree of

Jones described above.

In principle, connected components operators may be used to segment and find markers for im-

ages. In practice, the computational cost is prohibitive for real and near real-time applications1 The

computational burden lies in the repeated thresholdings and then examining each connected compo-

nent.

Connected components are not suitable for froth segmentation. At best, a careful selection of

features may enable the bubbles to be almost completely extracted. The pixels between the bubbles

will not be part of any segmented bubble. In other words, connected component segmentation as

described in the literature cannot assign every pixel in an image to a particular bubble. At best, this

allows for marker extraction, with a marker based watershed completing the segmentation. Marker

extraction and processing is subsequently described in the following chapter (Chapter 4).

1Caveat, using current PC’s that is.
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Chapter 4

Markers

Markers are “seed” regions, or nuclei, for region growing segmentation algorithms. Region growing

algorithms first assign a unique label to markers before attempting to label unlabelled pixels in the

image. The pixels neighbouring the markers, or already labelled pixels, are assigned a label accord-

ing to some criterion (see [13, 38, 141] for examples of some region growing algorithms). Marker

processing is related in some sense to image denoising. Finding an optimum set of markers from a

noisy image can lead to good segmentation. Traditionally, watershed segmentation has been used for

delineating the bubbles within a froth image [45, 156, 157].

Marker based segmentation is only as good as the set of markers used. The problem of segmenting

an image can then be changed into the problem of finding good markers. This is complementary to a

denoising process since a good marker extraction process should reject any marker induced by noise.

This chapter proceeds by first examining different methods of extracting markers from an image, and

then shows how those markers may be processed to reduce over-segmentation.

4.1 Extracting the markers

The markers of an image may be informally defined as regions which indicate centres of areas of in-

terest within the image. The problem of finding markers is at least as difficult as general segmentation,

since finding all the markers of an image makes segmentation using a region growing scheme trivial.

Under certain lighting conditions, namely, a single powerful lightsource close to the camera which

dominates all other light sources, the highlights — or regions of maximum intensity — are indicators

(markers) of bubbles. There is only one highlight per bubble (if the lighting has been carefully ar-

ranged). Figure 3.1(a), which represents a typical froth image, illustrates this. The highlights can then

be used as markers for bubbles. A simple thresholding is not sufficient to extract the markers since

the highlight intensity varies from bubble to bubble. The method used subsequently is morphological

dome extraction.

Dome extraction proceeds as follows: the original image is modified in some way (for example,

shifted down in intensity). (Possible modifications are examined subsequently.) The modified im-

39
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age is grey-level reconstructed by dilation. The grey-level reconstructed image is subtracted from

the original to form the domes [144]. Greyscale reconstruction by dilation is essentially a form of

conditional dilation generalised to greyscale images. By an accident of terminology in the greyscale

reconstruction process, a marker image is introduced. This should not to be confused with the bubble

markers used for segmentation.

The original image is referred to as the mask image. A marker image (constrained to lie on or

below the mask image) is continually dilated. After each dilation, the marker is modified as follows:

if the intensity of a marker pixel exceeds that of the mask pixel at the same position, the marker pixel

is set to the mask pixel intensity. The modified marker image becomes the marker image for the next

dilation. The process continues until the marker image no longer changes. For visualisation purposes

the domes’ intensities are rescaled to their original values. To simplify the resultant image, negative

pixels are set to zero. The process is illustrated in figure 4.1.

(a) Original. (b) Original and subtracted copy. Negative
intensity pixels are set to zero.

(c) Greyscale Reconstruction. (d) Domes.

FIGURE 4.1 Dome extraction.

The process of extracting domes may be regarded as extracting the regional maxima of an image.

The markers are then used in a marker based watershed to extract the watershed regions of the inverted

image. Usually though, further processing of the markers is required.

Watershed segmentation floods an image from the minima upwards in intensity. This requires
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the image to be inverted prior to segmentation to ensure that flooding proceeds from the highlights.

The regional maxima found by the dome extraction process then become regional minima for the

watershed. Only these regional minima are flooded from (see [12, 13, 141] and section 3.1 for detailed

descriptions of watershed segmentation).

It should be pointed out that the same domes can be extracted using reconstruction by erosion

on the inverted image. Here a mask image, constrained to be larger or equal to the marker image, is

conditionally eroded. Conditional erosion ensures the eroded mask is everywhere larger than or equal

to the marker, or original image. Conditional erosion tests each pixel on the mask image and ensures

that if the mask pixel is less than the marker pixel in the same position, the mask pixel intensity is set

to that of the marker pixel. The mask image is then set to the modified mask. The process continues

until the mask image stabilises. The inverted domes (regional minima) are found by subtracting the

original image from the conditionally eroded mask.

Noise leads to a number of spurious minima forming, and to larger valid markers being broken

up. Minimising the effects of over-segmentation is examined in section 4.4.

4.2 Markers by subtraction

Here the modified image referred to above is created by subtracting a constant from the original image.

As an optimisation, pixels less than the minimum pixel intensity of the original image are set to the

minimum intensity.

A difficulty with the dome approach to marker generation is that the shift level decides the extent

of the markers. The larger the shift value the more the domes (and hence markers) tend to be merged.

This is is illustrated in figure 4.2 following. A further difficulty is that the shape of the highlights is

not exploited for their extraction. The large shift required for reasonable dome formation is not related

to any physical parameter within the froth (for example, size of the small bubbles in pixels). This is

especially the case if the image has been enhanced in any way (for example histogram equalisation).

It should be emphasised that the dome images (for printing purposes) are inverted images. Table 4.1

shows the decrease in the number of watershed regions as the shift increases.

TABLE 4.1 Decrease in the number of watershed regions as the shift value increases.

Shift # Watershed Regions

1 3505
10 3345
20 3244
50 3070

100 2808
150 2483
200 1241
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(a) Domes for shift of 1.

(b) Domes for shift of 10.

(c) Domes for shift of 50.

FIGURE 4.2 Domes merging as shift level increases.
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4.3 Other methods of extracting the markers

Anti-extensive morphological filters could be used to find the marker image for the dome extraction

process (i.e. greyscale reconstruction by dilation). Extensive morphological filters could be used to

find regional minima via greyscale reconstruction by erosion (see Appendix B for a brief introduction

to morphology). Application of an anti-extensive filter to an image results in an image which is

everywhere less than or equal to the original [124, 125].

Examples of anti-extensive morphological filters include flat erosions, openings and clos-

openings1 . Examples of extensive morphological filters include flat dilations, closings and open-

closings2 .

Only erosions will be considered for greyscale reconstruction by dilation. Openings will tend to

merge close markers (a result of the dilation of the markers). This is especially undesirable for large

structuring elements, markers relatively distant may be merged. Clearly cascaded filters will A similar

argument may be constructed for closings and open-closings for greyscale reconstruction by erosion.

4.3.1 Using morphological filters to extract Domes

The Dome extraction process relies on greyscale reconstruction by dilation. An image was recon-

structed by dilation from the marker, and subtracted from the original to form the domes. This pro-

ceeds as previously described, except that instead of creating the marker by shifting the intensities

of the image downwards, the image is morphologically eroded. Any morphological filter could be

used, provided the resultant image is everywhere less than or equal to the original. In other words,

the morphological filter must be anti-extensive [65]. This is a consequence of the way in which the

greyscale reconstruction by dilation proceeds, the reconstructed image must be less than or equal to

another image which constrains the reconstruction (see [144] and section 4.1).

Two morphological filters are considered: flat erosion with a disc structuring element, and a rolling

ball erosion. These filters are applied to the original image to form the greyscale reconstruction by

dilation marker image. The segmentation process then proceeds normally.

Flat erosion

Table 4.2 shows the change in the number of watershed regions as the radius of the disc used for

flat erosion of the original image increases. Figure 4.3 shows the changes in the domes and hence

watershed of the original image, again as the radius of the disc for flat erosion increases. Note that as

the radius increases markers are merged. A large radius then risks merging the markers correspond-

ing to close bubbles. Radius 2 shows the best tradeoff between finding markers and merging close

markers. Notice the number of small domes one or two pixels across, these are likely to be noise
1A closing followed by an opening.
2An opening followed by a closing.
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induced because inspection of the image does not show any bubble with highlights this small in the

corresponding positions.

TABLE 4.2 Decrease in the number of watershed regions as the radius of the structuring element for
flat erosion increases.

Radius # Watershed Regions

1 3285
2 2991
3 2818
4 2728
5 2650

Rolling ball erosion

An alternative is using a rolling ball as the structuring element. The advantage is that the ball smoothes

the image. Rolling balls explicitly set the size (in pixels) of the regional maxima removed by the

erosion. This implies that the larger highlights appear as larger domes.

Table 4.3 shows the decrease in the number of watershed regions as the radius of the rolling ball

increases. Figure 4.4 shows the changes in the domes, and hence the watershed, as the radius of the

rolling ball increases. Note that the domes are larger than for the subtracted image case. Note that

as the radius of the rolling ball increases, close markers are merged. Also note that the large markers

correspond to large highlights. A large radius then risks merging the markers corresponding to close

bubbles. Radius 2 shows the best tradeoff between finding markers and merging close markers.

Note that in all the dome images there are a number of small domes one or two pixels across.

These are likely to be noise induced domes and it is quite obvious that they will needlessly com-

plicate the segmentation. Section 4.4.3 describes how the small marker problem may be alleviated.

Larger domes also exist which are bright (in the original image these will be dark maxima). These

are then unlikely to be bubble highlights and contribute to the over-segmentation of large bubbles.

Section 4.4.1 describes how the dark marker (in the original image) problem may be alleviated.

TABLE 4.3 Decrease in the number of watershed regions as the radius of the rolling ball for marker
extraction increases.

Radius # Watershed Regions

1 3165
2 2864
3 2737
4 2657
5 2569
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(a) Domes – flat erosion, radius 1.

(b) Domes – flat erosion, radius 2.

(c) Domes – flat erosion, radius 3.

FIGURE 4.3 Changes in domes and watershed as flat erosion progresses.
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(a) Domes – rolling ball erosion, radius 1.

(b) Domes – rolling ball erosion, radius 2.

(c) Domes – rolling ball erosion, radius 3.

FIGURE 4.4 Changes in the domes and watershed as the radius of the rolling ball increases.
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4.3.2 Connected component marker extraction

It has been established that the markers correspond to the highlights of the image. Examination of

these highlights show them to be usually circular or elliptical, and not of large extent. The attributes

used to then segment the highlights from the standard froth image will be ellipticity and area (in

pixels). A simple circularity measure will be used [119]:

Circularity = (Perimeter)2

4πArea
(4.1)

The connected components are extracted by successive thresholdings, that is, the level sets of the

image are extracted. The markers are selected by eliminating the connected components of the image

which have circularity larger than 2. Note that small clusters of pixels have high perimeter to area

ratio (circularity). This implies that rejecting all connected components where the circularity measure

is high. Alternatively, thin regions have a low circularity measure. This implies rejecting regions with

circularity measure somewhat less than 1, as a threshold 0.5 was chosen here. Elliptical regions are

retained by allowing for a circularity measure larger than 1.

As an optimisation, only the level sets of the image larger than 100 are considered. The level

sets of an image are the formed by thresholding an image with successively larger thresholds [17]. A

simplification sets the intensity of pixels larger than, or equal to, the threshold to the threshold. Taking

only the level sets larger than 100 biases the process against large and dark connected components.

A further optimisation eliminates all connected components larger than 2000 pixels. This attempts to

ensure that small markers are not merged, and biases the process against overly large markers.

Figure 4.5 shows the domes, (once thresholded these then become the markers for segmentation)

markers and the final watershed segmentation based on these markers. Note that the segmentation

is complicated by the presence of small spurious domes. These could be eliminated using the area

opening described subsequently.

4.4 Post-processing the markers

Coupled with a denoising technique, post-processing of the markers limits over-segmentation. The

following post-processing techniques will be examined: removal of dark markers (markers associated

with dark domes), and merging of close markers (this defragments fragmented markers). The process

of examining markers and then removing those whose attributes (area and average intensity for exam-

ple) fall short is referred to as connected component filtering. The markers are generated by rolling

ball erosion of radius 2. These markers are then further processed.

4.4.1 Removing dark markers

For froth images, highlights are used as markers (the regional maxima of the image (the domes) are

extracted and thresholded to form the markers). This suggests discarding any dome whose average
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(a) Domes extracted.

(b) Markers.

(c) Domes extracted.

FIGURE 4.5 Connected component marker finding
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(or maximum) grey level is low.

The net effect of removing dark markers is a reduction in over-segmentation. A difficulty is the

selection of the threshold. Figure 4.6 shows the variation in the number of markers and segmentation

as the threshold varies. The best tradeoff between preserving small bubble markers and removing

spurious markers appears at 0.4 × Maximum Grey Level. Table 4.4 shows the decrease in the number

of markers, and hence, watershed regions, as the threshold increases.

TABLE 4.4 Decrease in the number of watershed regions as the remove dark marker threshold in-
creases.

Multiplier # Watershed Regions

0.1 2945
0.2 2160
0.3 942
0.4 587
0.5 397
0.6 270
0.7 170
0.8 111

4.4.2 Merging close markers

The next problem is that of a large marker being fragmented – a possible remedy is morpholog-

ical dilation or closing of the markers. In order to minimise the effect of merging dark markers

into markers more likely to be correct, these dark markers are removed. All dark markers less than

0.4 × Maximum Grey Level are removed prior to the merging stage. This threshold is suggested in the

previous subsection (subsection 4.4.1).

A difficulty lies in the selection of the shape and width of the structuring element. The distribution

of markers across an image cannot be predicted, which implies that the distance or direction from a

marker to its closest neighbour cannot be predicted. This implies the use of a circular structuring

element (as would be demanded by isotropy in any case). The width of the structuring element is con-

strained by the tendency to merge small bubbles and the reduction in the over-segmentation. Careful

consideration chooses morphological closing as the merging operation. Closing minimises the poten-

tial situation for small bubbles and large radii structuring elements that the marker may be larger than

the actual bubble itself.

Table 4.5 shows the decrease in the number or watershed regions as the width of the structuring

element increases. Figures 4.7 shows the change in the markers and the concomitant change in the

watershed as the radius of the closing structuring element increases. Note the tradeoff between the

correct merging of fragmented markers and the undesirable merging of small bubble markers.



4.4 Post-processing the markers 50

(a) Multiplier 0.3 – Markers.

(b) Multiplier 0.5 – Markers.

(c) Multiplier 0.7 – Markers.

FIGURE 4.6 Variation in the markers as the remove dark marker threshold increases.
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(a) Marker image – closing, disc radius 1.

(b) Marker image – closing, disc radius 2.

(c) Marker image – closing, disc structuring element radius 3.

FIGURE 4.7 Change in segmentation and markers as markers closed by increasing radii structuring
elements.
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TABLE 4.5 Decrease in the number of watershed regions as the radius of structuring element in-
creases for marker closing.

Radius # Watershed Regions

1 460
2 333
3 244
4 187
5 150

4.4.3 Removing small markers

Examination of the marker images show a number of small markers (a few pixels in extent). Since

noise markers are likely to be small and of small extent (noise samples have low correlation) any small

marker is likely to be noise induced. This situation regarding small markers is especially visible in

the rolling ball extraction of markers. Morphological opening of the marker image provides the best

tradeoff between preserving the extent of large markers and removing small markers. An alternative

to morphological filters is that of connected components opening.

In theory, any anti-extensive morphological operator may be used to remove small markers. A

second consideration is whether this operator is expected to, as far as possible, preserve the extent

of the remaining markers. An anti-extensive operator is likely to fragment markers. This could be

beneficial to separate small bubble markers which have been merged by the marker extraction process.

However, since the extent of the small bubble markers are set by the marker extraction process, it is

necessary to prevent fragmentation of markers. This suggests a conditional dilation after markers are

removed.

Connected components opening for removing small markers, for the purposes of the current dis-

cussion, may be defined as follows. The number of pixels in each marker is counted and compared to

a threshold. If a marker has fewer pixels than allowed by the threshold the marker is removed, other-

wise the marker is preserved. This process allows for perfect maintenance of the preserved markers’

extent. This does not allow, however, for the fragmentation of merged bubbles as allowed by the

morphological techniques.

For illustrative purposes the removal of small markers is performed on an markers extracted via

rolling ball erosion of radius 3. Although some of the small bubbles are merged in the segmentation

(see figure 4.4(c)), this was chosen to explore the marker separation properties as well as the reduction

in over-segmentation due to small marker removal via anti-extensive morphological filtering. The

process can be quite easily repeated for greyscale reconstruction by dilation marker formation using

subtraction or flat erosion of the original image.
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Erosion of markers

Table 4.6 shows the decrease in the number of watershed regions as the radius of of the structuring

element increases. Figure 4.8 show the cleaned up marker images for various disc radii used. It is

clear that markers are potentially fragmented by the erosion. This is especially visible for radii one

and two.

TABLE 4.6 Decrease in the number of watershed regions as the radius of structuring element in-
creases for marker erosion.

Radius # Watershed Regions

1 578
2 318
3 162
4 21

Erosion of markers followed by conditional dilation

This process erodes the markers as before, except that fragmentation of the markers is then prevented

by conditional dilation. Table 4.7 shows the decrease in the number of watershed regions as the width

of the disc used as structuring element increases. Figure 4.9 shows the markers for discs of several

radii. It is clear here that surviving markers do so on the basis of shape and size.

TABLE 4.7 Decrease in the number of watershed regions as the radius of structuring element in-
creases for marker erosion.

Radius # Watershed Regions

1 443
2 234
3 124
4 17

Opening of markers

Table 4.8 shows the decrease in the number of watershed regions as the radius of the structuring

element increases for opening of the markers. Figure 4.10 show the opening in the marker images for

increasing radii of disc used as structuring element. A difficulty is that this process changes the shape

of the markers.
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(a) Markers – eroding radius 1.

(b) Markers – eroding radius 2.

(c) Markers – eroding radius 3.

FIGURE 4.8 The domes and watershed segmentation after eroding the markers.
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(a) Markers – erosion, radius 1, followed by conditional dilation.

(b) Markers – erosion, radius 2, followed by conditional dilation.

(c) Markers – erosion, radius 3, followed by conditional dilation.

FIGURE 4.9 The domes and watershed segmentation after eroding the markers.
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(a) Markers – marker opening, radius 1.

(b) Markers – marker opening, radius 2.

(c) Markers – marker opening, radius 3.

FIGURE 4.10 The domes and watershed segmentation after opening the markers.
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TABLE 4.8 Decrease in the number of watershed regions as the radius of structuring element in-
creases for marker opening.

Radius # Watershed Regions

1 455
2 250
3 134
4 17

Connected Components area opening of markers

Essentially the area (in pixels) of each marker is compared to some threshold, if lower then the marker

is suppressed, otherwise the marker is preserved. Table 4.9 records the decrease in the number of

watershed regions (markers) as the threshold increases. Figure 4.11 records the domes and associated

watershed regions as the threshold increases. The threshold is selected by computing the area (rounded

up) of discs of increasing radii from one onwards.

TABLE 4.9 Decrease in the number of watershed regions as the threshold increases for connected
component area opening.

Disc Radius Threshold (Area) # Watershed Regions

1.00 9 438
1.87 11 403
2.00 13 377
2.59 21 297
3.00 29 249
4.00 50 166

4.5 Discussion

Care in extracting and processing the markers of an image can reduce over-segmentation. Exami-

nation of some marker extraction techniques showed that eroding the image before reconstruction,

is better than subtracting before reconstruction. While the connected component approach produces

good markers it is computationally intensive. There is an explicit relationship between the scale, or

width, of the domes extracted by the erosion and greyscale reconstruction process, and the radius of

the rolling ball used to erode the image (see sub-subsection 4.3.1). A relationship between scale and

shift parameter, on the other hand, does exist, but is not obvious and is image dependent (see sec-

tion 4.2). Marker extraction should be followed by removal of dark markers (dark in the sense that

the maximum grey-level of the marker when taking corresponding pixels on the original, or denoised,

image is low). The threshold for removal of dark markers was found to be 0.4 of the maximum image



4.5 Discussion 58

(a) Markers – area opening, threshold 9.

(b) Markers – area opening, threshold 21.

(c) Markers – area opening, threshold 50.

FIGURE 4.11 The domes and watershed segmentation after area opening of the markers.
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intensity (subsection 4.4.2). Small markers, irrespective of intensity, are likely noise induced or due to

fragmented markers. These may be removed by a connected components area opening, or, an erosion

followed by conditional dilation on the binary marker image. Finally, fragmented markers should be

merged by closing the binary marker image with a circular (for isotropy) structuring element. The

optimal radius was found to be 1. The precise parameters of the marker extraction and processing

algorithm would need to be experimentally verified for different types of froth (for example UG2 vs.

Merensky, as well as the types of bank under observation (cleaner, rougher, etc.)) and would depend

on the tradeoff between over-segmentation of large bubbles and merging small bubbles

As an example of what can be done using this approach consider figure 4.12. The data is not

denoised in any way and the segmentation is achieved using the marker based techniques described in

this chapter. Note that the image is not denoised or preprocessed in any way.

The domes are extracted using a rolling ball eroded image. The radius of the rolling ball is 2. All

domes less than 0.4 × Maximum Grey Level are removed. The threshold for the area opening is 5.
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(a) Domes thresholded.

(b) Markers.

(c) Watershed.

FIGURE 4.12 Demonstration of marker processing techniques on segmentation.
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Chapter 5

Denoising: An Introduction

Denoising could be described as a process removing an interfering component from a signal of in-

terest. This broad definition covers the situation where the interfering signal is uncorrelated to the

signal of interest, an image with Gaussian noise, for example, as well as the case where one wishes

to remove structures on the signal. In the context of froth image analysis, for example, noise and tiny

bubbles on large bubbles, complicate the segmentation and should be removed.

This part (part II, consisting of chapters 5 through 12 inclusive) examines denoising of images, as

applied to froth images. Several denoising, image enhancement and contrast enhancement algorithms

will be examined in subsequent chapters. This chapter will introduce the problem of denoising froth

images and attempt to provide some justification for the practice. Peculiarities of froth images affect-

ing denoising will be examined. The question of how denoising algorithms will be ranked in terms of

performance will be addressed.

5.1 Why denoise at all?

If one considers the profile of a cut taken across a froth image (as shown in figure 5.1), more maxima

are present than can be accounted for as bubble highlights (or regions of largest intensity). Some of

these maxima are due to noise and others due to peculiarities of the froth image (the peculiarities will

be examined later). It should be noted that the utility of a preprocessing (here denoising) algorithm

can only be measured by examining the effect of the preprocessing algorithm on the process using

the preprocessed data. This leads to the examination of a watershed segmented unprocessed froth

image (figure 5.4(c)). Clearly, the bubbles making up the froth are over-segmented. The nature of

the watershed segmentation used is that each local maxima acts as the nucleus of a watershed region

[13, 141] (see chapter 3 for a discussion of watershed algorithms). Any unwanted maxima (due to

noise for example) simply adds to the number of regions and complicates the segmentation. The froth

segmentation problem requires then not only that small maxima and minima due to noise are removed,

but also that small non-noise maxima (due to tiny bubbles, for example) are also removed.
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(a) Position of intensity profile on froth subimage.
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(b) Intensity profile.

FIGURE 5.1 Extraction of an intensity profile on an unprocessed froth image.
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5.2 Some peculiarities of froth images

A number of artifacts are present on froth images. These complicate the denoising process, in that

they must be handled in a reasonable way. Given that any maximum leads to a segmented region, the

following peculiarities can be seen to produce watershed regions which do not correspond to an actual

bubble:

(i) Small bubbles on larger bubbles (see figure 5.2(a)). The watershed segmentation process is

marker driven. The highlights (or regions of largest intensity) are used as the markers. A large

bubble with some small bubbles on the surface, then appears to have more than one highlight

and is over-segmented. At best the small bubbles are delineated within the larger bubble.

(ii) Reflections of small bubbles off of large bubbles (see figure 5.2(b)). These complicate matters as

explained above.

(iii) Fragmentation of highlights (see figure 5.2(c)). These complicate matters as explained above.

(iv) Transparent bubbles (see figure 5.2(d)). The transparent bubble introduces a highlight over a

partially shaded region which may (or may not) contain other bubbles. The bubbles visible

underneath will be segmented rather than the transparent bubble itself.

The above considerations prompt the choice of the figure 5.4(a) as a test image for the algorithms

to be qualitatively evaluated. Figure 5.4(a) shows examples of the above pathologies but also contains

bubbles of various shapes and sizes.

5.3 Contrast and image enhancement

Contrast enhancement, not only for improving the visibility of froth structures, but also as an adjunct

to the denoising process, needs to be examined. Close examination of the original image, figure 5.3(a),

and the average over the sequence (see figure 5.3(b)) shows variation in the lighting across the surface

of the froth from right to left. The sequence used was 224 images long and taken from the Meren-

sky cleaner bank. Only the even fields were used. Figure 5.3(c) shows the difference between the

original image and the average image. The difference image is then stretched in intensity to occupy

the intensity range of 0 to 255 [50, 73]. Note also that the bubbles on the left of the corrected image

are brighter than before. The well illuminated right half of the image shows little contrast change.

The lesser illuminated half of the image is “fuzzier”, or shows a random texture. This is likely due to

noise, which is enhanced by histogram stretching, especially for low intensity regions.

This lighting variation is an inevitable consequence of the difficulties of robust industrial lighting

coupled with the need for a single light source. A single light source ensures that each bubble will have

at most only one region of maximum intensity, or highlight. On the other hand, a single light source

may not uniformly illuminate the froth surface. These highlights can potentially be used as nuclei



5.3 Contrast and image enhancement 66

(a) Small bubbles on a large bubble. (b) Bubble inter-
reflections – upper
left hand corner.

(c) Highlight fragmenta-
tion.

(d) Transparent bubbles.

FIGURE 5.2 Some froth image pathologies.
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for a region growing segmentation process. A tool is then needed for removing lighting variations

and, if possible, enhancing the bubble boundaries. The primary difficulty, is that the enhanced image

is susceptible to noise. Removing low frequency information, by removing slow intensity changes

(the lighting variation), emphasises the high frequency content of the image, or the region of the

spectrum where the Signal to Noise Ratio (SNR) is low (realizable signals are band-limited [50, 73]).

The other constraint of emphasising bubble boundaries, implies that the image gradient close to, and

at, the boundary be emphasised. It is well known that gradient operations in images is noise prone

[50, 73]. This indicates that care is needed to avoid enhancing noise at the expense of the image

features desired.

5.4 Comparing denoising algorithms

A large number of denoising algorithms are described in the literature (see [56, 113, 124, 125] for

some examples). Selecting an algorithm for a particular application requires some way of ranking the

algorithms. Some means of comparison suggest themselves, and tend to be used in the literature:

(i) Since the denoised and/or enhanced images will be segmented (see table 2.1 for some useful

parameters measurable from froth images or image sequences) it seems reasonable to rank the

denoising algorithms in terms of the effect on the segmentation. The primary disadvantage is

that no means of making the comparisons appear to exist except for hand segmentations of froth

images, or computer generated images where ground truth is available.

(ii) Adding noise to images, denoising and comparing the denoised and original images. The pri-

mary objection to this approach is that there is no way of assessing the suitability of the algorithm

for the segmentation process. The advantage is that some ground truth is available which will

allow for quantitative comparison of the algorithms. A difficulty is that noise already present in

these images complicates the assessment process.

(iii) Qualitative comparisons of the algorithms. In other words comparing the results of the seg-

mentation and denoised images by eye. This approach has the disadvantage of being observer

dependent. A second disadvantage is that the data set used for comparison is limited, there are

only so many images a human can reasonably review. This appears to be the primary means of

comparison of algorithms proposed in the literature (see [113], for some examples).

The issues involved in, and results of, the comparison process are summarised in chapter 12.

As an example of the qualitative results possible, examine the segmentation of figure 5.4(a), an

unprocessed image, as shown in figure 5.4(c). The effect of a denoising algorithm on the segmentation

can be used to gauge the performance of the denoising algorithm. The markers used for segmentation

(figure 5.4(b)) are generated by morphological opening with a rolling ball of radius one and greyscale
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(a) Original image.

(b) The time average over a sequence of images.

(c) Original image corrected for intensity gradient.

FIGURE 5.3 An example of baseline subtraction.
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reconstructing by dilation (see chapter 4 for details). The watershed used is a marker based water-

shed using the markers generated by the previous stage (see chapter 3 for a discussion of watershed

algorithms).

Figure 5.4 illustrates the effect of noise and froth image pathologies on the watershed segmen-

tation. There are a number of minima (figure 5.4(b)) which when compared to the corresponding

positions on the froth image (figure 5.4(a)) which either do not correspond to highlights of the froth

image, or correspond to cases of the froth image pathologies previously described. The effect of these

extra, or spurious, markers on the segmentation (figure 5.4(c)) is to reduce the extent of regions cor-

responding to valid markers. This leads to large bubbles being broken up, or over-segmented. On the

other hand, it is possible for a preprocessing algorithm to remove a marker corresponding to a valid

highlight (a valid marker in other words). This leads to a bubble being merged with another watershed

region. This is the under-segmentation problem, or, in other words, not all bubbles are segmented.

5.5 Subsequent chapters

The subsequent chapters examine various denoising algorithms in some detail, namely, linear (mean)

filters, anisotropic diffusion, median filters, morphological filters, finally, Occam filters and wavelet

based denoising. The enhancement chapters present a brief overview of some contrast and image

enhancement algorithms. Finally the various algorithms are compared and some recommendations

for useful froth image denoising, enhancement and contrast modification algorithms are given.
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(a) An unprocessed froth image.

(b) Markers for unprocessed froth image.

(c) Watershed segmented unprocessed froth image.

FIGURE 5.4 Unprocessed froth image, markers and associated watershed.
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Moving average filtering

Linear average (or low-pass) filters are traditional for separating a signal from additive Gaussian noise

[50, 73]. realisable signals have finite band-width (no sensor can measure infinite bandwidth, and no

realisable process can generate infinite band-width signals). Low-pass filters remove high frequency

content of signals, preserving, as far as possible, low frequency content. It is well known that im-

ages have significantly more energy (information) in low frequencies than at high frequencies, for

example, the Joint Photographic Experts Group (JPEG) lossy image compression standard preserves

low-frequency information at the expense of high frequency data [145].

6.1 Introduction

It should be noted that convolution of an image with a Gaussian is equivalent to applying the heat

diffusion equation [113]:

∂ I

∂t
= ∂2 I

∂x2
+ ∂2 I

∂y2
(6.1)

= I (x, y, 0) ∗ g(x, y, t) (6.2)

where,

I (x, y, 0) is the initial image at time t = 0, and,

g(x, y, t) is a Gaussian with σ = t , and,

I (x, y, 0) ∗ g(x, y, t) denotes a convolution.

In other words as the diffusion progresses, the process is equivalent to convolving with progres-

sively wider Gaussians. Formally, a Gaussian is the Green’s function of the Partial Differential Equa-

tion (PDE) given in equation (6.1) [40]. A maximum principle is associated with the heat diffusion
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equation [113] – this ensures that as the the diffusion progresses, no spurious extrema are created. A

spurious maximum is one that has no analogue in the original unfiltered image. It is true, and perhaps

desirable, that neighbouring maxima may merge to form a single new maximum. This maximum,

however, has identifiable parents in the original image, a spurious maximum will not (by definition).

The maximum principle cannot be guaranteed to hold for other linear low-pass filters. In the case of

froth flotation images this guarantees that the watershed regions merge as one increases the standard

deviation (or width) of the Gaussians used. The Gaussian convolution kernel used is defined is the

product of 1D Gaussians in the x and y directions [73, 149]:

g(x, y) = 1

2πσ 2
e− x2+y2

2σ2 (6.3)

6.2 A qualitative comparison

Here an attempt is made to find the sigma best suited for denoising froth images. Figures 6.1 through

6.4 show the effect of mean filtering using a Gaussian kernel. The effects on the image, marker and

watershed lines are shown. The markers are generated by opening with a rolling ball of radius one

and greyscale reconstruction by dilation (see chapter 4 for details). The watershed used is a marker

based watershed using the markers generated by the previous stage (see chapter 3 for a discussion of

watershed algorithms).

The region of support of the filter is truncated to a square. The size of the footprint is chosen to

be (8σ + 1)× (8σ + 1) pixels rounded up, this accommodates a circle of radius 4σ . This allows for

finite support of the filter (a Gaussian is otherwise of infinite extent). It can be shown that the pixel

intensities on the radius selected, are weighted by the Gaussian to be less than 1
2πσ 2 e− (4σ)2

2σ2 . For integer

valued σ this is less than 0.54 × 10−6, when σ = 1, and hence pixels further than 4σ from the centre

of the Gaussian contribute negligibly to the convolution sum.

Table 6.1 shows the number of watershed regions after Gaussian filtering with various values of σ

and associated footprint sizes. Figure 6.1 shows the application of a Gaussian filter with σ = 1. Note

the over-segmentation of the large bubbles and the merging of the small bubbles. Figure 6.2 shows the

application of a Gaussian filter with σ = 2. The over-segmentation is reduced. Figure 6.3 shows the

application of a Gaussian filter with σ = 3. Note that the over-segmentation is reduced but that small

bubbles are merged. Figure 6.4 shows the application of a Gaussian filter with σ = 4. The results are

much the same as for figure 6.3.

The effect of the denoising on the markers (figures 6.1(b) through 6.4(b)) is of particular interest.

As the denoising increases, the markers of small extent are smoothed away. Shallow markers, or

markers whose intensities are close to the mean, tend to be smoothed away sooner. Note especially

that as the σ increases the denoised images become more blurred, this makes the positions of the

boundaries between the bubbles uncertain. This is the primary objection to average filters in general

(see [23, 56, 113] for more details).
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 6.1 Result of mean filtering (σ = 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 6.2 Result of mean filtering (σ = 2) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 6.3 Result of mean filtering (σ = 3) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 6.4 Result of mean filtering (σ = 4) on image, marker and watershed.
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Clearly then a larger sigma will not improve the segmentation. Small bubbles are merged if their

separation is less than the radius of the filter, or 3σ . Of the four σ ’s used, the best performance can be

seen to be σ = 2.

6.3 Discussion

This form of denoising is biased against small bubbles, but is relatively simple to implement. A

difficulty is that large sigma values require large filter domains (or footprints), this extends the com-

putation time. A natural optimisation takes the separability of the Gaussian bump into account and

first applies the filter in the x and then in the y direction.

Iterating a Gaussian filter can be shown to have the following effect:

g1(t) ∗ g2(t) ∗ · · · ∗ gN (t) = 1
√

2π
∑N

k=1 σ
2
k

e
− t2

2
∑N

k=1 σ
2
k , (6.4)

where gk(t) is a Gaussian kernel of unit area. N is the number of Gaussian kernels convolved. This

can be easily demonstrated using the Fourier transform of a Gaussian kernel [130][pg. 95]:

�
{

1√
2πσ

e− t2

2σ2

}

= e
− ω2

4 1
2σ2 (6.5)

This shows a narrow Gaussian kernel (small σ ) in the time domain transforms to a wide Gaussian

in the frequency domain and vice versa. If the widths of the kernels are all the same (constant σ ),

then:

g1(t) ∗ g2(t) ∗ · · · ∗ gN (t) = 1√
2πNσ 2

e− t2

2Nσ2 (6.6)

The effective sigma is then:
√

Nσ . This allows for the effect of large σ Gaussian filters to be

rapidly computed by iterating smaller σ filters.

TABLE 6.1 Number of watershed regions against filter width.

σ Footprint # Watershed Regions

1 9 × 9 823
2 17 × 17 401
3 25 × 25 234
4 33 × 33 138
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Chapter 7

Denoising via Anisotropic Diffusion

Several types of Anisotropic Diffusion exist, the simplest types generalise the heat diffusion equation

in a non-linear way. All types attempt to model the non-linear smoothing of an image via some sort

of Partial Differential Equation (PDE). Catte, Lions and Morel [19] extend the original formulation

of Perona and Malik [113] and add robustness. Alvarez, Lions and Morel [4] examine a different

class of PDE’s. The front propagation techniques of Malladi and Sethian [92] are yet another PDE

based approach for denoising and shape extraction. An advantage of a PDE recapitulation of Image

Processing is that a series of PDE’s can be cascaded in simple fashion and solved numerically. As

an example, consider cascading contrast enhancement (through adaptive histogram equalisation) and

denoising via Anisotropic Diffusion [122].

The following algorithms from the Anisotropic Diffusion family are considered: the classical

Perona and Malik algorithm [113]; the reformulation of classical diffusion by Nitzberg and Shiota

[109]; the Green’s function reformulation of Fischl and Schwartz [41, 42]; the modification proposed

by Catte, Lions and Morel [19]; and the new PDE proposed by Alvarez, Lions and Morel [4].

7.1 Classical Anisotropic Diffusion via Perona and Malik

Anisotropic diffusion is a generalisation of the heat diffusion equation I t = ∇2 I [113]. The modifica-

tion proposed by Perona and Malik was to make the heat diffusion equation spatially variant. In order

to preserve edges, the diffusion process is limited at the vicinity of strong edges. The algorithm then

blurs significantly less across strong edges than it does across weak edges. Additionally, strong edges

are enhanced. Perona and Malik prove a maximum principle which ensures that at each iteration the

new pixel value lies between the maximum and minimum values in the neighbourhood of the pixel.

The generalisation is:

It = ∇ · (g(‖∇ I‖)∇ I ) (7.1)

The diffusion algorithm, as given, has three weaknesses:

(i) Noisy edges are not smoothed.
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(ii) Some care is needed in choosing g().

(iii) The number of iterations of the algorithm needs to be decided beforehand.

Perona and Malik suggest the following for g():

g(‖∇ I‖) = e(−(‖∇ I‖/K )2) or, (7.2)

g(‖∇ I‖) = 1

1 + (
‖∇ I‖

K )2
(7.3)

These are sometimes referred to in the literature as GaussianG and QuadG respectively [15]. For

the numerical implementation of the anisotropic diffusion equation (equation 7.1), Perona and Malik

show that 0 < 1t ≤ 0.25. Canny’s noise estimator estimates K by setting K to be the 90% value of

the cumulative distribution function of the histogram of the magnitude of the gradient of the image

[18]. Between iterations K is updated on the denoised image generated.

7.1.1 Discussion

There is an explicit relationship between the number of iterations and the scale of the structures

surviving in the denoised image. Baubaud et al. [7] demonstrated a relationship between scale and

time as σ =
√

2t for Gaussian smoothing (the heat diffusion equation). This, especially for smooth

or flat regions within an image, relates scale and time for anisotropic diffusion.

The are some problems with definition as it stands: the gradient is computed in each direction

via simple differences which are known to be noisy [50, 73], and edge enhancement occurs via the

backward heat diffusion equation which is known to be unstable [19, 113, 152].

Canny’s noise estimator [18, 113], as recommended by Perona and Malik, is used to estimate K

(and reduce the number of free parameters in the algorithm). The values of the time step γ and the

number of iterations are set by hand.

An alternative definition of diffusion could be:

It = g(‖∇ I‖)∇ · ∇ I (7.4)

This allows for the inhibiting of diffusion at high edge strengths (using the same definitions of

g(·) as before), but no edge enhancement. This is less general than Perona and Malik’s formulation

since:

It = ∇ · (g(‖∇ I‖)∇ I )

=
(

∇ · (g(‖∇ I‖)
)

∇ I + g(‖∇ I‖)
(

∇ · ∇ I
)

The term introducing the edge enhancement, and hence potential difficulties since this implies the

backwards heat diffusion – well known to be ill-posed [19, 113, 152], is then (∇ · (g(‖∇ I‖)).
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Table 7.1 records the decrease in the number of watershed regions as the number of iterations

increases. Figures 7.1 through 7.4 shows the effect of g() and iterations on the denoised image,

markers and watershed segmentation. The markers are generated by opening with a rolling ball of

radius one and greyscale reconstruction by dilation (see chapter 4 for details). The watershed used

is a marker based watershed using the markers generated by the previous stage (see chapter 3 for a

discussion of watershed algorithms).

Note that at large iteration values the large bubbles show stair-casing. Note that strong edges

remain sharp. Stair-casing is essentially a smooth curve becoming a series of grey-level steps. This

can be seen by examining the denoised image after 8 iterations (see figures 7.2 and 7.4). The gamma

value, or time step, used for generating the images is 0.2, and K is generated, as specified, using

Canny’s noise estimator.

TABLE 7.1 Decrease in the number of watershed regions as the number of iterations increases.

Iterations # Watershed Regions
g(x) = e−‖∇ I‖/K 2

g(x) = 1

1+
(

‖∇ I‖
K

)2

1 1272 1259
2 923 911
3 783 767
4 681 670
5 624 607
6 576 558
7 544 519
8 501 476

10 454 424
12 415 379
14 384 355
16 360 325
18 343 301
20 323 280
24 300 249
32 267 196
40 230 157

7.2 The modification of Catte, Lions and Morel

The observation that, in general, the inverse heat diffusion equation is ill-posed, raised certain prob-

lems with the formulation of diffusion by Perona and Malik [113]. The process of edge enhancement

during Anisotropic Diffusion relies on the inverse heat equation. This implies that two similar starting

images may diverge considerably as the diffusion process continues.

In the final modification proposed by Catte et al., [19] g() operates on ∇Gaussian ∗ I , instead
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(a) Denoised image – iteration 4, Perona Malik.

(b) Marker image – iteration 4, Perona Malik.

(c) Watershed image – iteration 4, Perona Malik.

FIGURE 7.1 Denoising via Perona and Malik, g() used is (7.2).
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(a) Denoised image – iteration 8, Perona Malik.

(b) Marker image – iteration 8, Perona Malik.

(c) Watershed image – iteration 8, Perona Malik.

FIGURE 7.2 Denoising via Perona and Malik, g() used is (7.2).
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(a) Denoised image – iteration 4, Perona Malik.

(b) Marker image – iteration 4, Perona Malik.

(c) Watershed image – iteration 4, Perona Malik.

FIGURE 7.3 Denoising via Perona and Malik, g() used is (7.3).
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(a) Denoised image – iteration 8, Perona Malik.

(b) Marker image – iteration 8, Perona Malik.

(c) Watershed image – iteration 8, Perona Malik.

FIGURE 7.4 Denoising via Perona and Malik, g() used is (7.3).
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of ∇ I . This modification removes the following difficulties with the implementation by Perona and

Malik (indeed these difficulties were documented in Perona and Malik’s original paper [113]):

(i) Introduced noise implies a noisy estimate of the gradient position and magnitude. Perona and

Malik recommend an initial smoothing to reduce the noise, but this has the undesired effect of

blurring edges.

(ii) The second difficulty involves g(∇ I )∇ I . In one dimension the anisotropic diffusion equation

reduces to:

It = d

dx
g(‖Ix‖)Ix

= g(‖Ix‖)Ix x + gx(‖Ix‖)Ix x Ix

= Ix x [g(‖Ix‖)+ gx(‖Ix‖)Ix ]

If gx(‖Ix‖)Ix is negative and larger than g(‖Ix‖) then the heat equation runs backwards. This is

known to be an ill-posed problem. Catte et al’s modification changes the above to,

It = d

dx
g(‖Ix ∗ Gaussian(σ, x)‖)Ix (7.5)

= g(‖Ix ∗ Gaussian(σ, x)‖)Ix x + gx(‖Ix ∗ Gaussian(σ, x)‖) d

dx
(Ix ∗ Gaussian(σ, x))Ix

(7.6)

= Ix x [g(‖Ix ∗ Gaussian(σ, x)‖)+ gx(‖Ix ∗ Gaussian(σ, x)‖)(Ix ∗ Gaussian(σ, x))Ix ]

(7.7)

Nitzberg and Shiota [109] demonstrate the sensitivity of Perona and Malik’s algorithm to grid

size and algorithm specifics (for example, interpolation algorithms used). While Perona and Malik

do prove a maximum principle which ensures that as one diffuses and edges are enhanced, that new

minima are not introduced, this does not translate well into the discrete domain. Further any “bumps”

along a gradient (due to noise for example) may well increase in height to become hills. A blurred

edge sharpens to become an irregular staircase, instead of a single step.

Catte et al. use an implicit discretisation scheme to solve the above PDE. (An implicit scheme at

some time step expresses the solution in terms of pixels at the new time step.) An implicit scheme

requires matrix methods to solve. Explicit schemes, on the other hand, express the new intensity at

a pixel using pixel intensities at the previous time step exclusively. The Perona and Malik numerical

scheme is an example of an explicit scheme.

In the interests of simplicity, Catte et al’s proposed numerical scheme is not used. Instead, a

Gaussian smoothed version of the image at a time step is used for edge estimates for computing g()

only, the other edge estimates are computed using the unsmoothed image. This allows Perona and

Malik’s discretisation scheme to be used, and the PDE’s to be compared directly. The differences
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in the discretisation as proposed by Catte et al., as compared to that of Perona and Malik, are then

removed.

7.2.1 Discussion

Table 7.2 shows the reduction in the number of watershed regions (and hence number of markers) as

the number of iterations of the diffusion process increases. Figures 7.5 through 7.8 show the effect of

increasing the number of iterations on the denoised, marker and segmented froth image.

TABLE 7.2 Decease in the number of watershed regions as the number of iterations increases.

Iterations # Watershed Regions
g(x) = e−‖∇ I‖/K 2

g(x) = 1

1+
(

‖∇ I‖
K

)2

1 1691 1674
2 1081 1061
3 879 855
4 746 727
8 568 515

16 476 347

7.3 The new PDE of Alvarez, Lions and Morel

This is an attempt to circumvent the original problems with the classical Anisotropic Diffusion algo-

rithm.

The proposed PDE is [4]:

It = g(‖G ∗ ∇ I‖)‖∇ I‖∇ · ∇ I

‖∇ I‖ (7.8)

This can be regarded as a variation of curvature based diffusion. The term ∇ · ∇ I
‖∇ I‖ is the usual

definition for curvature [81, 92].

7.4 Nitzberg and Shiota’s reformulation of classical diffusion

Nitzberg and Shiota express Perona and Malik’s diffusion process as an adaptive filtering process

[109]. They do not avoid the problems associated with classical diffusion but since the spatial extent

of the adaptive filter is larger the dependency on the underlying sampling grid is reduced. Classical

diffusion tends to favour edges aligned with the principle axes of the sampling grid. Alvarez et al.

adopt a numerical scheme which limits the number of directions in which diffusion can occur [4].
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(a) Denoised image – iteration 4.

(b) Marker image – iteration 4.

(c) Watershed image – iteration 4.

FIGURE 7.5 Denoising via Catte, Lions and Morel, g() used is (7.2).
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(a) Denoised image – iteration 8.

(b) Marker image – iteration 8.

(c) Watershed image – iteration 8.

FIGURE 7.6 Denoising via Catte, Lions and Morel, g() used is (7.2).
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(a) Denoised image – iteration 4.

(b) Marker image – iteration 4.

(c) Watershed image – iteration 4.

FIGURE 7.7 Denoising via Catte, Lions and Morel, g() used is (7.3).
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(a) Denoised image – iteration 8.

(b) Marker image – iteration 8.

(c) Watershed image – iteration 8.

FIGURE 7.8 Denoising via Catte, Lions and Morel, g() used is (7.3).
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Limiting the number of directions in which diffusion can occur could potentially lead to a smooth

curve being replaced by polygonal sections. For smooth surfaces this is sub-optimal.

The algorithm as describes by Nitzberg and Shiota proceeds as follows,

(i) Decide on the scale of features to be maintained.

(ii) The filtered image is:

Ix0 = 1

Z(x0)

∫

D
k(x0, x)I (x)dx (7.9)

(iii) Z(x0) is a normalising factor,
∫

D k(x0, x)dx. Normalising ensures that the a pixel’s value after

filtering is:

minI ≤ minD I ≤ Iout(x0) ≤ maxD I ≤ maxI (7.10)

This ensures that the maximum principle holds.

(iv) The edge enhancement effect is created by displacing the kernel away from the edge. This

reduces the blurring across the edge. The kernel displacement is designed to enhance corners

and T junctions (triple points).

α(x0) = φ(V ) (7.11)

φ(V ) = c1V
√

µ2 + |V |2
(7.12)

V =
∫

U

1

|y| (∇ I (x0 + y) · y)∇ I (x0 + y)ρ3(y)dy (7.13)

The following is suggested for c1,

c1 ≈ 1

4
· kernel size (7.14)

ρ3 is a cut-off positive symmetric function. It is normalised to unit volume, alternatively, it can

be normalised to make:

c = 1

d

∫

|y|ρ3(y)dy = 1 (7.15)

where d is the dimension of y.

(v) The kernel shape is controlled as follows:

1

Z(x0)
k(x0, x) = 1

Z(x0)
ρ1(x − x0 + α(x0))e

−Qx0(x−x0+α(x0)) (7.16)
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where, ρ1 is chosen to be rotationally symmetric and have maximum amplitude (1) at 0.

Qx0 = 1

σ 2

(

E F

F G

)

x0 (7.17)

where:

E =
∫

U
Ix(x)2ρ2(x − x0)dx (7.18)

F =
∫

U
Ix(x)Iy(x)ρ2(x − x0)dx (7.19)

G =
∫

U
Iy(x)2ρ2(x − x0)dx (7.20)

Again, ρ2 is a smooth nonnegative function of unit volume which gives a higher weight to

gradient estimates close to the centre of the kernel (x0). ρ2 sets the effective window size of the

filtering process by controlling the smoothing of the gradient estimates.

7.5 Fischl and Schwartz – Optimisations

Fischl and Schwartz propose several optimisations to the anisotropic diffusion process [42, 41]. The

following sub-sections examine the optimisations in detail.

7.5.1 Anisotropic diffusion in the complex log domain

Fischl and Schwartz propose diffusion in the complex log domain to improve the speed of the diffusion

process [42]. The complex log mapping domain is specified as follows:

z = reθ = x +  y (7.21)

r =
√

x2 + y2 (7.22)

θ = tan−1
( y

x

)

(7.23)

the mapping used is:

w =







log(z + a) Re(z) ≥ 0, aε
�

2log(a)− log(−z + a) Re(z) < 0
(7.24)

w = ρ(z)+ jφ(z) (7.25)
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The constraint for stability is as follows:

1t ≤ (1x)2

4c
, Cartesian co-ordinates [113]. (7.26)

1t ≤ e2ρ

4c
, Complex log co-ordinates [42]. (7.27)

This implies that at the periphery of the complex log image (large ρ) large time steps are possi-

ble. This implies that a scheme is possible to diffuse using large time steps at the periphery of the

complex log image and then reduce the time steps as one approaches the origin of the mapping. Fis-

chl and Schwartz propose a scheme [42] where the diffusion converges rapidly at the periphery. The

unequal rates of convergence across the image implies that for each iteration, fewer pixels need to be

considered. This leads to a reduction in processing time.

7.5.2 Approximating the Green’s function

This is a modification of Nitzberg and Shiota’s formulation to improve computational performance.

Fischl and Schwartz [41] propose a separation of the offset vector field calculations and the filtering

process.

The Green’s function (the convolution kernel of a filter is an example of a Green’s function [75])

is approximated for the image and Perona and Malik’s anisotropic diffusion. The algorithm attempts

to estimate G() in the following integral:

It =
∫∫

du dv G t(x, u, y, v)I (x, y, 0) (7.28)

Different kernels, G, exist at different places and times in the image.

The algorithm proceeds as follows:

(i) A position-time modified kernel is estimated for every point in the image.

(ii) The diffused resultant image is derived by convolution of the position-time modified kernel as

shown in equation (7.28).

The authors propose an iterative update equation [41][pg 345,346]. The actual construction of the

kernels is performed by a modified back-propagation neural net. The neural net then finds the kernels

which when applied to a training image yields a result equivalent to applying Perona and Malik’s

[113] algorithm for a specified number of iterations, time step and so on.

Offset vector filtering

Here an offset vector field is generated. An arbitrary filter is applied to the image. A pixel in the result

image is replaced by the filtered image pixel to which the offset vector points. Fishl and Schwartz
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propose this variation of offset vector filtering to overcome certain difficulties of Nitzberg and Shiota’s

(see [109]) formulation.

The process occurs as follows:

(i) The orientation is computed [40][pg 10]. The image is first smoothed using a Gaussian kernel

with σ = 2. The gradients are computed using Sobel filters for the x and y directions.

O(z) =
∫

W
s
(

∇ I (z + z ′)
)

∇ I (z + z ′)dz ′, (7.29)

s(z) =







−1, x < 0

1, x ≤ 0
(7.30)

where,

W a window, may be 3 × 3.

z′ is the vector from z to a point in W.

s(z) limits the orientation of O(z). This allows “uphill’ and “downhill” orientation along the gradient only.

(ii) The sign,

d(z) = sgn

(∫

W
|O(z) · ∇ I (z + z ′)|(O(z) · z ′)dz ′

)

(7.31)

(iii) The magnitude,

vi(z) = d(z)O(z) (7.32)

m(z) = minα{(vi(z + αvi(z))) · vi(z) ≤ 0} (7.33)

finally,

v(z) = m(z)
vi(z)

|vi(z)|
(7.34)

The nature of the process estimating the magnitude of the final offset vector preserves small scale

structures. Fischl and Schwartz demonstrate [40][pg. 11, 12] that the formulation of Nitzberg and

Shiota (see [109] and section 7.4) does not, under certain conditions, preserve small scale structures.

7.5.3 Discussion

The approach of building kernels to replicate the diffusion of an existing diffusion algorithm leads to

the flaws of the diffusion algorithm to be replicated as well. For example, it is known that Perona

and Malik’s algorithm preferentially preserves edges aligned with the sampling grid axes [109][fig. 1,
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pg 826]. If the parameters change, for example, number of iterations, then the neural net needs to be

retrained.

There are some objections to the offset vector filtering approach as described above:

(i) Scale. The Gaussian smoothing sets the scale of the smallest structures in the image. How

should the width of the Gaussian be chosen for different types of images?

(ii) Edge estimates are known to be sensitive to noise [19][pg 183]. The offset vector field will then

be sensitive to noise.

(iii) Smooth slowly varying regions will not be preserved. Consider the following degenerate case

of an image consisting of piecewise regions of constant intensity gradient. The gradients are

allowed to vary in orientation and magnitude. Consider one such region. Consider a point away

from the borders of this region. The orientation is constant everywhere except at the borders.

The sign is constant everywhere except at the borders. When the magnitude of the offset vector

at an interior point is computed, the only point at which sign and orientation is different will be at

the border or within a neighbouring region (looking along a line from an interior point along the

orientation vector at this point). After filtering then each interior point’s intensity is replaced by

the intensity of the border point. The constant slope regions are replaced by piecewise constant

regions irrespective of the filter used. This is itself visible in Fischl and Schwartz’s paper [40][fig

6.4, pg 12]. This makes the utility of offset vector filtering for anisotropic diffusion suspect. It

may, however, be useful for shock filters (see the following for an introduction to shock filters

[5, 112]).

(iv) Consider an image consisting of an intensity ramp from zero to some positive intensity, a con-

stant region and another ramp sloping back to zero intensity. Following to the end of the image

is a zero intensity region. Without loss of generality, let the gradient of the first ramp be (1, 0),

and than that of the second be (−1, 0).

The offset vector field is computed as specified by Fischl and Schwartz [40] above. The initial

orientation, O(z), of the first ramp is (1, 0). The sign, d(z), 1. The initial offset field, v i(z), is

(1, 0). The length of each vector is simply the distance from a point on the ramp to the first pixel

in direction (1, 0) on the constant intensity region. In other words, after filtering, every point on

the ramp has the same value as the first pixel on the filtered constant intensity region. The ramp

then disappears.

In the same way, the second ramp disappears. The ramp is replaced by the filtered value of

the first pixel on the zero intensity region. Note that S(z), reverses the direction of O(z) from

(−1, 0) to (1, 0).

The edge positions are changed. This illustrates a drawback of offset vector filtering.
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7.6 Robust anisotropic diffusion

Black, Sapiro, Marimont and Heeger show anisotropic diffusion can be described in terms of robust

estimation [15]. Specifically, Black et al. show a relationship between robust error norms and the

gradient weighting functions g() proposed by Perona and Malik. Black et al. propose the following:

(i) A robust method for computing the magnitude of significant edges to be preserved.

(ii) A new class of functions for g().

Perona and Malik use Canny’s noise estimator to gauge the magnitude of significant edges in an

image [113]. Black et al. propose using the median absolute deviation, defined as follows:

σe = 1.4826 median I (‖∇ I − median I (‖∇ I‖)‖) (7.35)

The functions for g() proposed by Perona and Malik [113] are non-zero even for large edge mag-

nitudes. This implies that even very strong edges are diffused and will eventually decay, this may take

hundreds of iterations however. Black et al. propose functions which are zero above certain gradient

magnitudes, this implies that strong edges are preserved always and that the diffusion process con-

verges to a steady state faster. Black et al. propose Tukey’s biweight function (although others are

possible):

g(x, σ ) =







1
2

(

1 −
(

x
σ

)2
)

, |x | ≤ σ

0 ,otherwise
(7.36)

σ may be computed using Median Absolute Difference (or in the Perona and Malik case, Canny’s

noise estimator).

7.6.1 Discussion

Table 7.3 shows the decrease in the number of watershed regions and hence minima as the number of

iterations increases. Tukey’s biweight function is used as g() and the time step used is γ = 0.2. Both

Perona and Malik’s, as well as Catte et als. formulation of diffusion is used. The discretisation used

for both is Perona and Malik’s discretisation. This allows the results to be directly compared without

needing to compensate for differences in discretisation. The value σ is computed using the Median of

Absolute Differences.

Figures 7.9 through 7.12 show the effects of Tukey’s BiWeight function applied to Perona and

Malik’s, and Catte et als. framework four and eight times respectively.

Noisy edges, where the edge strength is high, are not smoothed. The edge preservation property

Tukey’s BiWeight function implies more iterations are needed to achieve the same level of denoising

as the other g() functions proposed by Perona and Malik. Note that small bubbles are well preserved,

even at high iterations when over-segmentation is reduced.



7.6 Robust anisotropic diffusion 98

(a) Denoised image – iteration 4.

(b) Marker image – iteration 4.

(c) Watershed image – iteration 4.

FIGURE 7.9 Denoising via Perona and Malik, g() used is (7.36) (Tukey’s BiWeight), 4 iterations.
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(a) Denoised image – iteration 8.

(b) Marker image – iteration 8.

(c) Watershed image – iteration 8.

FIGURE 7.10 Denoising via Perona and Malik, g() used is (7.36) (Tukey’s BiWeight).
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(a) Denoised image – iteration 4.

(b) Marker image – iteration 4.

(c) Watershed image – iteration 4.

FIGURE 7.11 Denoising via Catte et al., g() used is (7.36) (Tukey’s BiWeight), 4 iterations.
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(a) Denoised image – iteration 8.

(b) Marker image – iteration 8.

(c) Watershed image – iteration 8.

FIGURE 7.12 Denoising via Catte et al., g() used is (7.36) (Tukey’s BiWeight).
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TABLE 7.3 Decrease in the number of watershed regions as the number of iterations increases.

Iterations # Watershed Regions
Perona Malik Catte et al.

1 2017 2660
2 1418 1933
3 1156 1509
4 1010 1261
8 750 878

16 573 709
20 528 703
24 500 682

7.7 Anisotropic diffusion without edge enhancement

It is well known that the backwards heat diffusion is ill-posed. Removal of the backwards heat dif-

fusion component of classical Anisotropic diffusion as proposed by Perona and Malik[113] (see sec-

tion 7.1) is proposed. This allows for the relative importance of edge enhancement to be gauged, at

least for small number of iterations. The new diffusion equation is then:

It = g(‖∇ I‖)∇ · ∇ I (7.37)

The discretisation scheme used (on a four connected neighbourhood, using central differences for

edges) is:

Laplacian(I ) = I k
n + I k

s + I k
e + I k

w − 4 ∗ I k
c (7.38)

Edge = 1

2

√

(I k
e − I k

w)
2 + (I k

n − I k
s )

2 (7.39)

I k+1
c = g(‖∇Edge(I )‖)Laplacian(I ) (7.40)

where, I k
n denotes the pixel at (0, 1) relative to Ic. Similarly for the other pixels in the other

directions.

Table 7.4 shows the decrease in the number of watershed regions (and hence maxima in the image)

as the number of iterations of equation 7.37 increases. Note that fewer regions are evident, than for

the edge enhancement cases (see tables 7.1 and 7.2 for the Perona and Malik and Catte et al. cases).

As expected the denoised images show greater blurring of edges.

7.8 A comparison of the different Anisotropic Diffusion techniques

The following needs to be said:

(i) The ill-posed nature of the backwards heat diffusion equation is aggravated by noise, within a
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(a) Denoised image – iteration 8.

(b) Marker image – iteration 8.

(c) Watershed image – iteration 8.

FIGURE 7.13 Diffusion without edge enhancement, g() used is (7.2).
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(a) Denoised image – iteration 8.

(b) Marker image – iteration 8.

(c) Watershed image – iteration 8.

FIGURE 7.14 Diffusion without edge enhancement, g() used is (7.3).
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TABLE 7.4 Decease in the number of watershed regions as the number of iterations increases.

Iterations # Watershed Regions
g(x) = e−|∇ I |/K 2

g(x) = 1

1+
(

|∇ I |
K

)2

1 1224 1223
2 890 885
3 748 743
4 655 649
8 460 450

16 309 296

local neighbourhood system the few pixels under consideration do not provide sufficient infor-

mation to deconvolve the edge, and the difficulty of de-convolving some types of blurring (this

is especially visible in the frequency domain where some convolution kernels have zeros, at the

zeros information is discarded and cannot be reconstructed). In effect, backwards heat diffusion

(or anisotropic edge enhancement) is equivalent to deconvolution.

(ii) The whole anisotropic diffusion approach is weakened by the enhancement of edges by back-

wards diffusion, unless the edges are all less noisy and well sampled. This problem is partially

addressed by convolving the image with a Gaussian, before edge estimates are taken (Catte et

als. approach [19]).

(iii) The digital sampling grid imposes stair-casing in the final grey levels stored. This implies that

even without noise, any of these “stairs” could potentially give rise to spurious detail if they

happen on an edge strong enough and given enough iterations . This effect can be alleviated

by ensuring a fine enough sample grid. In other words strict adherence to the Nyquist sampling

principle, application of an anti-aliasing filter (the anti-aliasing approach is used by Perona and

Malik), and limiting the number of iterations.

(iv) Even if edge enhancement were prohibited, anisotropic diffusion still provides reasonable de-

noising without blurring significant edges.
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Chapter 8

Median Filter based Denoising

Median filters belong to a more general family of filters known as Stack Filters or Order Statistic

Filters [151]. Median filters, by virtue of being nonlinear, have the advantage of being, to some

degree, edge preserving [125].

A standard froth image is median filtered using one of the median filter types and then segmented

via a marker based watershed segmentation. The markers are extracted by eroding the median filtered

image with a rolling ball structuring element (of radius one pixel) and then greyscale reconstructing

by dilation. The difference between the filtered and reconstructed image, after thresholding, yields

the markers (this marker extraction process is described in detail in part I, chapter 4). The objec-

tive is to determine the suitability of applying median filters to froth images. The method used for

comparisons relies on an observer rating the varieties of median filter and is hence qualitative. The

criteria for comparison is based on the goodness of the segmentation and the effect on the marker and

denoised images as iterations and algorithm type varies. Quantitative comparisons will be presented

in chapter 12 for a variety of denoising algorithms.

Both standard and weighted median filters are tested. Weighted median filtering covers line and

corner preserving filters. The following filters were examined: corner preserving; corner and hor-

izontal and vertical line preserving; and horizontal, vertical and diagonal line preserving masks. In

essence, a median filter (of any type) sorts the pixel intensities on a region into order. The output value

selected is the half population point or the N/2th value in the sorted list (N is the number of elements

in the list, or number of pixels in the region considered). This is correct when the number of pixels

within the region is odd. The situation when the number of pixels is even is more complicated, essen-

tially a new pixel is inserted into the sorted list so that the number of pixels on either side is the same.

The intensity of this inserted pixel is the average of its two immediate neighbours, in other words, the

median [151]. This is not used here. The middle pixel in the sorted list is chosen as the median. This

ensures that the median value used is one which occurs within the input image. It should be noted that

efficient algorithms for computing medians do exist (see [88] for example) which do not use sorting

techniques. For small numbers of pixels, however, the computational savings achieved do not repay

the added algorithmic complexity. The mask values, for weighted median filters, are weights which

107
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imply that the pixel value at that weight is repeated so many times as it is placed into the list of pixel

values from which the median is computed.

8.1 Standard Median Filtering

The mask used is described in table 8.1 [125], figures 8.1 through 8.3 describe the effect of applying

the filter iteratively to the test image up to four times. Table 8.2 records the decrease in the number of

watershed regions (and associated image maxima) as the number of iterations increases.

One iteration did not denoise enough and more iterations denoised too much. Notice that as the

number of iterations increases the size of the surviving markers increases. Notice also that some of

the markers at ten iterations have a blocky and angular shape, this is a result of the small size and

shape, of the rectangular region examined to find the median.

TABLE 8.1 Median filter weights.

1 1 1
1 1 1
1 1 1

TABLE 8.2 Decrease in number of watershed regions vs.
median filter iterations.

Iteration #Watershed Regions

1 1004
2 734
3 598
4 517
5 465

10 384
20 377
50 376

One iteration of the median filter is not sufficient to adequately denoise the standard image. The

large bubbles are spilt and many spurious regions can be seen. Two iterations performs better, more

of the large bubbles are visible and more of the small bubbles properly segmented. As the number

of iterations increases the smaller bubbles begin to merge with the larger bubbles, at four iterations

(see figure 8.3) this is especially noticeable. Continued iteration of the median filter will result in the

final image converging to a so-called root image [118]. The median filter as is does not preserve the

gradual intensity curvature around the highlights of the bubbles, which leads to these being eroded

and then eliminated. This explains the removal of the smaller bubbles at higher iterations.

The median filter will then work well if the denoising requirement can be relaxed to extracting

larger bubbles only.

8.2 Preserving corners

The corner preserving mask is described in table 8.3 [125]. Table 8.4 shows the decrease in the

number of watershed regions (and hence minima of the image) with increasing iterations of the filter
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.1 Median filter based denoising, 1 iteration.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.2 Median filter based denoising, 2 iterations.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.3 Median filter based denoising, 4 iterations.
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described.

Figures 8.4 and 8.5 show the effect on the segmentation of applying a median corner preserving

filter iteratively, up to three times. Table 8.4 shows that after three iterations the number of segmented

regions remains constant. This is likely due to the detail preserving property of the filter. This implies

rapid convergence to the root image for this median filter. The high detail preserving property of this

filter makes it unattractive for denoising froth images.

TABLE 8.3 Weighted median filter
weights preserving corners.

2 3 2
3 5 3
2 3 2

TABLE 8.4 Decrease in number of watershed regions vs.
corner preserving median filter iterations.

Iteration # Watershed regions

1 1068
2 902
3 880
4 880
5 880

10 880
20 880
50 880

8.3 Preserving horizontal and vertical lines

Table 8.5 describes the mask preserving horizontal and vertical lines [125]. Table 8.6 shows the

decrease in the number of watershed regions vs. the number of iterations of this filter.

Figures 8.6 and 8.7 shows the effect on denoised, marker and watershed segmentation of iterating

the median filter described, up to three times. Note that there is no significant difference between

the number of watershed regions at the third and fiftieth iterations. Again, these slow changes per

iteration are due to the detail preserving properties of the filter, specifically the high weight given to

the centre pixel in the mask. The high detail preserving properties of this filter renders it unattractive

for denoising froth images.

8.4 Preserving horizontal, vertical and diagonal lines

Table 8.7 describes the mask preserving horizontal, vertical and diagonal lines [125]. Table 8.8 de-

scribes the decrease in watershed regions as the number of iterations of this filter increases. The

decrease is not rapid indicating that the detail preserving properties of this filter preserves noise in-

duced minima.

Figures 8.8 and 8.9 and describe the effect of iterating the median filter described up to five times.

Examination of the figures do not show significant differences between the first and the fifth iterations.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.4 Corner preserving median filter based denoising, 1 iteration.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.5 Corner preserving median filter based denoising, 3 iterations.
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TABLE 8.5 Weighted median filter
weights preserving horizontal and
vertical lines.

1 3 1
3 5 3
1 3 1

TABLE 8.6 Decrease in number of watershed regions vs.
horizontal and vertical line preserving median filter it-
erations.

Iteration # Watershed regions

1 1317
2 953
3 878
4 872
5 870

10 869
20 869
50 869

TABLE 8.7 Weighted median filter
weights preserving horizontal,
vertical and diagonal lines.

1 1 1
1 5 1
1 1 1

TABLE 8.8 Decrease in number of watershed regions vs.
horizontal, vertical and diagonal line preserving me-
dian filter iterations.

Iteration # Watershed regions

1 1262
2 1071
3 1053
4 1051
5 1050

10 1050
50 1050
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.6 Horizontal and vertical line preserving median filter based denoising, 1 iteration.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.7 Horizontal and vertical line preserving median filter based denoising, 3 iterations.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.8 Horizontal, vertical and diagonal line preserving median filter based denoising, 1 itera-
tion.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.9 Horizontal, vertical and diagonal line preserving median filter based denoising, 5 itera-
tions.
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8.5 Preserving horizontal lines, vertical lines and corners

Table 8.9 describes the mask preserving corners, horizontal and vertical lines [125]. Table 8.10 shows

the decrease in the number of watershed regions as the filter is iterated. Note that after four iterations,

further iterating the filter does not significantly reduce the number of watershed regions.

Figures 8.10 and 8.11 represent the effect of iterating the median filter described up to five times

on a standard test image. There is little difference between the segmentations shown. This is a result

of the detail preserving properties of the filter in question. This is clear from examining table 8.10.

TABLE 8.9 Weighted median filter
weights preserving horizontal and
vertical lines, as well as corners.

1 2 1
2 5 2
1 2 1

TABLE 8.10 Number of watershed regions per iteration for
median line and corner preserving filter.

Iteration # Watershed regions

1 1329
2 962
3 890
4 880
5 879

10 876
50 876

8.6 Tri-State Median Filters

This algorithm was proposed by Chen et al [23]. The filter was originally designed for impulse noise

removal. The filter chooses one of the outputs of three different filters based on a threshold. The filters

are:

(i) Identity filter – returns value of the centre pixel (X c) of neighbourhood.

(ii) Simple median (SM) filter.

(iii) Centre weighted median (CWM) filter.

Y T S M =



















Xc T ≤ d1,

Y C W M d2 ≤ T ≤ d1,

Y S M T < d2

(8.1)

d1 =| Xc − Y S M |
d2 =| Xc − Y C W M |
T Threshold setting denoising allowed
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.10 Corner and line preserving median filter based denoising, 1 iteration.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.11 Corner and line preserving median filter based denoising, 5 iterations.
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Table 8.11 shows the decrease in the number of watershed regions vs. the increasing number

of iterations. Figure 8.12 shows the application of one iteration of the tri-state median filter to the

standard froth image. Figure 8.13 shows the result of fifty iterations. The threshold used was 20 and

the weight for the centre weighted median filter, 3. These values are selected to best denoise the test

image. Comparison of the denoised, marker and segmented images in figures 8.12 and 8.13 do not

show a great deal of difference. The filter does not denoise well at all, indicating then that the noise

present is clearly not impulse noise.

TABLE 8.11 Number of watershed regions per iteration for tri-state median filter.

Iteration #Watershed regions

1 3352
2 3343
3 3341
4 3340
5 3339

10 3338
50 3338

8.7 Discussion

The weighted median filter mask required is one that preserves of the gradual intensity changes of

bubbles. The better the detail preserving characteristics of the median filter used, the worse that filter

is from a denoising perspective. A tradeoff does exist between improving the segmentation and the

computational effort involved. The detail preserving nature of the weighted median filters result in

them converging rapidly to the root image. The stronger the detail preserving property the more rapid

the convergence. Consider table 8.12 which ranks the various median filters in order of the number of

the surviving watershed regions at iteration fifty. This gives an indication of how rapidly convergence

to the root image occurs. The lowest ranking filter converges the fastest i.e. the Tri-State median

filter. The detail preserving properties can clearly be seen to speed convergence to the root image.

Qualitative examination of the segmentation of a standard froth image, on the other hand, suggests

that detail preservation is of little use in denoising the images to improve the segmentation.

The weighted median filters would require too many iterations to significantly improve the seg-

mentation. This is especially true of the tri-state median filter.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.12 Tri-State median filter based denoising, 1 iteration.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 8.13 Tri-State median filter based denoising, 50 iterations.
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TABLE 8.12 Ranking of median filters. Number of watershed regions after fifty iterations.

Rank Median filter type # Watershed regions

1 Simple Median 367
2 Preserving corners 880
3 Preserving horizontal and vertical lines 869
4 Preserving horizontal lines, vertical lines and corners 876
5 Preserving horizontal, vertical and diagonal lines 1050
6 Tri-State 3338
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Morphology based denoising

Several techniques in mathematical morphology can be used for denoising. These include rolling

ball filters, greyscale reconstruction via erosion and dilation, and simple flat structuring element ap-

proaches (see [34, 35, 64, 127] for an introduction to morphology). The goal of all these attempts is

to fill, or eliminate, small maxima and minima likely to be associated with noise.

9.1 Flat structuring elements

This is similar to the rolling ball algorithms but rather the structuring element has no intensity. The re-

sultant filter is an order statistic filter extracting either the first (min) or last (max) order statistic [125]

of a given region of the image. The erosion and dilation operates on certain pixels in a neighbourhood

as specified by the region of support of the structuring element. The structuring element used here

is circular in extent. This is an attempt to make the process more isotropic in spatial extent. There

is no compelling reason to consider other shapes of structuring element, though others are certainly

possible.

The following flat morphological filters are considered:

(i) Dilation [34, 64].

(ii) Erosion [34, 64].

(iii) Closing. A dilation followed by an erosion [34, 64].

(iv) Opening. An erosion followed by a dilation [34, 64].

(v) Close-Openings. A closing followed by an opening [34, 64].

(vi) Open-Closings. An opening followed by a closing [34, 64].

Table 9.1 shows the effect of various flat morphological filter radii on the number of watershed

regions. Figures 9.1 through 9.16 shows the effect of these filters on the image, markers and watershed.
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Notice especially, in the marker image of figure 9.3 that the markers are large diamond shaped. This

is because for a regularly sampled grid a disc of radius one has a diamond shape. Notice also, that as

the radius increases (figures 9.2 and 9.3) the markers become better approximations to a disc.

TABLE 9.1 Number of watershed regions against structuring element radius for flat dilation, erosion.

Radius # Watershed Regions
Dilation Erosion Closing Opening Clos-opening Open-closing

1 963 1413 1831 820 638 712
2 571 898 1087 413 308 295
3 377 828 1063 224 157 151
4 279 480 787 150 113 95
5 205 350 663 100 74 78
6 165 317 547 79 65 57

9.1.1 Discussion

It is apparent that the effect of iterating a flat morphological filter is identical to filtering with a single

large structuring element. Only the effect of iteration on dilations and erosions will be considered. By

definition openings and closings are idempotent [34, 64, 124] i.e. iterating an opening or closing have

the same effect as a single opening or closing. Openings and closings should then not be considered

for iteration. The shape and size of this structuring element can be seen as follows:

A(x, y) =
⋃

cεB

Bc(x, y) (9.1)

where,

• B(x, y) is the region of support of the flat structuring element.

• Bc(x, y) denotes B displaced by c.

For rectangular filters the domain of support is again rectangular. For circular filters the domain of

support is an approximation to a circle. As the size of the structuring element to be iterated increases,

the iterated structuring element is a better approximation to a circle.

The following observations on the qualitative data can be made:

(i) Dilations merge close maxima. This leads to merging markers and reducing over-segmentation.

Conversely, small bubbles close to one another tend to be merged.

(ii) Erosions fragment maxima. This leads to fragmented markers and hence to over-segmentation.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.1 Result of flat dilation (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.2 Result of flat dilation (radius 4) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.3 Result of flat dilation (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.4 Result of flat erosion (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.5 Result of flat erosion (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.6 Result of flat closing (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.7 Result of flat closing (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.8 Result of flat opening (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.9 Result of flat opening (radius 3) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.10 Result of flat opening (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.11 Result of flat close-opening (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.12 Result of flat close-opening (radius 2) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.13 Result of flat close-opening (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.14 Result of flat open-closing (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.15 Result of flat open-closing (radius 2) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.16 Result of flat open-closing (radius 6) on image, marker and watershed.
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9.2 Rolling ball filters

This is somewhat traditional for froth imaging [89, 135]. The structuring element used is an upper

circular hemisphere for rolling balls rolling on the top of a grey level surface. (If one chooses to

interpret a grey-level image as a topological height map.) Alternately, the structuring element is a

lower circular hemisphere for rolling a ball underneath the grey-level surface.

Conceptually, a rolling ball filter works by rolling a ball along either the top or underside of a grey

level surface. This creates a surface traced out by the locus of the movement of the centre of the ball.

Depending on the width of the ball some valleys (if rolling on the top) or some peaks (if rolling on the

bottom) will be not be fully traced. In effect these peaks or valleys have been eroded or filled.

Mathematical morphology simulates this rolling ball process by means or erosion and dilation.

Erosion (in the Mathematical Morphology sense [64]) of the grey-level surface and a circular shell

yields the upper surface. Similarly for the dilation of the grey-level surface and a circular shell. An

optimisation replaces the circular shell by a upper or lower circular hemispherical shell for dilation

and erosion respectively.

One has two alternatives for rolling ball filters: one may use a erosion followed by a dilation to

remove minima as well as maxima, or one may abandon symmetry and simply add a constant gray

level to the eroded image equal to the radius of the rolling ball. Adding a constant preserves the

intensity of flat and smoothly varying regions.

The following morphological operators are tested for denoising froth images:

(i) Dilation.

(ii) Erosion.

(iii) Dilation followed by subtracting a constant [64] (Dilation Shift).

(iv) Erosion followed by adding a constant [64] (Erosion Shift).

(v) Closing. A dilation followed by an erosion [34, 64].

(vi) Opening. An erosion followed by a dilation [34, 64].

(vii) Close-Openings. A closing followed by an opening [34, 64].

(viii) Open-Closings. An opening followed by a closing [34, 64].

Denoising for cleaning up a watershed segmentation implies that one discards minima which are

not likely to be significant. This implies a dilation of the original image (since the watershed for froth

images operates on the inverted froth image). This implies that a morphological closing is unnecessary

(though harmless).

Table 9.2 shows the effect on the number of watershed regions (or, surviving markers) as the radius

of the rolling ball structuring element increases. As expected the number of watershed regions for the

Dilation Shift and Erosion Shift cases is the same as that for Dilation and Erosion respectively.



9.3 Denoising via posterisation 146

Figures 9.17 through 9.30 show the effect of applying the filters with different ball radii on the

images, markers and watershed segmentation. The standard test image is used.

TABLE 9.2 Number of watershed regions against rolling ball radius.

Radius # Watershed Regions
Dilation Erosion Closing Opening Clos-opening Open-closing

Dilation-Shift Erosion-Shift

1 1832 1561 2080 1405 1090 1247
2 804 1222 1490 593 440 440
3 550 806 1021 352 250 223
4 461 629 864 244 176 155
5 336 463 719 161 141 105
6 284 342 567 128 106 81

9.3 Denoising via posterisation

Here posterisation [141] refers to applying the watershed segmentation algorithm on a gradient image

to yield the cachement areas. The gradient used here is the flat morphological gradient (the difference

between the flat dilated and the flat eroded image, see Appendix B for an introduction to mathematical

morphology). The markers used are then the positions of the local maxima and minima of the image

(the zero intensity regions of the gradient image). Each pixel in a labelled region is replaced by

the mean, or perhaps some intensity dependent function, of the pixels within the labelled area. The

intensities used are those of the original image. Naturally, the algorithm may be iterated until a desired

smoothing is achieved.

Table 9.3 shows the decrease in the number of watershed regions as the denoising algorithm is

iterated. This is expected, since the marker for a region will disappear unless the mean is larger than

the mean of the surrounding regions. Figure 9.31 shows the results of applying posterisation to a froth

image. The denoising is extreme. The denoised image is made up of piece-wise constant regions.

In order to test the hypothesis that adding noise can improve the posterisation, noise is added to

the standard froth image. The noise is zero mean and Gaussian distributed with standard deviation

25. The posterised image, associated markers, and watershed segmentation is shown in figure 9.32.

The denoised image better resembles a froth image. The marker image shows a number of small

markers and blocky irregularly shaped larger markers. The segmentation is no better than in the no-

noised added case, showing a number of small watershed regions and fragmented larger regions. Both

observed effects can be explained by the noise added. Neither large, nor small, bubbles are well

segmented.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.17 Result of rolling ball dilation (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.18 Result of rolling ball dilation (radius 5) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.19 Result of rolling ball dilation (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.20 Result of rolling ball erosion (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.21 Result of rolling ball erosion (radius 5) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.22 Result of rolling ball erosion (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.23 Result of rolling ball closing (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.24 Result of rolling ball closing (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.25 Result of rolling ball opening (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.26 Result of rolling ball opening (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.27 Result of rolling ball close-opening (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.28 Result of rolling ball close-opening (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.29 Result of rolling ball open-closing (radius 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.30 Result of rolling ball open-closing (radius 6) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.31 Result of posterisation on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 9.32 Result of posterisation on image, marker and watershed.
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TABLE 9.3 Watershed regions per iteration for posterisation.

Iterations # Watershed Regions

1 1071
2 18
3 2

9.3.1 Discussion

This algorithm relies on a certain amount of noise to yield perceptually useful images, or, failing

enough noise, sufficient texture. The improvement in the visual appearance of the images as the noise

level increases can be explained by a form of random sampling. As the noise level increases the

watershed region of each noise minimum decreases (more noise maxima occur) and more watershed

regions results. If the the noise amplitude is kept small, then the flat regions better approximate the

underlying image. The need to add noise to improve the performance of a denoising filter makes pos-

terisation of limited usefulness for denoising images. It is reasonable to expect a denoising algorithm

should leave an image consisting of flat regions or steps largely unchanged, without adding noise this

will not happen for this algorithm.

Posterisation does not denoise froth images well.
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Chapter 10

Occam filters

All compression-quantisation-decompression filters are Occam filters [102]. Any filter that transforms

data to some transform domain, for example generalised Fourier, Wavelet, Discrete Cosine Trans-

form (DCT); and then discards some of the information in the transform domain can be regarded as

an Occam Filter. Provided the information lost is small and confined to mostly low magnitude co-

efficients, the loss discards more noise than signal. The assumption made is that small magnitude

coefficients are more likely to be noise induced or heavily affected by noise. Occam filtering is based

on the observation that noise, being relatively uncorrelated, is more difficult to compress than signal

which tends to be correlated. The implication is that slight lossy compression may improve the Signal

to Noise Ratio (SNR) of the image. This high local correlation is prevalent in froth images especially,

which makes Occam filtering attractive.

This chapter examines some attempts at compression based denoising, including Set Partition-

ing in Hierarchical Trees (SPIHT), JPEG based compression and various attempts at wavelet based

denoising. The common properties of each are examined.

In the experimental results provided, the images are not preprocessed except to be histogram

stretched to occupy the full intensity range possible (0 to 255). The reconstructed image is created by

rolling ball erosion (radius 1) of the inverted denoised image, followed by greyscale reconstruction

by dilation of the eroded image under the original. The domes are extracted by writing to the marker

image only those pixels which are different from their reconstructed counterparts. The domes become

the marker image.

The depth of the multi-resolution decomposition for wavelet based denoising is 4. At the this

depth, the size of the processed images become 40 × 15 (from the original 640 × 240. Since one of

the dimensions is no longer even, the multi-resolution analysis cannot continue without zero padding

the image.

10.1 Common operations applied during lossy compression

Some techniques for achieving the losses in lossy compression is examined.
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Some methods of lossy compression in wide spread use include:

HARD THRESHOLDING All coefficients below a certain threshold set to zero [32, 33].

SOFT THRESHOLDING Coefficients below a certain threshold are remapped [32, 33].

PERCENTAGE (QUANTILE) THRESHOLDING A percentage of smallest coefficients are set to

zero [32, 33].

A variant of percentage thresholding is Lorentz wavelet filtering (as proposed by Goel and

Vidakovic) [37]. Generalised, the process ranks the transform coefficients in some order (for

example, increasing magnitude or frequency). The sum of all coefficients less than or equal

to the current coefficient is computed. The percentage of coefficients to remove is computed

by counting the number of coefficients less than or equal to the mean rank used (for example,

magnitude) as a proportion of the total number of coefficients.

QUANTISATION AND INVERSE QUANTISATION The coefficients are quantised by division and

discarding the fractional part. The coefficients are then reconstructed by multiplying. Selecting

the divisors is determined by the compression required and perceptual errors in the reconstruc-

tion allowed. This is used by JPEG and Motion Pictures Expert Group (MPEG), for example

[70, 145].

SPIHT uses a variant of this quantisation de-quantisation process, all coefficients are quantised

and de-quantised with power of two divisors until the error budget is exceeded [121]. The

iterative quantisation process essentially strips off bits from least to most significant until a

target error is reached.

10.2 Denoising via Wavelets

This section addresses the possibilities of wavelet based denoising. An overview chapter on wavelets

may be found in Appendix A.

Wavelet based denoising makes the assumption that noise affects small detail coefficients more

than others [32]. The basic approach is then, transform the image into the wavelet domain using some

wavelet, apply a function to the detail coefficients, finally inverse transform the filtered coefficients to

yield the denoised image.

Table 10.1 shows the energy compaction properties of some wavelets after transforming the stan-

dard test image (see figure 5.4). Energy compaction is a measure of the proportion of coefficients

with significant energy, in contrast to the untransformed image [139][pg. 372–376]. The Haar and

Daubechies maximally flat wavelets are used [139][pg. 260]. The energy in 99% of the wavelet coef-

ficients are shown with a view to discarding these coefficients. The wavelet with the most energy in

the remaining coefficients will have better reconstruction than the others. The coefficients include the

low-pass coefficients (scaling coefficients) at the lowest scale. The larger the number, the more energy
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is contained in that proportion of coefficients, leaving less energy in the high value coefficients. The

energies are scaled to unity by dividing by the total energy (the sum of the energy of all coefficients in

the Multi Resolution Analysis). It should be noted that the balance of the energy lies in the largest (in

magnitude) 1% of the coefficients, and is considerable. The wavelet with the most energy in the upper

1% of the largest magnitude coefficients is the Daubechies N3. All other considerations being equal,

the wavelet with the most energy in the larger coefficients is desirable. For example, image compres-

sion requires only that the coefficients with large magnitudes need to be transmitted with great fidelity,

the others may be more coarsely quantised (if they are transmitted at all). This is a consequence of the

approximation properties of the wavelet under consideration. For example, a piecewise constant sig-

nal in the presence of noise, requires a wavelet with p = 1 regularity (a piece-wise constant wavelet),

higher orders of regularity will not approximate the signal better and run the risk of attempting to fit

the noise as well. This is similar to the argument used to justify selecting as low an order of model

as possible for fitting a polynomial model to data with noise. The Daubechies N3 wavelet is then

selected to test the different wavelet denoising schemes. The higher order wavelets in the Daubechies

family show similar energy compaction, The energy compaction of the Daubechies N3 indicates it a

suitable wavelet for compressing froth images. (A similar argument is used to justify the selection of

a particular transform for transform domain lossy coding [50][pg 375–379].)

TABLE 10.1 Energy compaction of some wavelets.

Wavelet energy compaction (as % of total energy).
% Coefficients Haar Daubechies Maximally Flat

N2 N3 N4 N5 N6

99 0.5164 0.3909 0.3857 0.3917 0.3936 0.3900

There are several possibilities for wavelet based denoising:

(i) One can presuppose that small detail coefficients are likely to be very noisy. This is reasonable if

one presupposes additive noise. One proceeds then by scaling these coefficients down – possibly

to zero. (Hard thresholding.)

(ii) Soft thresholding (Donoho [33]). Soft thresholding involves hard thresholding for small magni-

tude coefficients and a linear remapping for larger coefficients.

(iii) Percentage thresholding. A percentage of the total coefficients is set to zero. The smallest, in

magnitude, coefficients are affected first [51][pg. 216–218].

(iv) Lorentz thresholding. A variant of percentage thresholding. The percentage threshold is selected

automatically using a Lorentz curve [49].

In order to justify the assumption that small detail coefficients are likely to be heavily influenced

by noise, consider figure 10.1. This is an error image formed by subtracting a hard thresholded wavelet
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FIGURE 10.1 An error image justifying wavelet based denoising.

denoised image from the original. The hard threshold used is 5. The threshold is chosen to minimise

over-segmentation while still segmenting the small bubbles correctly. The magnitude of the error is

shown and the image is histogram equalised to make the errors more visible. Note the rough texture

of the image. The image shows little correlation between neighbouring pixels.

10.2.1 Hard thresholding

Each of the coefficients of the multi-resolution analysis less than some threshold (possibly a spatially

dependent threshold) is set to zero or reduced by some scale factor. Historically, the process of zero-

ing a detail coefficient is referred to as hard thresholding [3, 33]. The process has appeared elsewhere

in other transform domains, for example, generalised Fourier, Karhunen-Loéve, Discrete Cosine and

Discrete Sine [145, 111]. For example, in the Karhunen-Loéve transform the basis vectors/functions

to be suppressed would be those with corresponding small eigen-values.

The denoised image is thresholded to ensure that the pixel intensities lies within those of the

original image. This minimises the effect of excessively large or small pixels. For example, eight

bit images cannot represent negative intensities or intensities larger than 255. These pixels would

otherwise show up as artifacts on the denoised image, even though the associated error at the pixel in

question may be no larger than for any other pixel.

Figure 10.2 shows the denoised, error, marker and watershed segmented images. The error image

is the difference between the original and the denoised image. To make the changes more visible,

the error image has been histogram stretched and inverted (see section 11.1 for an introduction to

histogram manipulation for contrast enhancement). The hard threshold selected is 30. The threshold

is selected to provide good denoising without distorting the denoised image significantly. Note that

the markers become blocky. The error image shows that most of the information lost lies in the

textured regions where small bubbles lie between large bubbles. The marker image is generated from
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the denoised image. The watershed segmentation shows over-segmentation of the large bubbles, but

good segmentation of the small bubbles lying between large bubbles. This is likely due to fragmented

markers and small point-like spurious markers visible on the marker image. The denoised image

shows no obvious artifacts.

Table 10.2 shows the decrease in the number of watershed regions as the hard threshold increases.

This decrease may be explained by the removal of small, and noise, maxima. The maxima in the

image form the domes of the image which become the markers. It is clear that hard thresholding is not

sufficient to denoise a froth image sufficiently to allow for a good segmentation. Clearly processing

of the markers and/or watershed segmented image is required.

TABLE 10.2 Decrease in the number of watershed regions as the hard threshold increases.

Hard threshold # Watershed regions

5 2041
10 1827
20 1671
30 1542
40 1448
80 1096

10.2.2 Soft thresholding

This was described by Donoho [33]. The application was to wavelets although there seems no reason

why this cannot be applied to other transform domains.

The process is as follows (generalised from [33]):

(i) Convert the data to some transform domain (wavelet, etc.).

(ii) Modify the coefficients as follows:

ηt(y) = sign(y)(| y | −t)+ (10.1)

Note that ηt(y) represents the new coefficients, y the old, t the threshold, n the number of data

points, and:

(| y | −t)+ =







(| y | −t) , (| y | −t) > 0

0 , (| y | −t) ≤ 0.
(10.2)

The threshold is computed as follows:

tn =
√

2log(n) · γ1 · σ√
n

(10.3)
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(a) Denoised image.

(b) Error image.

(c) Marker image.
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(d) Watershed segmentation.

FIGURE 10.2 Wavelet denoising via hard thresholding.

σ is the noise standard deviation. γ1 is dependent on the wavelet transform used. Donoho does

propose a simplification which sets γ1 to 1. A difficulty seems to be estimation of σ but this can

be done experimentally.

(iii) Invert the transform to convert the modified coefficients back to the spatial or time domain.

As is the case for hard thresholding, the denoised image is thresholded to ensure that the pixel

intensities lie within those of the original image.

Figure 10.3 shows the denoised, error, marker and watershed segmented images. The error image

is the difference between the original and the denoised image. To make the changes more visible, the

error image has been histogram stretched and inverted (see section 11.1 for an introduction to his-

togram manipulation for contrast enhancement). The threshold is selected to provide good denoising

without distorting the denoised image. The sigma value selected is 15. The marker image is generated

from the denoised image. Note that the markers become blocky. The error image shows that most

of the information lost lies in the textured regions where small bubbles lie between large bubbles.

The watershed segmentation shows over-segmentation. This is likely due to fragmented markers and

small point-like spurious markers visible on the marker image. The denoised image shows no obvious

artifacts.

Table 10.3 shows the decrease in the number of watershed regions as the soft threshold sigma

increases. This decrease may be explained by the removal of small and noise maxima. The maxima

in the image form the domes of the image which become the markers. It is clear that soft thresholding

is not sufficient to denoise a froth image sufficiently to allow for a good segmentation.



10.2 Denoising via Wavelets 172

(a) Denoised image.

(b) Error image.

(c) Marker image.
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(d) Watershed segmentation.

FIGURE 10.3 Wavelet denoising via soft thresholding.

TABLE 10.3 Decrease in the number of watershed regions as the soft threshold increases.

Soft threshold Sigma # Watershed regions

1 1980
3 1354
5 1267

10 1197
15 1090
20 1027
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10.2.3 Percentage thresholding

Percentage thresholding is described by Goswami and Chan [51][pg. 216-218], and involves setting to

zero a specified percentage of the multi-resolution analysis coefficients. Typically the small magnitude

coefficients are preferentially set to zero.

Again, the pixel intensities of denoised image are forced to lie within those of the original image.

Figure 10.4 shows the denoised, error, marker and watershed segmented images of the standard

test image after 93% of the wavelet high-pass (or difference) coefficients have been removed. The

threshold selected is chosen to best remove noise, while minimising denoising artifacts, while enabling

good segmentation of small bubbles. Note that the denoised image shows few obvious artifacts. The

marker image is generated from the denoised image. The marker image shows a number of small

point-like markers which do result in over-segmentation. The histogram stretched (see section 11.1 for

an introduction to histogram based contrast enhancement techniques) and inverted error image shows

that most of the discarded information lies in the areas occupied by small bubbles. The error image

is generated by subtracting the denoised image from the original. The segmented image, however,

shows that these small bubbles have been well segmented, although larger bubbles tend to be over-

segmented.

Table 10.4 shows the decrease in the number of watershed regions as the percentage of coefficients

discarded increases. Clearly, as maxima are removed, these maxima no longer appear as domes, and

hence the number of markers and watershed regions decreases. At some point, however, significant

signal energy begins to be discarded. Some small bubbles begin to be merged, and the denoised

image begins to resemble the original less and less. The number of surviving watershed regions

indicates that, on its own, percentage thresholding does not suffice to remove the maxima causing

over-segmentation.

TABLE 10.4 Decrease in the number of watershed regions as the percentage of coefficients discarded
increases.

Percentage threshold # Watershed regions

80% 1940
90% 1752
93% 1640
94% 1567
95% 1519
98% 1169

10.2.4 Lorentz filtering

Lorentz filtering is a variant of percentage thresholding. The percentage of coefficients which are

removed is found automatically. Lorentz filtering for wavelets was proposed by Goel and Vidakovic

[49]. The Lorentz curve for a population is defined as follows,
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(a) Denoised image.

(b) Error image.

(c) Marker image.
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(d) Watershed segmentation.

FIGURE 10.4 Wavelet denoising via percentage thresholding.

S(x) =
∑x

k=1 p(k)
∑N

i=1 p(i)
(10.4)

where, p(k) denotes the members of the population ranked in increasing magnitude. x, k , i

are remapped to lie within 0 and 1 inclusive. Historically, S(x) denoted the wealth of a number of

individuals in a population, if the individuals were ranked in order of increasing wealth [37, 49, 79].

It is clear that the Lorentz curve, for a population with equal ranking, is a line of unit slope. (This is

the case of all members of the populace being equally wealthy, Utopia perhaps.) Figure 10.5 shows

some example Lorentz curves for the test image and multi-resolution analyses for different wavelets.

Note that the Lorentz curves for the wavelet decompositions show most of the image energy is packed

into a few coefficients.

The threshold is selected by setting coefficients whose energy is below the average energy of the

coefficients (and hence image energy, for orthonormal bases [51]), to zero. The coefficients with

energy above, or at, the average energy remain unchanged.

The proportion of wavelet coefficients removed, is the proportion of wavelet coefficients below,

or at, the average energy of all the wavelet coefficients, or:

p0 = 1

N

N
∑

k=1

I (d2
k ≤ d2) (10.5)

where, N is the number of coefficients and I () is an indicator function,
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I (w) =







1, d2
k ≤ d2,

0, otherwise, and,
(10.6)

d2 = 1

N

N
∑

k=1

d2
k (10.7)

The lower p0 × 100% coefficients are removed as in percentage thresholding.

It can be shown that the distance between the Utopian line and the Lorentz curve is maximum at

the segment of the Lorentz curve which has unit slope. Examining figure 10.5, it may be seen that

this occurs at the point where the small magnitude coefficients give way to the high value coefficients.

The x value of this point provides a percentage threshold, below which the wavelet coefficients have

low energy, and above which, it can be argued, the coefficients are significant.

Once again, thresholding forces the denoised image intensities to lie within those of the original

image.

Figure 10.6 shows the denoised, error, marker and watershed segmented images of the standard

test image after Lorentz thresholding. The percentage threshold selected by this technique is 93.61%.

The number of watershed regions is 1 610. Note that the denoised image shows few obvious artifacts.

The marker image is generated from the denoised image. The marker image shows a number of small

point-like markers which do result in over-segmentation. The histogram stretched (see section 11.1

for an introduction to histogram based contrast enhancement techniques) and inverted error image

shows that most of the discarded information lies in the areas occupied by the small bubbles. The

error image is generated by subtracting the denoised image from the original. The segmented image,

however, shows that these small bubbles have been well segmented, although larger bubbles tend to

be over-segmented.

10.3 Denoising using Set Partitioning in Hierarchical Trees (SPIHT)

This is another example of denoising taking into account the different compression characteristics of

signal and noise. Set Partitioning in Hierarchical Trees (SPIHT) is a transform based compression

technique. Essentially SPIHT is a form of scalar quantisation in the multi-resolution Wavelet domain

[121] with progressive transmission of coefficients in order of magnitude. The SPIHT algorithm

requires integer coefficient values.

The SPIHT algorithm proceeds as follows in essence, with more sophisticated coding of the data

in the sorting pass [121] (the coding stage is neglected for purposes of evaluating the noise removal

properties of this lossy compression method):

(i) Transform the input image via a multi-resolution analysis.

(ii) Convert the transform domain coefficients to sign and magnitude representation.
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FIGURE 10.5 Some example Lorentz curves.
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(a) Denoised image.

(b) Error image.

(c) Marker image.
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(d) Watershed segmentation.

FIGURE 10.6 Wavelet denoising via Lorentz thresholding.

(iii) Output the number of bits of the largest coefficient in absolute magnitude (n).

(iv) The sorting pass. Transmit the positions (p) and signs of all coefficients (C p) satisfying,

2n ≤ ‖Cp‖ < 2n+1.

(v) The refinement pass. Transmit the n-th most significant bit of all pixels transmitted in previous

sorting passes in the same order used previously.

(vi) Decrement n by one and loop back to the sorting pass.

To simulate the effect of denoising via SPIHT it is then unnecessary to implement the entire al-

gorithm. One selects a desired maximum distortion or error by choosing a MSE value. The Peak

Signal to Noise Ratio (PSNR) is then inferred. The Algorithm proceeds as described, the MSE error

decreasing with each bit transmitted until the MSE reaches the desired MSE, or until the transmitted

bit reduces the MSE below that desired. The process stops and the resultant image is then recon-

structed from the transmitted wavelet coefficients. It is a fundamental property of orthonormal linear

transforms (of which Orthonormal Wavelet Transforms are examples) that the MSE in the transform

domain between two images is the same as the MSE in the spatial domain. The performance of the

algorithm is very dependent on the decorrelating properties of the Wavelets used. This implies a

matching of the smoothness of the Wavelet (or number of vanishing moments [3]) with the expected

smoothness of the image.

Figure 10.7 shows the effect of applying SPIHT as a means for denoising froth images. The

depth of the multi-resolution was 4 and the desired MSE 25. The MSE selected allows for a tradeoff

between reducing the over-segmentation of large bubbles and inhibiting the merging of small bubbles.
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(a) Denoised image.

(b) Error image.

(c) Marker image.
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(d) Watershed segmentation.

FIGURE 10.7 Wavelet denoising via SPIHT.

The generated PSNR was 31dB. The wavelet used was the Daubechies maximum flat N3 wavelet with

3 orders of regularity [139] (quadratic regions approximated exactly). The denoised region does not

show any noticeable artifacts. The marker image is generated from the denoised image. As before, the

error image is the difference between the original and denoised images. The error image is histogram

stretched and inverted to improve the visibility of the errors (see section 11.1 for an introduction

to simple contrast enhancement). The segmented image shows over-segmentation of large bubbles.

This is likely due to the large number of point-like markers on the marker image. The selected MSE

denoises well without introducing artifacts on the denoised image.

Table 10.5 shows the decrease in the number of watershed regions as the allowed error increases.

Note that even for significant errors the number of watershed regions remains large.

TABLE 10.5 Decrease in the number of watershed regions as the MSE for SPIHT increases.

MSE # Watershed regions

1 2456
4 1883

10 1545
25 1443
50 1341

100 1128
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10.3.1 Discussion

SPIHT essentially ranks all the wavelet coefficients in order of magnitude. The coefficients are then

selectively quantised from smallest to largest until the error introduced by the quantisation reaches a

pre-selected limit. The quantisation is allowed to gradually increase until the desired error is achieved.

The remainder of the SPIHT algorithm lies essentially in coding details and bit-plane manipulation.

The bit-plane manipulation achieves the quantisation effect. The quantisation process used here,

rounds down, rather than to the nearest integer as is usual for quantisation (see section 10.4 for more

details on quantisation).

This process of selective quantisation can be extended to other transforms which are invertible.

This selective quantisation technique is then order N (O(N)), where N is the number of transform

coefficients. One sorts the coefficients according to the number of bits needed to represent the coeffi-

cient, then iterate though the coefficients, quantising on the absolute value.

The number of iterations, at worst, is the number of bits per coefficient. Orthonormal linear

transforms possess a conservation of energy property, the energy of the coefficients in the transform

domain is the same as the energy of the unprocessed signal (this is sometimes referred to as Parce-

val’s equality)[3]. Parceval’s equality allows for the error in the reconstructed image to be directly

computed as the quantisation in the transform domain proceeds.

10.4 Denoising using Joint Photographic Experts Group (JPEG) quan-

tisation matrices

The JPEG compression standard for lossy image compression defines a process of quantisation based

on quantising the Discrete Cosine Transform (DCT) coefficients of 8 × 8 non-overlapping blocks

of an image [145]. This process is similar to that used by the MPEG for intra-frame compression

[70]. The use of the DCT is desirable since the de-correlation properties of the transform is close to

that of the Karhunen-Loéve transform under certain conditions [3, 50]. The process of quantisation

discards some data and is optimised to quantise high frequencies preferentially. Table 10.6 shows

the quantisation coefficients typically used. These quantisation coefficients are scaled up as more

compression is required.

The process of denoising using the DCT quantisation coefficients is similar to the other com-

pression based schemes. The data is quantised to a particular PSNR which is directly related to the

compression, and then inversely quantised. The quantisation process involved scaling the coefficients

down and rounding (usually rounding the magnitude down) [145]. Provided the quantisation process

is not too severe, the resulting data is largely image data and the discarded data largely noise. This

assumption is justified for additive low power Gaussian white noise. The central limit theorem [93] is

used to justify the Gaussian noise distribution. Low power additive noise is justified by examination

of the froth images, the smooth regions do not show significant noise levels or multiplicative noise.
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TABLE 10.6 Table of DCT quantisation coefficients for JPEG. Horizontal spatial frequency runs
from left to right, vertical spatial frequency runs from top to bottom.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Quantisation proceeds as follows [145],

Cquantised = Round

(

Ccoefficient

Qcoefficient ∗ Mmultiplier

)

(10.8)

De-quantisation proceeds as follows,

Cde-quantised = Cquantised ∗ Qcoefficient ∗ Mmultiplier (10.9)

Here,

• C denotes the coefficient to be quantised.

• Cquantised, the quantised coefficient.

• Qcoefficient, the amount to quantise by.

• Mmultiplier, the multiplier for Qcoefficient.

Table 10.7 shows the decrease in the number of watershed regions as the quantisation scale factor

increases. Figures 10.8, 10.9 and 10.10 show the effect on the image, markers and watershed seg-

mentation as the quantisation scale factor increases. The test image used is the standard test image.

Examination of figure 10.9 shows that even for a modest multiplier (3) on the quantisation coefficients,

the denoising is minimal, but the introduced blocking artifacts severe. The artifacts are caused by the

discontinuities between the different blocks. These discontinuities are the result of the quantisation of

the DC coefficient of neighbouring blocks.

This denoising approach has implications for compressing froth image sequences. MPEG2 style

compression uses a form of DCT quantisation similar to that of JPEG [70]. The quantisation process

may introduce artifacts difficult to see on the denoised image, but these artifacts may well be visible

in the marker image. See the denoised and marker image contained in figure 10.8, notice that the

markers have a blocky rather than an irregular shape.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 10.8 Result of DCT JPEG quantisation (multiplier 1) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 10.9 Result of DCT JPEG quantisation (multiplier 3) on image, marker and watershed.
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(a) Denoised image.

(b) Marker image.

(c) Watershed segmented image.

FIGURE 10.10 Result of DCT JPEG quantisation (multiplier 6) on image, marker and watershed.
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TABLE 10.7 Decrease in the number of watershed regions as JPEG quantisation scale factor in-
creases.

Multiplier # Watershed regions

1 2279
2 1981
3 1726
4 1492
5 1414
6 1180
7 1058
8 961
9 859

10 788
11 717
12 674
20 333

10.5 Is there common ground for the various Occam Filters?

Occam filters transform the data into some transform domain and then apply a function to each coef-

ficient, usually a magnitude based function. In a sense the process is as follows,

g(x) = L−1 (S−1(H(S(L( f (x)))))
)

⇒ G(ω) = S−1(H(S(F(ω)))

(i) L(·) the (possibly non-linear) transform applied to the data.

(ii) L−1(·) the inverse of the transform, reconstructing the signal from the transform domain coeffi-

cients.

(iii) S(F(ω)) presents each coefficient in order of size, in effect generating a sorted list of coeffi-

cients.

(iv) S−1(·) inverts the process and reconstructs the signal from the sorted list.

(v) H(·) is the function applied to each coefficient. Note that H does not affect the sorted order of

the coefficients.
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The MSE of the Occam filter can be derived as follows,

F = S−1 · S · F

G = S−1 · H · S · F

F − G = (S−1 · S · F)− (S−1 · H · S · F)

= S−1 · (S · F − H · S · F)

= S−1 · [I − H ] · S · F

trace(‖F − G‖2) = trace((S−1 · [I − H ] · S · F) · (S−1 · [I − H ] · S · F)∗)

= trace(([I − H ] · S · F) · (S−1∗ · [I − H ]∗ · S∗ · F∗))

= trace(ST · [I − H ]T · S · F · S−1 · ST [I − H ]∗T · F∗)

= trace([I − H ]T · S · (S−1 · ST )T · FT · [I − H ]∗T · F∗)

= trace((S · (S−1 · ST )T )T · [I − H ] · [I − H ]∗ · F · F∗)

= trace([I − H ] · [I − H ]∗ · F · F∗)

= trace((I · I ∗ − I · H ∗ − H · I ∗ + H · H ∗) · F · F∗

It should be noted that S, S−1 and their transposes are permutation matrices. It can be shown

that the trace of the matrix product of a permutation matrix and a diagonal matrix, is the trace of

the diagonal matrix. Specification of H then specifies the Occam filter completely. The rest of the

filter is then either coding details which can be neglected, or are subsumed into the sorting step (or

specification of S and S−1). The sorting step can be likened to applying a series of stack filters to the

data, to extract each Order statistic from the first (or maximum) to the last (or minimum).
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Chapter 11

Image enhancement

The goal of image enhancement, in the context of froth imaging, is to improve the segmentation

and accuracy of the motion estimation process. Some simple techniques for image enhancement are

examined, including, edge and contrast enhancement.

The goal of contrast enhancement is to make the image visually more appealing and to attempt

to eliminate lighting variations. The usual histogram stretch and equalisation techniques are exam-

ined. Homomorphic filtering, for example, is well known to compensate for differences in lighting

conditions [50, 73].

Edge enhancement is a used for much the same reasons. Edges are well known to be important in

the Human Visual System [50, 73]. In order to improve the segmentation via the watershed process it

is required to take advantage of the quirks of the watershed algorithm. Watershed lines tend to be on

the ridges of an image (except on flat regions where the flat region is then split). Enhancing the ridges,

making them steeper and higher, can then improve the discrimination properties of the watershed. An

example of this would be the case of a small bubble on top of a larger bubble. Since froth images tend

to be smooth, the ridge between the large and small bubble is low. The flooding of the large bubble

then does not flood around the small bubble, as it should to properly segment the small bubble. If

the transition boundary (ridge) were to be exaggerated, the watershed would have a better chance of

extracting the small bubble correctly.

Several examples of contrast and edge enhancement techniques will be examined. To improve the

noise rejection, the images are first denoised by mean filtering with a Gaussian kernel with σ = 1. To

examine the effects of edge enhancement in isolation, linear filtering is used for denoising. The kernel

is truncated to a 7 × 7 pixel footprint. The window size in both adaptive instances was 7 × 7 pixels.

To show that this denoising stage does not significantly affect the froth structures but serves to remove

noise, consider figure 11.1. The equalised difference image (figure 11.1(b)) shows an image with

most pixels being uncorrelated with their neighbours. Some pixels, especially those on the boundaries

of bubbles, show some correlation. This illustrates not only that edge information is carried by high

frequencies, but also that high frequencies are especially contaminated by noise.

Clearly, a smaller radius Gaussian will not remove as much noise and a larger radius Gaussian

191
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may affect the froth structures too much.

The markers shown in the results are extracted via morphological methods. First the image is

eroded via a rolling ball of radius one. The eroded image is greyscale reconstructed via dilation under

the original image. Domes, regional maxima, are extracted by subtracting the reconstructed image

from the original image. The domes, after optional thresholding, become the markers. The watershed

used for segmentation is a marker based watershed.

11.1 Simple contrast enhancement

The simple contrast enhancement algorithms examined will be histogram stretching and equalisation.

Histogram stretching involves linearly stretching the histogram of the image to use the full range of

grey levels available. The full greyscale variation is thus more visible.

Figures 11.2 and 11.3 and show the effect of simple contrast enhancement on the standard froth

image. Figures 11.4 and 11.5 show the effect of adaptive histogram stretching and equalisation on the

standard froth image. The adaptive algorithm applies the histogram manipulation algorithm to a small

region of the image and remaps the centre pixel of the region accordingly.

To improve the noise rejection, the images are first denoised by mean filtering with a Gaussian

kernel with σ = 1. The kernel is truncated to a 7 × 7 pixel footprint. The window size in both adaptive

instances was 7 × 7 pixels.

As expected, since simple stretching does not change the ordering of pixels, the watershed is

unchanged. The histogram equalisation step does not change the segmentation significantly, although

a few of the larger bubbles are better segmented. Histogram equalisation remaps pixel values non-

linearly, and occasionally remaps pixels with similar intensities to the same intensity. This explains

the improvement in the segmentation, fragmented highlights are merged and form a single marker.

The adaptive stretching and equalisation algorithms (figures 11.4 and 11.5) can be seen to be noise

sensitive. Both methods show regions which have a rough sandpaper like texture on the enhanced

image. These regions show areas which are particularly sensitive to noise. Comparison of the location

of these regions to the corresponding regions on the input image, show that these regions correspond

to areas which have low intensity. Pixels in these low intensity regions, as expected, have lower signal

to noise ratios. Notice that as the radius of the neighbourhood increases, the adaptive results become

closer to the fully stretched or equalised cases.

The adaptive stretch proceeds by finding the maximum and minimum values in a circular neigh-

bourhood of given radius. This is a simple and straightforward consequence of the usual definition

of histogram stretching [73]. The intensity variation within the circular neighbourhood is linearly

remapped to lie within the full variation of intensities allowed. The intensity of the centre pixel of

the neighbourhood is linearly remapped to lie within the allowed range of intensities (0 to 255, for

grey-scale images, for example).

The adaptive equalisation proceeds by counting the number of pixels equal or less than the centre
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(a) The denoised image.

(b) Equalised difference.

(c) Markers of denoised image.
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(d) Watershed segmented denoised image.

FIGURE 11.1 Justifying denoising before image enhancement.

pixel. The centre pixel intensity is remapped in proportion to the range of pixel intensities in the

circular neighbourhood. The proportion is the number of pixels less than or equal to the centre pixel,

to the number of pixels in the neighbourhood. This is again a simple and straightforward consequence

of the usual definition of histogram equalisation (see [73] for a definition of histogram equalisation).

The adaptive stretching and equalisation steps are something of a disappointment, although the

bubble boundaries are more visible, the segmentation is poor because of the noisiness of the enhanced

image. Enhancement processes are noise sensitive because, in low contrast areas, small variations

must be made more visible. The difficulty is that some of these variations are of the same magnitude

as noise, which leads to noise being enhanced. This provides a case for denoising prior to enhance-

ment. Cases for neighbourhoods of radii 5, 10 and 20 are presented (see figures 11.4 and 11.5). As

expected, as the radius increases the adaptively enhanced images more resemble the simple contrast

enhancement cases.

11.2 Edge enhancement

The edge enhancement algorithms used include a form of unsharp masking. The edge image is com-

puted and added in to the original. Edge enhancement is complicated by the need to enhance the

image data without enhancing noise. This requires a denoising step prior to the edge enhancement

process.
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(a) Denoised image.

(b) Enhanced image.

(c) Marker image.
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(d) Watershed segmented image.

FIGURE 11.2 Histogram stretching.

11.2.1 Unsharp masking

Unsharp masking was originally developed for enhancing photographs and was originally a dark-room

process [73]. A high-pass image is generated by subtracting a low-pass copy from the original. This

suppresses constant or slowly varying regions and improves the contrast of rapidly varying regions.

Prior to unsharp masking the images are denoised. A Gaussian kernel of σ = 1 and footprint 7 × 7

is used. This limits the enhancement of noise without blurring structures in the image. Figure 11.6

shows the enhanced image after a low-pass Gaussian with sigma of 1, 2 and 3 is used to generate

the high-pass image as described. Close examination of the enhanced images do not show the bubble

boundaries clearly delineated, or a well defined valley surrounding small bubbles on large bubbles.

Unsharp masking is then not expected to improve the watershed. The fine structure of the image is

visible.

11.2.2 Simple edge enhancement

This is a variant of unsharp masking where some of the low-pass channel information is added to

the high-pass channel to produce the final result. An edge image (formed by subtracting a low-pass

filtered copy of the original from the original) is added to the original.

Output Image = Input Image + (λ− 1)LPF(Input Image)

Since edge information is primarily high-pass information, (see figure 11.1(b) generated by sub-

tracting a low-pass filtered image from the original, then histogram equalising) the edges are enhanced

[18]. Since the human visual system uses edges extensively [73], the visual appearance of the image
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(a) Denoised image.

(b) Enhanced image.

(c) Marker image.
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(d) Watershed segmented image.

FIGURE 11.3 Histogram equalisation.

improves. This is potentially useful for watershed segmentation since any enhancement which en-

hances the ridges, enhances the segmentation. Watershed lines tend to lie on the ridges dividing

watershed regions [141].

To improve the noise rejection, the images are first denoised by mean filtering with a Gaussian

kernel with σ = 1. The kernel is truncated to a 7 × 7 pixel footprint. The window size in both adaptive

instances was 7 × 7 pixels. The edge images are then generated as described, with one exception. In

order to maintain the full greyscale variation after the edge image is added in, the image is histogram

stretched. This results in the average grey-level increasing as the magnitude of the edges increases.

Figures 11.7, 11.8 and 11.9 shows the change in the visual appearance and the watershed segmen-

tation of the enhanced image. The high-pass images are formed by applying a mean filter of sigma 1,

2 and 3 respectively. The enhanced images are formed by adding the high-pass images to the denoised

image.

11.3 Baseline subtraction

It is expected that there will be a brightness gradient, or variation, across the image. It is unlikely

that the illumination across a flotation cell will be uniform. The assumption will be made that this

brightness gradient is smooth and varies slowly. Effectively this requires that the light source does

not cast shadows across the flotation cell. A method for extracting this brightness gradient will be

suggested. After the brightness gradient is extracted, it is subtracted from the image. The result will

ideally be more illumination independent than before.

The method used here involves averaging a sequence of images (here 224, or 9.3 seconds worth).
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(a) Enhanced image (radius 5).

(b) Enhanced image (radius 10).

(c) Enhanced image (radius 20).

FIGURE 11.4 Adaptive histogram stretching for different radii of local window.
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(a) Enhanced image (radius 5).

(b) Enhanced image (radius 10).

(c) Enhanced image (radius 20).

FIGURE 11.5 Adaptive histogram equalisation for different radii of local window.
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(a) Unsharp masking, σ = 1.

(b) Unsharp masking, σ = 2.

(c) Unsharp masking, σ = 3.

FIGURE 11.6 Unsharp masking.
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(a) Enhanced image.

(b) Markers image.

(c) Watershed segmentation.

FIGURE 11.7 The effect of edge enhancement on the appearance and watershed (σ = 1.0).
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(a) Enhanced image.

(b) Markers image.

(c) Watershed segmentation.

FIGURE 11.8 The effect of edge enhancement on the appearance and watershed (σ = 2.0).
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(a) Enhanced image.

(b) Markers image.

(c) Watershed segmentation.

FIGURE 11.9 The effect of edge enhancement on the appearance and watershed (σ = 3.0).
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Since it is expected that the froth will be in motion during this time, each pixel will be exposed to the

full range of intensity variation possible given the illumination at that pixel. Clearly the longer the

averaging period the better the results are expected to be. Conversely, the averaging period should not

be so long that, for example, natural lighting variations affect the results.

Figure 11.10(a) shows the result of the averaging and figure 11.10(b) shows the effect of sub-

tracting the average from the denoised standard test image. The image is denoised by filtering with

a Gaussian kernel of σ = 1 and footprint 7 × 7. This limits the effect of noise on the segmentation

process. The problem of pixels out of the 0 to 255 intensity range is addressed by linearly rescaling the

pixel intensities to lie on and between 0 and 255 (this is identical to the histogram stretching operation

as described in section 11.1). Figure 11.11 shows the markers and associated watershed segmentation

for the baseline corrected image. Neither show a considerable improvement over the segmentations

as seen before.

Close examination of figure 11.10(b) shows while structures which were previously not visible

are now obvious, the regions which were previously in shadow show contouring. This contouring

is an indication that the pixels in the shadowed regions are effectively of lower precision that the

better illuminated pixels. Examination of the illumination gradient (figure 11.10(a)) shows some

fine structure. This conflicts with the assumption that the illumination of the froth surface is slowly

varying. This indicates that the averaging process did not continue for long enough.

On the other hand, baseline correction does improve the visual appearance of the froth images.

Specifically, more detail is visible in the shadowed areas. The watershed and marker images (fig-

ure 11.11) do not show any marked differences from the reference watershed and marker images

(figure 11.1). This is to be expected. The size of the markers is small relative to the structures in the

average image (figure 11.10(a)), this implies that these will survive the baseline subtraction process

(the intensities of these markers may well change).

11.4 Homomorphic filtering

Homomorphic filtering pre-supposes that an image can be described as the product of a reflectance

map and a point by point illumination function [73, 153][74][pg. 219, 315-316]. The usual simplify-

ing assumption is that the illumination is a single point source far from the object(s) illuminated. The

illumination is assumed to be smooth and the reflectance function complicated and busy. The image

is modelled as the product of the illumination and reflectance map.

Image(x, y) = Illumination(x, y)Reflectance(x, y)

Conceptually, illumination invariance is achieved by separating the illumination function from

the reflectance function and then setting the illumination part to a constant, then reconstructing. The

option exists to completely remove the illumination component and only reconstruct the reflectance

component. Traditionally this involves taking the logarithm of image intensities and filtering in the
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(a) The brightness variation.

(b) After baseline subtraction.

FIGURE 11.10 Baseline subtraction.
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(a) Markers.

(b) Watershed segmentation.

FIGURE 11.11 Baseline subtraction.
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logarithmic domain. Reconstruction, naturally, involves taking the exponent of the logarithm domain

values. Zero intensity pixels are handled by adding a small integer constant before taking logarithms

and subtracting the constant after reconstructing.

Figure 11.12 shows the edge image, or reflectance function, after the illumination function has

been removed from the input image. Prior to homomorphic filtering, the test image is denoised by

convolving with a Gaussian kernel of σ = 1, and footprint 7 × 7. The low-pass channel of the ho-

momorphic filter process is generated by convolving with a separate Gaussian kernel. The high-pass

channel is formed by subtracting the low-pass channel from the logarithmic transformed image. The

reflectance images are histogram stretched after reconstruction to improve appearance. Figure 11.13

shows the markers used. Figure 11.14 shows the watershed segmentation, using the given markers,

on the reflectance images. The enhanced images shown represent the extreme case of all the low-pass

information in the logarithmic domain suppressed. The watershed segmentation can then be made to

vary between the reference segmentation (see figure 11.1) and the watersheds shown in figure 11.14

by scaling the low-pass channel down, and scaling the high-pass up [74].

11.5 Ridge enhancement

The process of watershed segmentation involves flooding from the minima of an image. The flooding

process gradually continues until the flood basins for the various minima encounter each other. Where

they do, flooding at that pixel stops. The process continues until each pixel in the image has been

assigned to a minimum, or if a pixel is equidistant from two minima the pixel is labelled as a watershed

pixel. [13, 31, 141]. For the purposes of froth image segmentation, the inverted froth image is flooded.

Given this summary of the watershed segmentation process, it is apparent that the ridge pixels of

an image play an important role. The ridge pixels are local maxima which separate watershed basins.

If one sees a grey scale image as a topographical height map, then a drop of water on one side of the

ridge flows into one watershed basin, and a drop of water on the other side of the ridge flows into a

different watershed basin. The ridge pixels then divide the watershed regions.

A potential enhancement technique then extracts these ridge pixels and then increases the height

of these pixels. Consider a small bubble on a large bubble. If the ridge separating the small from the

interior of the large bubble is high. then most, if not all, of the large bubble will be flooded before

the small bubble hollow overflows. This will allow for the delineation of the small bubble within the

larger, without a portion of the larger bubble being incorrectly assigned to the smaller.

In order to simplify the ridge extraction process the image will be denoised first. Three techniques

for ridge extraction will be considered, opening using a line structuring element, opening using a

rolling ball, and greyscale line reconstruction. The pixels removed by the opening are likely the

regional maxima of the image (see Appendix B for properties of openings). A proportion of these

pixels will be ridge pixels, the remainder will be isolated maxima (peaks). The peaks and isolated

maxima will be extracted by writing to an output image only those pixels which are different when
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(a) Enhanced image, σ = 1.

(b) Enhanced image, σ = 2.

(c) Enhanced image, σ = 3.

FIGURE 11.12 Enhancement via Homomorphic filtering.
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FIGURE 11.13 Markers for segmenting Homomorphic enhanced images.

comparing the opened image and the denoised image.

11.5.1 Line openings

Line openings are openings where the structuring element is a line of pixels, for example, a single

row or column of pixels of a certain length. Line openings in the horizontal, vertical and diagonal

(at 45o and 135o) directions will be considered. Other diagonal directions are possible but difficult to

approximate using small structuring element sizes. Openings are formally defined in Appendix B.

Figure 11.15 shows ridges, enhanced image and watershed segmentation. The markers used are

the markers of the denoised image. The denoised image is generated by convolving with a Gaussian

kernel of σ = 1 and footprint 7 × 7. The ridge image is computed from the inverted denoised image.

The final ridge image is the constructed by combining the line reconstructions in the four direction

specified. Note that the ridges found do not completely enclose the bubbles. The ridge image is

cleaned by removing all ridge objects smaller than 30 pixels. This removes spurious ridge pixels due

to noise and isolated local maxima (peaks). The parameter is found by investigation and provides a

tradeoff between cleaning and retaining valid ridge pixels. The final segmentation is not very different

from the reference segmentation (see figure 11.1). If a ridge does not completely enclose a bubble, the

bubble is unlikely to be properly segmented. For the case where small bubbles occur on large bubbles,

this is especially noticeable. Longer length lines are not considered, since longer line lengths produce

wider ridges which are not desirable. Wider ridges tend to cover and reduce the size and magnitude

of small bubble highlights in the enhanced image, this is undesirable since the highlights of bubbles

are used as markers for the segmentation process.
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(a) Segmented image, σ = 1.

(b) Segmented image, σ = 2.

(c) Segmented image, σ = 3.

FIGURE 11.14 Segmenting Homomorphic filtered images.
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(a) Enhanced image.

(b) Ridges

(c) Markers
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(d) Watershed segmented image.

FIGURE 11.15 Ridges from line opening, line length 3.

11.5.2 Rolling ball openings

A variety of rolling ball diameters will be considered. Openings are formally defined in Appendix B.

Figure 11.16 shows ridges, enhanced image and watershed segmentation. The markers used are the

markers of the denoised image. The denoised image is generated by convolving with a Gaussian

kernel of σ = 1 and footprint 7 × 7. The ridge image is computed from the inverted denoised image.

The final ridge image is the constructed by subtracting the opened image from the denoised. The

opened image is generated by a rolling ball opening of radius 2. Larger radii generate wider ridges

which obscure small bubbles in the enhanced image. This reduces the small bubble highlights which

complicates segmentation of the small bubbles. Note that the ridges found do not completely enclose

the bubbles. The ridge image is cleaned by removing all ridge objects smaller than 30 pixels. This

removes spurious ridge pixels due to noise and local maxima. The parameter is found by investigation

and provides a tradeoff between cleaning and retaining valid ridge pixels. The final segmentation is

not very different from the reference segmentation (see figure 11.1).

11.5.3 Line reconstructions

Greyscale reconstruction by dilation, followed by dome extraction, is favoured for extracting local

minima of images [144]. If the crest of the ridge is everywhere of the same height, then the domes

of the image include the ridge. In the terminology of greyscale reconstruction, a marker image is

everywhere less than or equal to the mask image (see section 4.1). The mask image is is taken to be

the unprocessed original. The dome image is the difference between the mask and the reconstructed

image. For display purposes, pixels on the dome image larger than zero are remapped to the corre-
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(a) Enhanced image.

(b) Ridges

(c) Markers
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(d) Watershed segmented image.

FIGURE 11.16 Ridges from Rolling Ball opening, radius 2.

sponding values on the mask image.

Greyscale reconstruction by dilation is an extension of binary conditional dilation to greyscale

images. The definition used by Vincent [144] is,

I k+1(x, y) = max(I k(x, y)⊕ Sel(x, y), Mask(x .y)) (11.2)

I 0 is initialised to the marker image, ⊕ denotes morphological dilation. Sel is a structuring ele-

ment (usually a 3×3 flat structuring element). Mask denotes an image which constrains the intensities

of the reconstructed image by placing an upper bound on the pixel intensities (see Appendix B) for

an introduction to mathematical morphology). The process repeats until stability. It should be noted

that faster and more sophisticated algorithms for greyscale reconstruction do exist (see [144] for some

examples).

Consider a ridge running from the top to bottom in an otherwise constant intensity image. Let the

ridge slowly decrease in height from the top to the bottom of the image. If one creates a marker image

by shifting the ridge image down in intensity by some small constant, and then greyscale reconstructs

by dilation this mask image under the ridge image, one does not extract the entire ridge.

Consider the crest line of the ridge on the mask and marker images. Flat greyscale dilation of the

line, increases the intensity of the line, but the largest value on the line is as before. If one considers

the crest line as a ramp, the top of the ramp becomes wider and the wedge portion of the ramp is

shifted horizontally. Conceptually, this continues until the marker crest runs into the mask crest, the

greyscale reconstruction by dilation stops. Clearly the subtracting the reconstructed from the mask

image, yields only a fraction of the ridge for small shift values (constant value subtracted).

On the other hand, if one performed a dome extraction on each individual line of the ridge image,
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the local maximum on each line (the portion of the ridge on each line) would be extracted. This

provides some justification for using line reconstructions to extract the ridges of an image. Clearly as

the shift value increases the extent of the domes increases.

Figure 11.17 shows the enhanced, ridge, marker and watershed segmented image. The ridge image

is computed on the inverted denoised image. The combined (point-wise maximum) of the line domes

in the 0o, 45o, 90o and 135o directions form the ridges. The enhanced image is created by adding the

ridge image to the inverted denoised image and then histogram stretching to ensure that the observed

intensities lie between 0 and 255. The input image is denoised prior to ridge extraction by convolving

with a Gaussian kernel of σ = 1 and footprint 7 × 7. The ridge image is cleaned by removing all

binary connected components less than, or equal to, 30 pixels in extent. This reduces the effect of

noise on the ridge image, and removes isolated regional maxima. The parameter chosen to provide a

tradeoff between the reproducing the ridges and minimising isolated maxima and noise.

Note that the watershed is little different from before (see figure 11.1). Larger shift values will not

be used as this enlarges the ridges unnecessarily.

11.6 Discussion

It is possible to find an image enhancement algorithm to reduce the effect of lighting variations across

the image. A simple example of this is the use of histogram equalisation to provide an image with

uniform illumination. Histogram equalisation has the, desirable, side-effect of eliminating some noise

maxima, especially on bubble highlights. This is possible since histogram equalisation changes the

relative ordering of some pixels. This provides for a better segmentation.

Histogram stretching, although, improving the visual appearance of the froth image, does not

improve the segmentation, or improve contrast in the image. Since histogram stretching does not

change the relative ordering of pixels at all, the watershed remains the same as that of the original

image.

The adaptive enhancement algorithms change the relative ordering of pixels, in other words, the

intensities of the pixels are different. This implies that the watershed segmentation may well be

different. Adaptive enhancement has the side effect of enhancing noise maxima, this leads to the

creation of spurious markers during the segmentation process.

Homomorphic filtering removes low frequency information and attempts to improve the weighting

given to edge information. The edge image generated does not suffice to adequately segment the

image.

The ridge enhancement algorithms rely on a good estimate of the ridges of the inverted image

(the valleys of the original image). Examining the ridge images as generated by the ridge extraction

algorithms used, indicate that the ridges do not enclose small bubbles on large bubbles. The difficulty

with the segmentation is not the ridges, which can be easily extracted, but generating closed ridges

around small bubbles on large bubbles. Ridge enhancement then does not provide a solution for
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(a) Enhanced image.

(b) Ridges

(c) Markers
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(d) Watershed segmented image.

FIGURE 11.17 Ridges from line domes, shift value 1.

assisting in the segmentation of the small bubbles on large bubbles.

In short, it is possible to compensate for variations in lighting across a froth image at the possible

expense of enhancing noise artifacts. This indicates a need for denoising froth images before, and

possibly after, contrast enhancement. The sensitivity of the enhancement process to noise suggests

the use of simple contrast enhancement techniques (baseline subtraction, histogram equalisation or

histogram stretching, for example). The other techniques may provide an investigative tool for human

inspection of froth images, but the side effect of noise enhancement leads to spurious markers and

hence over-segmentation. This is unfortunate, since edge enhancement can be seen to improve the

quality of the watershed segmentation for some bubbles. The difficulty is enhancement of slight

edges and valleys around small bubbles on large bubbles.
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Comparison of techniques

An investigation into denoising techniques does raise the question of comparison of denoising algo-

rithms. Comparing algorithms qualitatively (i.e. by eye) becomes tedious if many algorithms are

compared. A further difficulty lies in that different people may well rank the algorithms differently.

A quantitative means for comparing the algorithms is required. The algorithms will be compared

by adding noise to some artificial froth images, denoising, and then comparing the error between the

original and denoised images. It should be remembered that denoising is is usually a means to an end.

The only real comparison can be made when examining the effect of various denoising algorithms on

the ultimate use of the denoised images. For example, comparing the relative effects of the denoising

algorithms on segmenting froth images. This however may not be possible, for example, how does

one compare segmentations? By eye? An automatic quantitative method of comparison requires

a baseline segmentation algorithm, which means there is no reason to segment again using another

segmentation algorithm (the information required has already been extracted). This justifies the use

of artificial data, since the data may be constructed to have a known segmentation.

The cases of no noise added, and additive Gaussian noise will be examined. Gaussian noise is the

usual additive noise assumption made (noise added is usually from many sources, these noise sources

add, and via the Central Limit Theorem [93] the total noise input has a Gaussian distribution). The

noise is assumed to be zero mean.

Gaussian noise has the following distribution [93],

Gaussian(x) = 1√
2πσ

e− x2

2σ2 (12.1)

12.1 The test set used

Quantitative results are generated on artificial froth images. Artificial froth images have the advantage

of being noise free and the extent of each bubble in the froth is pre-determined. This in turn, allows

for the effect of noise, and hence the denoising process, on the froth images to be determined.

A single bubble, in the absence of any other forces acting on the bubble, is assumed to be spherical.

219
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This seems intuitively reasonable (since the elastic membrane making up the surface of the bubble will

tend to minimise the surface area enclosing a volume), and no further apology for this assumption will

be made. The bubbles making up the surface of the froth can then be assumed to be piecewise spherical

or elliptical.

This is somewhat over-simplified, there are an number of forces acting on a froth surface which

would distort the bubbles. These include, the froth mass flowing over the weir (gravity) to the motion

of the pulp beneath the froth surface, to bubbles bursting and merging (see chapter 2 for an introduction

to froth flotation).

The artificial images are generated as follows:

(i) Randomly place a number of points equal to the desired number of bubbles on an image of the

desired proportions.

(ii) Tessellate the image into Voronoi regions [38] (via a watershed, for example, using the points as

markers). Note that using a watershed, while fast, does not replicate a Voronoi tessellation. This

is because the distance propagation of a watershed is different to that of a Voronoi tessellation

(compare [38] and [141]). It should be noted that fast algorithms for Voronoi tessellation of the

plane do exist (see [131], for example).

(iii) Find the centroids of the tessellated regions.

(iv) Place a half hemisphere, centred on the region centroid, on each Voronoi region to produce a

height image. Select the radius as the largest distance from the centroid to the boundary of the

Voronoi region. Simultaneously, generate the x and y derivatives of the half-hemisphere. This

is needed during the shading stage to follow, and ensures that the bubble boundaries do not form

highlights on the shaded image.

(v) Shade the height image. Simple Lambertian shading is used for the bubbles. Phong shading (see

Foley and Van Dam [43][pg. 721-813] for an introduction to shading and shading models) is

used for highlight formation.

The artificial image generating technique has the advantage of imposing the initial Voronoi tessel-

lation as the watershed regions of the artificial image. This is because each Voronoi region becomes

a shaded half-hemisphere which can be seen to have a single maximum only. Since shading using a

single light source will not introduce extra maxima on a concave surface [43], each region has a single

maxima. On the inverted image, each Voronoi region has a single minimum and the bubble boundaries

become the ridges or regional maxima. Clearly, the ridges divide the watershed of the image, which

implies the watershed segmentation of the artificial image is the Voronoi tessellation used to generate

the image.

The artificial image does not share certain features of real froth images, for example, small bubbles

on large bubbles. The shape of certain bubbles is distorted, especially for elongated bubbles.
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(a) Image 1.

(b) Image 2.

(c) Image 3.

FIGURE 12.1 Some artificial froth images.
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A test set of 100 640 × 240 artificial images is generated. To justify the model used, consider

figure 12.1 which shows 3 artificial froth images. Note that the boundaries between the bubbles are

not always linear, as would be expected for a Voronoi tessellation, this is a result of using a watershed

algorithm to tessellate the plane instead.

12.1.1 Shading a height image

If an image representing a height map of a surface is generated, for example as described above,

the issue of describing the interaction of the surface and a light source illuminating the surface is

of interest. Only a very simple interaction will be described here, Foley, Van Dam et al [43][pg.

721–813] provide a good overview of shading from the computer graphics perspective.

The shape from shading problem details the inverse process; given a shaded image, a shading

model, and modest assumptions about the illumination, reconstruct the surface [82, 160]. The shape

form shading problem provides some insights into the shading models at work in real image formation.

Lambertian and Phong shading will be described. These shading techniques were chosen to pro-

vide realistic looking shading of a bubble height map (see figure 12.1, for shaded examples).

Lambertian shading

A surface with a Lambertian shading model scatters light in all directions. The model used is [43]:

IL = IS KL cos θ (12.2)

where, IS is the intensity of the light source, K L is a constant unique to the material of the surface.

θ is the angle between the surface normal, at a point, and the direction from the point to the light

source. cos θ is then the dot product between the surface normal ( EN ) and the direction from the point

to the light source ( EL).

For practical purposes K L may be set to unity, effectively subsumed into IS , the final arbiter of

shaded images is how realistic they appear to the eye. It is possible that cos θ may be negative,

this situation is handled by using max(0, cos θ) rather than cos θ alone. A negative cos θ indicates a

surface normal larger than π
2 radians (90o), from the direction to the incident light from the point on

the surface. Effectively, the light rays are either parallel to the surface, and hence no interaction with

the surface, at this point; or one has self-occlusion of the surface. Self-occlusion is the situation where

the path to the light source, for a point on a surface, must pass through the surface, the point must then

be in shadow, and the illumination zero.

Phong shading

Lambertian shading does not allow for highlight formation, incident light being scattered in all direc-

tions possible. Phong shading is an attempt to model a situation where the surface mirrors the incident

light. Phong shading is used to account for specular reflection or highlights [43][pg 728-731].
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The Phong model is:

IP = IS K P cosn α (12.3)

where, K P is a material specific constant, n is a user selected positive constant (the specular-

reflection exponent) which selects the extent of the highlight, increasing n leads to a smaller highlight.

α is the angle between the viewing direction and the reflected light direction ( ER). To allow for proper

formation of the specular highlight, α is not allowed to exceed 90o, IP for this condition is set to 0.

Composite model

For the artificial froth images generated, a composite Lambertian and Phong shading model is used.

The shading parameters are:

(i) The initial viewing and illumination directions are chosen, for simplicity, to be (0, 0, 1).

(ii) n is chosen to be 12.

(iii) Ambient light is chosen to be 10.

(iv) Diffuse light (K L IS) is chosen to be 256.

(v) K P IS is chosen to be 128.

The final model used sums the contribution of the ambient, Lambertian and Phong shading models.

After shading, the artificial image is histogram stretched to lie in the range of pixel intensities

allowed (0 to 255). This reduces the dependency on the initial parameters selected somewhat.

12.2 The algorithm parameters

The algorithm parameters, where necessary, were selected by hand. This combined performance

improvements made possible by domain specific knowledge, while minimising the computational

time.

Anisotropic Diffusion Both Perona and Malik’s algorithm and Catte el al’s share the following pa-

rameters. γ = 0.2. Three g(·) functions are explored, the GaussianG, QuadG and TukeyBi-

Weight functions (see sections 7.1 and 7.6 for definitions). For the first two, K is automatically

selected using Canny’s noise estimator. The Tukey BiWeight function selects its scale parameter

using a robust Median of Absolute Differences as specified in section 7.6.

Morphology based denoising,

• Rolling ball dilations, erosion, openings and closings, use a rolling ball structuring ele-

ment of the radii specified. The filter is not iterated.
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• Flat dilations, erosions, openings and closings, use a disc of the radius specified as the

structuring element. The filter is not iterated.

• Posterisation does not require any parameters.

Mean filtering, a Gaussian kernel of specified sigma is used. The neighbourhood of pixels examined

is 4σ × 4σ , rounded up.

Median filtering, the median filters specified use the masks as specified in chapter 8.

JPEG based denoising, uses the scale factors specified and the quantisation matrix specified in sec-

tion 10.4.

SPIHT uses the Daubechies N3 wavelet. The MSE allowed is as specified.

Wavelet based denoising uses the Daubechies N3 wavelet. The thresholds are otherwise as spec-

ified. Lorentz wavelet thresholding does not require any parameters except specifying the

wavelet.

12.3 Comparing the algorithms

The algorithms are compared by adding noise to artificial froth images. Artificial froth images have

the advantage of being noise free. This allows for a base-line to be established for each denoising al-

gorithm. The base-line provides information on the image energy discarded by a denoising operation.

Table 12.1 shows the results of comparing the algorithms for the no added noise and Gaussian

noise added cases. Results for MAD and MSE are shown. The additive Gaussian noise sigma is

five, and the noise added image is thresholded to lie between 0 and 255, the full greyscale variation

allowed. The MAD and MSE measured, are measured by comparing the denoised image to the noise

added image.

Table 12.2 shows the associated running times for the algorithms. Running times are used as an

indicator of the relative complexity of the algorithms. The running times are not exact, exact running

times are difficult to measure on a pre-emptive multi-tasking system, due to varying load conditions.

The running times given should then be used as a relative ranking of algorithms.

TABLE 12.1 Comparing denoising algorithms

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

Mean Filter Sigma 1 1.926 7.058 3.767 23.35

2 2.905 19.29 4.902 41.39

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

3 4.122 41.93 5.928 65.35

4 5.468 75.09 7.062 99.0

5 6.867 116.5 8.261 140.5

6 8.255 163.3 9.473 187.3

Median Corner Filter Iteration 1 0.08188 0.4110 3.001 19.96

2 0.1116 0.6077 3.104 20.58

3 0.1116 0.6077 3.124 20.74

4 0.1116 0.6077 3.125 20.75

5 0.1116 0.6077 3.126 20.76

6 0.1116 0.6077 3.126 20.77

Median Filter Iteration 1 0.7048 3.746 3.747 27.27

2 0.6366 3.542 3.595 25.35

3 0.7333 4.373 3.717 26.68

4 0.7656 4.728 3.756 27.19

5 0.7988 5.119 3.783 27.61

6 0.8195 5.367 3.800 27.88

Median Line Corner Filter Iteration 1 0.05589 0.2670 2.090 12.91

2 0.08061 0.4128 2.374 14.92

3 0.08683 0.4523 2.445 15.45

4 0.09189 0.4829 2.466 15.63

5 0.09356 0.4940 2.475 15.70

6 0.09505 0.5034 2.479 15.75

Median Line Diagonal Filter Iteration 1 0.04216 0.2097 1.172 6.564

2 0.05535 0.2586 1.332 7.585

3 0.06346 0.3077 1.368 7.834

4 0.06629 0.3206 1.377 7.898

5 0.06869 0.3356 1.380 7.923

6 0.06967 0.3404 1.381 7.923

Median Line Filter Iteration 1 0.05590 0.2671 2.826 18.67

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

2 0.08781 0.4495 3.031 19.99

3 0.09402 0.4890 3.074 20.32

4 0.09974 0.5256 3.080 20.38

5 0.1014 0.5367 3.082 20.40

6 0.1031 0.5475 3.083 20.41

Flat Close-Opening Radius 1 0.4263 3.109 4.145 35.73

2 1.324 14.09 5.750 63.14

3 2.574 36.49 7.183 97.08

4 4.164 74.58 8.747 144.2

5 5.892 127.0 10.40 203.8

6 7.726 191.1 12.11 273.1

Flat Closing Radius 1 0.3624 2.918 3.889 35.42

2 1.003 11.62 5.541 62.38

3 1.738 24.76 6.730 89.77

4 2.603 42.51 7.839 121.1

5 3.489 63.36 8.931 156.3

6 4.521 90.03 10.08 197.5

Flat Dilation Radius 1 4.953 51.61 9.515 141.6

2 9.649 148.3 14.92 298.8

3 14.21 305.0 19.72 503.8

4 18.72 504.7 24.29 751.4

5 23.18 759.9 28.75 1047.0

6 27.63 1052.0 33.12 1378.0

Flat Erosion Radius 1 4.902 52.59 9.547 143.4

2 9.533 151.9 14.95 304.3

3 13.85 298.7 19.55 501.2

4 17.86 468.4 23.69 720.8

5 21.58 661.5 27.48 957.6

6 25.05 862.5 30.97 1202.0

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

Flat Open-Closing Radius 1 0.4249 3.081 4.072 33.77

2 1.309 13.70 5.429 53.92

3 2.538 35.37 6.554 78.55

4 4.110 72.94 7.801 117.3

5 5.837 126.8 9.224 174.3

6 7.685 195.4 10.79 248.9

Flat Opening Radius 1 0.0722 0.2664 3.751 32.00

2 0.3665 2.929 5.154 50.58

3 0.9786 13.54 6.220 72.12

4 1.916 38.01 7.376 106.9

5 3.133 79.43 8.727 160.2

6 4.540 136.0 10.24 231.7

JPEG denoising Scale factor 1 1.850 7.347 4.208 28.65

2 2.423 11.52 4.604 34.38

3 3.027 16.78 4.963 40.03

4 3.659 23.34 5.364 46.70

5 4.246 30.51 5.779 54.06

6 4.869 39.15 6.247 62.84

7 5.459 48.46 6.714 72.26

8 6.042 58.62 7.190 82.43

9 6.561 68.44 7.627 92.37

10 7.064 79.12 8.066 103.1

Posterisation 16.81 501.4 6.218 75.53

Perona Malik Diffusion Gaussian G Iteration 1 1.603 137.1 3.317 144.6

2 1.807 137.8 4.139 151.9

3 1.921 138.3 4.521 156.2

4 1.999 138.8 4.710 158.5

5 2.071 139.3 4.836 160.1

6 2.140 139.8 4.924 161.3

7 2.210 140.3 4.997 162.4

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

8 2.279 140.9 5.059 163.2

Perona Malik Diffusion Quad G Iteration 1 1.644 137.2 3.537 146.2

2 1.867 138.1 4.276 153.5

3 1.997 138.7 4.633 157.6

4 2.095 139.5 4.809 159.9

5 2.184 140.3 4.935 161.6

6 2.268 141.0 5.028 162.9

7 2.351 141.7 5.108 164.1

8 2.433 142.5 5.177 165.2

Perona Malik Diffusion Tukey BiWeight G Iteration 1 1.484 136.8 2.563 140.5

2 1.631 137.2 3.437 145.9

3 1.747 137.6 3.945 150.3

4 1.844 138.0 4.263 153.5

5 1.918 138.4 4.475 155.9

6 1.982 138.8 4.625 157.7

7 2.037 139.2 4.736 159.1

8 2.086 139.5 4.824 160.2

Catte et al Gaussian G Iteration 1 1.539 136.9 2.588 140.5

2 1.722 137.5 3.545 146.8

3 1.884 138.1 4.117 152.1

4 2.014 138.8 4.466 155.8

5 2.124 139.5 4.692 158.5

6 2.223 140.2 4.851 160.5

7 2.315 141.0 4.972 162.1

8 2.403 141.7 5.067 163.4

Catte et al Quad G Iteration 1 1.556 137.0 2.647 140.9

2 1.757 137.6 3.619 147.5

3 1.932 138.4 4.193 152.9

4 2.076 139.3 4.544 156.8

5 2.198 140.1 4.774 159.5

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

6 2.309 141.0 4.935 161.6

7 2.412 141.9 5.059 163.4

8 2.511 142.8 5.161 164.9

Catte et al Tukey BiWeight G Iteration 1 1.492 136.8 1.969 138.2

2 1.576 137.0 2.662 141.1

3 1.683 137.4 3.205 144.5

4 1.790 137.8 3.627 147.7

5 1.889 138.3 3.957 150.6

6 1.978 138.8 4.215 153.3

7 2.060 139.3 4.422 155.5

8 2.136 139.9 4.588 157.4

Rolling Ball Close-Opening Radius 1 0.5831 3.413 3.174 24.62

2 1.065 8.641 4.616 43.31

3 1.673 18.33 5.993 66.77

4 2.432 36.36 7.130 93.76

5 3.574 63.89 8.546 132.3

6 4.684 97.98 9.816 173.9

Rolling Ball Closing Radius 1 0.4950 3.037 2.669 22.23

2 0.9159 7.697 4.318 42.82

3 1.332 14.08 5.683 65.18

4 1.768 23.28 6.625 85.84

5 2.429 34.82 7.785 113.2

6 2.962 46.83 8.673 138.1

Rolling Ball Dilation Radius 1 4.042 35.60 7.388 95.11

2 7.979 103.3 12.53 216.2

3 12.19 217.2 17.55 390.1

4 16.25 369.0 21.79 586.8

5 20.32 566.6 26.18 837.2

6 24.30 796.7 30.17 1105.0

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

Rolling Ball Dilation Shift Radius 1 3.044 28.52 6.394 81.31

2 5.985 75.38 10.55 170.1

3 9.198 153.1 14.58 293.9

4 12.27 255.0 17.83 428.4

5 15.36 388.4 21.23 600.4

6 18.35 541.0 24.24 778.7

Rolling Ball Erosion Radius 1 4.022 35.95 7.415 95.92

2 7.936 107.0 12.64 222.0

3 12.01 220.1 17.69 400.6

4 15.86 361.7 21.87 595.2

5 19.57 532.3 26.05 829.5

6 23.07 717.0 29.75 1069.0

Rolling Ball Erosion Shift Radius 1 3.022 28.90 6.414 82.07

2 5.936 79.27 10.65 175.4

3 9.015 157.0 14.69 303.5

4 11.86 250.8 17.87 436.3

5 14.57 361.6 21.05 594.1

6 17.05 475.5 23.74 747.3

Rolling Ball Open Closing Radius 1 0.6129 3.350 3.146 23.81

2 1.038 7.853 4.489 39.48

3 1.595 16.84 5.587 55.85

4 2.389 34.33 6.454 74.97

5 3.438 61.18 7.592 105.7

6 4.602 98.38 8.640 144.4

Rolling Ball Opening Radius 1 0.4041 1.785 2.589 20.44

2 0.5713 2.934 4.100 36.97

3 0.7542 6.040 5.262 52.61

4 1.147 16.82 6.119 70.21

5 1.893 36.98 7.335 100.8

6 2.629 65.77 8.425 138.7

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

Wavelet Hard Thresholding Threshold 1 0.5031 0.5058 0.5003 0.5007

2 0.6012 0.7041 0.6076 0.7216

3 0.7395 1.022 0.9191 1.516

4 0.8649 1.379 1.318 2.934

5 0.9739 1.757 1.742 4.955

6 1.065 2.130 2.159 7.474

7 1.144 2.492 2.549 10.32

8 1.215 2.852 2.900 13.28

9 1.283 3.217 3.204 16.16

10 1.349 3.592 3.459 18.81

Wavelet Soft Thresholding Threshold 1 0.7838 1.108 1.142 2.150

2 1.127 2.244 2.020 6.387

3 1.387 3.463 2.743 11.68

4 1.607 4.716 3.310 17.02

5 1.806 6.002 3.741 21.81

6 1.992 7.326 4.061 25.83

7 2.170 8.688 4.300 29.10

8 2.340 10.08 4.478 31.73

9 2.502 11.50 4.620 33.94

10 2.659 12.94 4.739 35.87

Wavelet Percentage Thresholding Threshold 89% 0.8214 1.276 3.329 17.43

90% 0.8674 1.421 3.418 18.38

91% 0.9195 1.598 3.509 19.37

92% 0.9788 1.819 3.606 20.46

93% 1.048 2.105 3.709 21.65

94% 1.132 2.492 3.821 23.00

95% 1.241 3.056 3.943 24.52

96% 1.393 3.947 4.081 26.33

97% 1.623 5.484 4.248 28.67

98% 2.011 8.548 4.485 32.34

99% 2.846 16.80 4.990 41.11

Table continued on next page
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Table 12.1 continued from previous page

Algorithm No Noise Gaussian Noise

MAD MSE MAD MSE

Wavelet Lorentz Thresholding 1.538 4.885 4.007 25.48

SPIHT MSE 1 0.8734 1.395 0.8724 1.333

5 1.666 5.602 1.844 5.458

10 2.303 10.84 2.580 10.46

15 2.872 16.09 3.151 15.58

20 3.332 21.35 3.605 20.58

25 3.762 26.57 4.016 25.58

30 4.201 31.89 4.395 30.76

35 4.578 37.22 4.692 35.87

40 4.908 42.45 5.014 41.17

45 5.216 47.66 5.288 46.37

50 5.534 52.96 5.572 51.61

12.4 Discussion

The ideal smoothing filter should preserve sharp bubble boundaries but remove noise and as far as

possible remove the small bubbles which are sometimes found on large bubbles. On the other hand

small bubbles which lie between the large bubbles should be, as far as possible, preserved. Preserving

boundaries (edges) while denoising is shown to be feasible using non-linear filters.

12.4.1 Anisotropic diffusion

It is clear that Tukey’s bi-weight function removes less energy from an image than the other functions

for g(·). This is a result of its edge preservation properties, especially for strong edges.

The Catte et al. reformulation of diffusion blurs the edges and reduces the diffusion process. The

error is then smaller than for the Perona and Malik algorithm. The Catte et al algorithm thus preserves

detail better.

12.4.2 Mean filters

The detail preserving properties of mean filters are poor if compared to some of the non-linear filters,

such as, median filters.
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12.4.3 Median filters

Examining the no noise added case allows median filters to be ranked in order of detail preserva-

tion, or, Line Diagonal preserving, Line Corner preserving, Line preserving, Corner preserving, and,

finally, the simple Median filter. The detail preserving properties of the median filters have the un-

desirable side-effect of preserving noise. This is visible when comparing the no added noise to the

Gaussian added noise cases. Note that the error for two iterations of the simple Median filter is lower

that one.

12.4.4 Morphology

The morphology based algorithms examined are slow for large structuring element sizes and do not

denoise enough for small structuring element sizes. Large structuring element also remove significant

image energy as well as noise. This suggests that the morphological type algorithms examined are

unsuitable for denoising and, hence, froth imaging.

Flat operators

The detail preserving properties of flat morphological operators may be used to generate the following

ranking: Opening, Closing, Open-Closing, Close-Opening, Erosion, and, finally, Dilation.

Posterisation

Posterisation shows a better error measure for additive noise than for the no noise case. This illustrates

the primary deficiency of the Posterisation algorithm, namely, an image is represented in terms of flat

regions. The more flat regions, or watershed regions, the better the image is reproduced.

Rolling ball operators

The detail preserving properties of rolling ball morphological operators may be used to generate

the following ranking: Opening, Closing, Open-Closing, Close-Opening, Erosion-Shift, Erosion,

Dilation-Shift and, finally, Dilation.

If one uses a rolling ball to extract the regional maxima of the froth image, then smaller rolling

balls must be used to denoise. Recall that rolling balls will remove maxima (or minima depending

on the operator used) narrower than the ball radius. This implies only extrema of larger scale remain

after the denoising.

12.4.5 Occam filters

The Occam filters are fast compared to the other algorithms. This makes them attractive for real-time

applications. The removal of noise energy is explicit. The disadvantage is that undesirable image

artifacts may not be removed. This implies that the markers of the froth image need to be processed
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prior to segmentation. Archiving images generated by a real-time application requires some degree

of compression. Occam filters allow for denoising and a compressed representation of an image to be

generated simultaneously.

Lorentz thresholding generates a percentage threshold from an image. Percentage thresholding

uses the given percentage to find a hard threshold. The hard threshold sets the lowest magnitude

of wavelet coefficients maintained. This implies that the hard threshold actually selected by both

Lorentz and Percentage thresholding is likely to be different for the no noise and noise added cases.

This makes direct comparison between the two cases difficult.

JPEG based denoising discards a great deal of signal energy, this implies that it is unsuitable for

denoising images. JPEG denoising uses non-overlapping blocks which implies potential discontinu-

ities, and hence artifacts, on the borders of neighbouring blocks.

SPIHT is difficult to rank since the denoising is set by explicitly selecting a MSE. It is then difficult

to estimate the image energy which is removed by this denoising technique. The MSE is lower for

the Gaussian noise added case. The MAD is larger than for the no noise added case (except at MSE

1). This implies noise removal. The only disadvantage of SPIHT is that the denoising time increases

(nearly) linearly as one requires more denoising.

12.4.6 Summary

The utility of the algorithms examined for denoising may be expressed as follows:

(i) Anisotropic diffusion performs well, but may require a number of iterations for good perfor-

mance. The Tukey BiWeight G is slower, but preserves detail well. The Quad G and Gaussian

G perform similarly although the Quad G is faster.

(ii) Mean filters, while fast for small footprints, do not preserve edges well. They are unsuitable.

(iii) The simple median filter, alone of the family of median filters examined, performs acceptably,

although it may require a number of iterations.

(iv) The morphological type algorithms examined are unsuitable for froth imaging in terms of speed

and performance.

(v) Of the Occam filters examined, wavelet based denoising performs well. The wavelet based de-

noising algorithms have the advantage of being fast and denoising well. They will not, however,

perform well if one seeks to remove features on froth images, such as small bubbles on large

bubbles, which are not noise-like. If combined with marker processing this disadvantage may

be overcome for very small bubbles.

The requirements for a real time system demand fast algorithms, even though this may be at

the expense of some noise induced over-segmentation. The algorithms with acceptable denoising

performance may be ranked as follows in terms of speed:
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(i) Median filtering, provided the number of iterations does not exceed four.

(ii) Wavelet based denoising.

(iii) Anisotropic diffusion. The g() functions may be ranked as Quad G, Gaussian G and

Tukey’s BiWeight G.

The denoising performance of the algorithms listed above, is in the reverse order of the list. It is

likely that some degree of marker post processing prior to segmentation will be employed. This would

reduce the dependency on the denoising stage of a froth imaging system somewhat.
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Part III

Motion Analysis of Froth Image

Sequences
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Chapter 13

Motion Analysis: An Introduction

Motion is a useful measurement for froth sequence analysis (see Chapter 2). The faster the froth over

the weir of a flotation cell, the more material is collected (for a given pulp height).

Motion estimation in froth image sequences is complicated by the inherent smoothness of the

froth images. Previous work by Horn and Schunk [68] has shown that corners are the only points at

which motion can be unambiguously determined (the so called aperture problem).

Several techniques for estimation motion of froth images were examined. All, with one excep-

tion, are dense optical flow estimation algorithms. The dense optical flow estimation algorithms cover

gradient-based algorithms (a typical example here is Horn and Schunk’s algorithm [68]) and correla-

tion based techniques (examples here include block motion estimation and segmentation based motion

estimation).

An exception to dense optical flow methods is the Pixel Tracing algorithm [107]. The pixel tracing

algorithm is examined simply for completeness, it was one of the first algorithms used for motion

estimation of froth image sequences. It should be noted that other techniques for estimating motion of

froth have been proposed. These techniques include texture based methods which attempted to model

velocity using texture methods (see [29, 96, 97, 98] for some examples of this).

Subsequently, the layout of the motion estimation part, and the pre-processing stage prior to mo-

tion estimation, is described.

13.1 Road map

Subsequent chapters will examine the problem of estimating a dense motion field, given a pair of

successive images. Chapter 14 examines correlation based algorithms (including Pixel Tracing), seg-

mentation and clustering based algorithms. This include block matching algorithms (Li and Salari’s

SEA [87], for example) and segmentation based algorithms (for example, Kottke and Sun’s motion

from cluster matching [84]).

Chapter 15 examines gradient based optical flow algorithms. This includes Horn and Schunk’s

algorithm [67] and some extensions, for example Div-Curl optical flow [54].

241
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Chapter 16 examines hierarchical motion estimation algorithms. Frameworks for embedding mo-

tion estimation algorithms and extending the results across varying spatial scales are examined.

As a whole, the froth mass has an average motion (even this average motion has to be qualified,

froth moves rapidly once it overflows the cell into the launder, and in the centre region of the cell

the froth is more stagnant and prone to bubble bursts and merges). The effect of bubble bursts and

merges on the motion estimation will be examined. It is likely that a bubble burst or merge event will

correspond to a gross discontinuity in the motion vector field. This suggests an avenue for identifying

bubble bursts or merges, and is explored in chapter 17.

The writeup on each algorithm is as follows: a general explanation of the algorithm, followed by a

an experiment on some data. A difficulty with quantitatively evaluating motion estimation algorithms

is the lack of any base-line motion data. Chapter 18 will propose a quantitative measure of comparison,

and quantitatively compare the algorithms described. One method of comparison generates a reference

data set by warping an image and measuring the difference between the generated motion field and

the field used to warp the image.

Once a motion field between two images (A and B) is generated, B can be inverse warped using

this motion field. A second method of comparison compares the warped image image A using some

Mean Square Error (MSE) for example [137] (this is related to existing methods for evaluating tem-

poral compression in image sequence compression (see [139][pg. 440–442]), television frame rate

conversion [10] and motion detection [154]).

13.2 Preprocessing before motion estimation

In all cases the images are de-interlaced, the even field extracted, and then denoised before motion

analysis is attempted. This serves to increase the accuracy of the final motion vector field by minimis-

ing the effect of noise. A frame grabbed via a Phase Alternating Line (PAL) (a broadcast television

standard) camera, consists of two fields taken 1
50 of a second apart [130]. Interlacing refers to the

lines within the two fields alternating with each other, for example, line 1 in the frame is line 1 of

the first field (the even field) and line 2 of the frame is line 1 of the second field (the odd field).

To eliminate any possible artifacts due to motion occurring between the times the fields are formed,

de-interlacing is needed. De-interlacing separates a frame into its constituent fields. Because of the

importance of edges and corners to the motion estimation process, a non-linear edge preserving de-

noising algorithm is first applied to the image. The denoising algorithm used was Perona and Malik’s

anisotropic diffusion algorithm [113] (see section 7.1 for a description of anisotropic diffusion). The

algorithm parameters used were: 4 iterations, γ = 0.2 (or the time step in the simulation) and the

edge processing function g() = e‖∇ I‖/K 2
. The test images used are shown in figure 13.1.
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(a) Even field of frame 1.

(b) Even field of frame 2.

FIGURE 13.1 The test images used for motion estimation.
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13.3 Some terminology

Some terms used subsequently will be defined here. Given a sequence of images, one may generate

a motion field two successive images. The first image, at time t , will be designated the reference

image. The next image in the sequence, at time t +1t will be designated the motion image [104].

Segmentation and correlation motion estimation algorithms divide the motion and reference im-

ages into rectangular blocks, or, more generally, irregularly shaped regions. These regions are then

compared in some way to produce the motion estimate for the region [104].

The search block (or search region) is a region in the reference image centred on the pixel

whose motion is to be estimated. The best-match block is the block in the motion image which is

most similar to the search block. A best-match block for a search block at position (x, y) in the

reference image is searched for in a small region around (x, y) in the motion image.
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Motion estimation via segmentation and

correlation

Correlation based motion estimation algorithms have roots in the temporal compression of image

sequences. Block matching algorithms date to the early 1960’s and are reasonably well understood

[9, 78, 104, 159]. A multitude of block motion estimation algorithms exist which, in principle at least,

may be applied to motion estimation [39, 44, 86]. Examples include the Three Step Search [21], block

matching in the feature domain [6] and so on.

In its simplest form, correlation based motion estimation at a pixel correlates a region around a

pixel (the search region) in one frame, with the a larger region (usually rectangular or square) in the

next frame. The position of the largest correlation peak denotes the position of best match in the next

frame, and the difference between the the best match position and start position becomes the motion

vector.

This approach, naturally, has certain problems, namely, each motion vector is computed indepen-

dently of every other. In contrast, one would expect neighbouring pixels to have correlated motion. In

other words, as formulated, one cannot expect block based motion estimation to yield smoothly vary-

ing correlated motion fields. For temporal compression, this is not an issue, one is more concerned

that the difference between the search and best match regions are small. This ensures that the the

minimum information is transmitted to convert the best-match region into the search region.

Segmentation based motion estimation algorithms break up the motion and reference images into

a series of regions via some segmentation algorithm. This chapter only details a motion from cluster

matching algorithm, and motion from watershed segmentation. The motion in each region is then,

simply, the difference between the centres of mass of the original and best match region, or slightly

more complicated, an affine transformation of the best match and original regions with the warping at

each point denoting the motion.

This chapter proceeds by introducing a justification for using the error norms that are used. The

effect of overlapping regions on the motion estimation process is examined. The algorithms examined

in detail, include Nguyen’s and Holtham’s Pixel Tracing [107], MSE based SEA, a regularisation of

245



14.1 A probabilistic perspective 246

block motion estimation, Kottke and Sun’s motion from cluster matching [84], and finally a motion

from watershed algorithm.

With all algorithms described, an example motion field, together with the difference between the

field at time t and the registered image derived from the motion field and the even field at time t +1t ,

is shown for qualitative comparison between the techniques. To make the differences more visible,

the contrast of the difference image is enhanced by histogram stretching and by inverting the image

(see section 11.1 for a description of histogram modification algorithms for contrast enhancement).

In all cases the fields used are de-interlaced and then denoised by 4 iterations of Perona and

Malik’s Anisotropic Diffusion algorithm [113] (see section 7.1), here the time step (γ = 0.2) and the

K value is determined using Canny’s noise estimator (as described by Perona and Malik [113]). The

choice of 4 iterations is determined by the tradeoff between removing noise (and smoothing away

bubbles too small to be of significance) and merging bubbles best left separate.

14.1 A probabilistic perspective

The Mean Square Error (MSE) and Minimum Absolute Difference (MAD) error norms are com-

monly used in block motion estimation [104]. It can be shown that these error norms correspond to a

maximum likelihood estimation process in the presence of Gaussian and Laplacian noise respectively.

14.1.1 Gaussian noise

It can be readily shown that block (or more generally, region) matching is a special case of maximum

likelihood estimation of motion vectors in the presence of noise. Given that the noise in the image is

Gaussian in nature, a good match at a pixel results in the noise component only being visible. The

central limit theorem provides some justification for this assumption [93]. The probability of the

resultant grey level in the difference image at a particular pixel (x, y), is,

P(x, y) =
1

√
2πσ 2

e
−

(

A(x y)− B(x + u, y + v)
)2

2σ 2 (14.1)

where, A(x, y) is the search block, B(x + u, y + v) is the best match block, and (u, v) is the motion

vector.

A(x y)− B(x + u, y + v) is the grey level difference between original and best match pixels,

and σ the noise standard deviation. Clearly then a region of pixels then has the probability of match

as the product of the individual pixel matches (for some trial motion field). The parameters of the

motion field is then the ones that maximise the aggregate probability. The problem reduces to finding

the Mean Square Error (MSE) between a region and its displaced copy in the next frame. This suggests

that MSE is optimal for Gaussian noise. It is also unnecessary to estimate the noise variance since the

noise standard deviation occurs as part of a multiplicative constant and an exponent of the result. Both
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processes do not affect the position of the maxima and minima of functions with only one maximum or

minimum. A motion vector which minimises the sum of the squared pixel differences (MSE) clearly

also then maximises equation 14.1, or the probability of the match being accepted.

14.1.2 Laplacian noise

The process can then be repeated for the Laplacian noise case [91],

L(x) =
1

√
2σ

e
−

√
2 |A(x y)− B(x + u, y + v)|

σ (14.2)

Here A(x y)− B(x + u, y + v) represents the pixel difference as before, and σ determines the

variance of the distribution. The aggregate probability for a region is then related to the sum of the

absolute values of the pixel differences. This is the justification for the Minimum Absolute Differ-

ence (MAD) mismatch measure popular in Block Motion Estimation (BME). This is useful since

impulse noise (speckle) is sometimes modelled as a heavy-tailed distribution, of which the Laplacian

distribution is an example [36].

14.2 Correlation between neighbouring motion vectors increases as the

size of the search block increases

The relationship between neighbouring motion vectors will be considered. It can be shown by a

simple argument that as the search block becomes larger, that neighbouring motion vectors become

more correlated. Consider two overlapping search blocks. The second search block can be thought of

as two separate regions:

(i) A region corresponding to the intersection of the domains of the two search blocks.

(ii) A region not within the first search block.

A similar argument for the first search block may be made. It can be shown that if the size of

the overlapping region is large, compared to the regions unique to the individual search blocks, the

correlation between the blocks is large. Consider the following ratio (which could be trivially extended

to n dimensions and arbitrarily shaped regions):
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MSE1

MSE2
=

∑

kεblock 1 ( fk − gk)
2

∑

mεblock 2 ( fm − gm)
2 Note that A/B denotes set subtraction here. (14.3)

=
∑

pεblock 1∩block 2

(

f p − gp

)2 +∑

aεblock 1/(block 1∩block 2) ( fa − ga)
2

∑

qεblock 1∩block 2

(

fq − gq

)2 +∑

bεblock 2/(block 1∩block 2) ( fb − gb)
2

(14.4)

=
1 +

∑

a ( fa − ga)
2

∑

p

(

f p − gp

)2

1 +
∑

b ( fb − gb)
2

∑

p

(

f p − gp

)2

(14.5)

The ratio will then be one provided the MSE of the non-overlapping regions is small, and the

MSE of the overlapping regions dominate. This is easy to achieve provided the number of pixels in

the overlapping region is large. The position of the best match and the error measure will then be

close. A similar argument may be constructed for MAD (or, in fact, any error norm which is summed

over a region of pixels).

This argument provides some justification for the common practice of subsampling the search

space common in BME algorithms (see [86, 159] for some examples). It should be noted that the

size of the search blocks is usually too small (typical values include 7 × 7 and 15 × 15) for the mas-

sive subsampling used (see, for example, the Three Step Search and its derivatives [9, 21, 86, 159]).

For example, consider the subsampling used by the Three Step Search in its first stage, a fac-

tor of 4. For a 15 × 15 block the ratio of the overlapping pixels to the pixels in the block is,

(11 × 11)/(15 × 15) = 0.538, at worst. This implies that approximately half of the pixels do not

overlap. The correlation between the subsampled motion vectors is then not expected to be good.

14.3 The Pixel Tracing algorithm

This algorithm was used in an attempt to build a fast froth inspection system by Nguyen and Holtham

[107]. It is a correlation based motion estimation algorithm which makes no attempt to calculate

a dense optical flow field. Instead a block in the centre of the reference field (frame at time t) is

correlated with the motion frame (frame at time t +1t) at certain points in an attempt to optimise the

search. The average motion is then estimated by the best match position at these distinct points. The

algorithm proceeds as follows:

(i) A square region of around 100 pixels wide is selected from the centre of the reference image (at

time t).

(ii) In the motion image (at time t +1t ) starting from the centre of the image, eight directions are

searched: North, South, East, West, North-East, North-West, South-East and South-West. The
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number of pixels searched along each direction is chosen from between twenty to thirty.

(iii) The position of the best match is found by taking the position of minimum sum of squared error.

(iv) The motion vector is then the difference between the two positions; start and best match.

14.3.1 Some experimental results

The following figure (figure 14.1) shows the application of pixel tracing to the standard pair of test

images (see figure 13.1). The size of the search block is 101 × 101 and the number of pixels searched

along each direction is 25. These parameters were chosen to minimise the energy in the error image.

The dense motion field is generated by replicating the single motion vector generated to cover the

entire image. The motion vector (also the average) is measured as (1, −1).

14.3.2 Discussion

Some difficulties with this algorithm as a general average motion estimator include:

(i) It is possible that two (or more) matches with exactly the same error norm occur, it is not clear

how this ambiguous case is to be handled. In the absence of other information, the match with

the shortest motion vector should be chosen.

(ii) The motion vector space is not completely searched. For example, how would motion in di-

rection (10, 15) be handled? While the Pixel Tracing algorithm was developed with speed

in mind, several possible methods exist to extend the search range to include more possible

motion vectors. A simple speed up would include use of MSE based SEA as described in sec-

tion 14.4. Further possibilities involve feature based methods to reduce the size of the search

space [6, 87, 123].

(iii) The limiting case for pixel tracing, as the block size increases, results in the correlation between

the images at time t +1t (motion image) and time t (reference image). This is fast to compute

in linear transform domains, for example, the Fourier domain using the Fast Fourier Transform

(FFT) [73].

14.4 Mean Square Error (MSE) based Successive Elimination Algo-

rithm (SEA)

Block Motion Estimation (BME) is used for estimating motion between images. Image sequence

compression algorithms (notably, MPEG) generate a difference block for each search block by sub-

tracting the search from the best match block [70]. The difference is transmitted. Optimal temporal

compression demands minimising the difference between blocks and this is best accomplished by

having as large a search area as possible. A large search area (the area on the search image examined)
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(a) An example motion field due to Pixel Tracing. Motion field scaled by 4. Average motion (1, −1).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 6 326 305.

FIGURE 14.1 Motion estimation via Pixel Tracing.
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makes finding a better match more likely. Motion estimation, on the other hand, demands a correlated

motion vector field. This is a consequence of requiring that neighbouring pixels in an object have

similar motion. The correlated motion field is a tradeoff between the size of the search block and the

size of the search area (see section 14.2).

Whether computing motion, or attempting to find temporal changes for image sequence compres-

sion, the search for a best matching block can be truncated by finding suitable upper and lower bounds

on the Sum Squared Error (SSE) and not considering a search position with SSE outside these bounds.

This algorithm develops upper and lower bounds on the SSE in terms of the energies of the search

blocks and potential best match blocks, and describes a fast method for calculating the energies of

overlapping blocks.

BME is use to find temporal differences between frames in several video compression algorithms,

notably MPEG-2 [69]. BME involves dividing a frame (called the motion frame or search frame) into

a series of blocks (the search blocks) and for each block finding the position of the best match block,

via some criterion, in the next frame (called the reference frame) [100]. Usually one minimises the

SSE or the MAD (or their averages).

The compression achieved by block motion estimation depends on the search space. Examining

every possible point in the search space leads to best compression at the expense of speed. Several

algorithms have been proposed in the literature which examine only a small neighbourhood around the

origin of the search, these include, Two Dimensional Logarithmic Search[129], Block Based Gradient

Descent Search [90], Conjugate Directional Search [129], Conjugate Search [100], Cross Pattern

Search [6], Cross Search [47], Dynamic Search Window Adjustment [85], Four Step Search [114],

Improved Three Step Search [21], Modified Conjugate Search [100], Modified Three Step Search [86],

New Direction of Minimum Distortion [78], One Dimensional Full Search [22], Parallel Hierarchical

One Dimensional Search [20], Plus Pattern Search [6], Subblock Full Search [100] and Three Step

Search [100].

Until the development of the SEA by Li and Salari [87] a full search involved applying the MAD or

SSE (the MSE is the average SSE [73]) at every point on the motion frame. The SEA generates upper

and lower bounds on the sum of pixels in the best match block and, having pre-calculated the sum of

pixels for every possible best match block, reduces the size of the search space for every improvement

of the match. The SEA is tied to the use of the MAD to measure the match. The algorithm described

here uses a similar process of calculating upper and lower bounds, but uses the SSE error estimate.

The SSE has the advantage of being directly related to the correlation of the search and candidate

best-match blocks.

A brief overview of the SEA algorithm and block motion estimation is given, then the bounds on

the SSE are derived. An experimental comparison of the SSE based algorithm and the MAD based

algorithm is made and finally the results are discussed.
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14.4.1 An overview of the SEA

The SEA algorithm is a refinement of the BME process. BME involves dividing a frame (the refer-

ence frame) and a successive frame (the motion frame) into a series of blocks, the search and candidate

best-match blocks, respectively. These blocks overlap for motion estimation and do not overlap for

temporal compression. The search blocks are individually correlated with another frame (the mo-

tion frame) to find the best match position. The difference between the best match position and the

corresponding (x, y) co-ordinates of the search block on the reference frame, gives the motion vector.

Two error norms are commonly used: the Sum Squared Error (SSE) (which is MSE without

averaging over the number of pixels) and the MAD. The SEA algorithm uses the MAD to derive

bounds on the sum of pixels within the best match block. Li and Salari derive the following bound on

the sum of pixels in the best match block in terms of the MAD [87]:

R − MAD(m, n) ≤ M(x, y) ≤ R + MAD(m, n) (14.6)

where, R denotes the sum of pixels in the search block, M(x, y) denotes the sum of pixels in the

current candidate best-match block under consideration, and MAD(m, n) is the current best match

block’s MAD.

Clearly, re-computing the sum of pixels of overlapping blocks can be computationally expensive.

The SEA proposed a fast method for calculating the sum of pixels.

The calculation proceeds as follows for block size N × N :

(i) For the first element of each row calculate the sum of the first N points on the row (
∑N−1

i=0 f (i, k),

k is the row) and save as C11,C12, ... For example C11 is the sum of the first eight pixels on row

one. The second element of each row strip is calculated as follows:

C21 = C11 − f (1, 1) + f (N + 1, 1) and

C2w = C1w − f (1, w)+ f (N + 1, w) and hence,

C(v+1)w = Cvw − f (v,w)+ f (N + 1 + v,w) at pixel (v,w).

(ii) For the first element of each column calculate the sum of the first N points on the column

(
∑N−1

j=0 C j k , k is the row) and save as D11, D12, ... The second element of each column strip is

calculated as follows:

D21 = D11 − C11 + C(N+1)1 and,

Dv2 = Dv1 − Cv1 + Cv(N+1) and hence,

Dv(w+1) = Dvw − Cvw + Cv(N+1+w) at pixel (v,w).

The values of D are the sumnorms of the blocks at the given positions.
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14.4.2 Derivation of the bounds on the SSE

A bound on the energy in the best-match block, in terms of the MSE between best-match and search

block is derived. This is an attempt to optimise block motion estimation using the MSEprocess. SSE

can be defined as follows for a motion vector (a, b) [73]:

SSE =
N/2
∑

y=−N/2

N/2
∑

x=−N/2

( f (x, y)− g(x + a, y + b))2 if N odd, and, (14.7)

SSE =
N/2
∑

y=−N/2+1

N/2
∑

x=−N/2+1

( f (x, y)− g(x + a, y + b))2 if N even. (14.8)

Correlation can be defined as follows for a motion vector (a, b):

f ∗ g =
N/2
∑

y=−N/2

N/2
∑

x=−N/2

f (x, y)g(x + a, y + b) for N even, and, (14.9)

f ∗ g =
N/2
∑

y=−N/2+1

N/2
∑

x=−N/2+1

f (x, y)g(x + a, y + b) for N odd. (14.10)

The output of the correlation process at the moment of complete overlap of the search and refer-

ence blocks can be regarded as an inner product since it fits the definition of an inner product [80],

where 〈 f, g〉 denotes the inner product of f and g, namely [75][pg. 150–152]:

〈 f, g〉 = 〈g, f 〉 (14.11)

〈α f, g〉 = 〈 f, αg〉 = α〈 f, g〉 (14.12)

〈 f + h, g〉 = 〈 f, g〉 + 〈h, g〉 = 〈 f, g + h〉 (14.13)

〈 f, f 〉 ≥ 0 (14.14)

These follow from the usual definition of the inner product [80]:

〈 f, g〉 =
∫ ∞

−∞
dτ f (τ )g(τ ) (14.15)

By inspection equation (14.11) is satisfied for real images, equations (14.12) and (14.13) follow

from definition of correlation, equation (14.14) denotes the energy within the block at complete over-

lap and is always positive or zero. The norm is defined as the Euclidean, or inner norm, and is derived

from the inner product as follows [80]:

| f | =
√

〈 f, f 〉 (14.16)
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Closer inspection shows that, evaluated at the point where autocorrelation completely overlaps,

the norm denotes the square root of the energy within the block. Denoting correlation by ∗ the SSE at

this point can be rewritten as:

( f − g) ∗ ( f − g) = f ∗ f − f ∗ g − g ∗ f + g ∗ g (14.17)

Treating correlation as an inner product,

〈( f − g), ( f − g)〉 = 〈 f, f 〉 − 2〈 f, g〉 + 〈g, g〉 (14.18)

|〈 f, g〉|2 ≤ | f |2|g|2 . . . Cauchy-Swartz inequality [75] (14.19)

SSE = | f |2 − 2〈 f, g〉 + |g|2 (14.20)

≥ F2 − 2
√

| f |2|g|2 + G2 (14.21)

which has roots,

(F − G +
√

SSE)(F − G −
√

SSE) ≤ 0 (14.22)

which implies,

(F − G +
√

SSE) ≤ 0 and, (14.23)

(F − G −
√

SSE) ≥ 0 (14.24)

⇒ G −
√

SSE ≥ F ≥ G +
√

SSE (14.25)

or,

(F − G +
√

SSE) ≥ 0 and, (14.26)

(F − G −
√

SSE) ≤ 0 (14.27)

⇒ G +
√

SSE ≥ F ≥ G −
√

SSE (14.28)

Only G +
√

SSE ≥ F ≥ G −
√

SSE (equation (14.28)) is consistent with real numbers. This

equation then gives a upper and lower bound on the square root of the energy of the candidate best

match block. The SSE, which is expensive to compute, is only computed for pixels which satisfy the

above inequality. It is tempting to consider,

G2 + 2G
√

SSE + SSE ≥ F2 ≥ G2 − 2G
√

SSE + SSE (14.29)

Since for positive numbers a ≥ b ⇒ a2 ≥ b2, however, one cannot guarantee that the lower bound



255 Chapter 14. Motion estimation via segmentation and correlation

of equation (14.28) will be positive. Equation (14.29) apparently expresses the bounding equation as a

bound on the energy of the best match blocks. It has the further advantage of being easier to compute

since fewer square root operations are required.

It should be noted that the same method employed by the SEA to pre-calculate the sumnorms, or

sum of pixels within a block, can be used by the proposed algorithm. The only modification is before

the sumnorms are calculated as in the traditional SEA the pixels are replaced by their squared values.

A further speedup for motion estimation involves pre-calculating the energies for both frames since

the search blocks now overlap.

14.4.3 Experimental results

The result of applying the suggested MSE based SEA algorithm is shown in figure 14.2. The average

motion vector is measured to be (1.2, −0.70). The result of applying the MAD based SEA to the stan-

dard test images is shown in figure 14.3. The average motion vector is measured to be (1.2, −0.70).

Note that the two algorithms perform similarly in measuring the average motion. The parameters

for both algorithms were a search block of 9 × 9 and a search area of 5 × 5. This provided the best

compromise between performance and time taken to generate the motion field.

14.4.4 Discussions

The proposed algorithm provides the same results as the full search algorithm but with fewer compu-

tations. The algorithm places bounds on the energy of the candidate best match blocks. This allows

the search space to be reduced each time a better match is found without sacrificing accuracy. The

algorithm is suitable for motion estimation (and its use of small search areas) and searching the entire

frame, if needed, for temporal compression. The expected savings in computations can be expected

to increase as the search window and size of the blocks increases. This algorithm may useful for

extending the Pixel Tracing algorithm (see section 14.3) to allow for motion in any direction while

reducing the number of computations involved.

14.5 Block Motion Estimation with regularised flow field

This is a merging of the Horn and Schunk smoothing of the flow field (see section 15.1) with the

robustness of block motion estimation. This is an attempt to provide a correlated motion field for

block matching using small blocks. This attempts to provide speed (by using small blocks) while still

ensuring a correlated motion field. A correlated motion field ensures that neighbouring pixels will

have similar motion. The theoretical justification is as follows, one attempts to minimise the block

mis-match error coupled with a smoothness constraint.

ε =
∫∫

dx dy
(

MSE + λ
(

u2
x + u2

y + v2
x + v2

y

))

(14.30)
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(a) An example motion field due to MSE based SEA. Motion field scaled by 4. Average motion (1.2, −0.70).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 2 208 070

FIGURE 14.2 Motion estimation via MSE based SEA.
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(a) An example motion field due to SEA. Motion field scaled by 4. Average motion (1.2,−0.70).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 2 148 359.

FIGURE 14.3 Motion estimation via SEA.
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Note that u(x, y) is the x component of the motion vector at (x, y) and v(x, y) is the y compo-

nent. ε is the total error to be minimised and depends on the block mis-match error and a smoothness

of motion vector field term. Using the calculus of variations [46, 28],

ε =
∫∫

dx dy
(

MSE + λ
(

u2
x + u2

y + v2
x + v2

y

))

=
∫∫

dx dy F(u, v, ux , u y, vx , vy, x, y)

=
∫∫

dx dy F(u + εη(x, y), v + φβ(x, u), u x + εηx(x, y), vx + φβx(x, u),

u y + εηy(x, y), vy + φβy(x, u), x, y)

If the integral is minimum at F(u, v, u x , vx , u y, vy, x, y), then slightly away at u = u + εη(x, y)

and v = v + φβ(x, y) for some defined functions u, v, η and β, the integral now only depends on ε

and φ. This then implies that,

∂ε

∂ε

∣

∣

∣

∣

ε=0

= 0

∂ε

∂φ

∣

∣

∣

∣

φ=0

= 0

Differentiating under the integral yields,

∂F

∂ε
= ∂F

∂u

∂u

∂ε
+ ∂F

∂ux

∂ux

∂ε
+ ∂F

∂u y

∂u y

∂ε

= ∂F

∂u
η + ∂F

∂ux
ηx + ∂F

∂u y
ηy

and,

∂F

∂φ
= ∂F

∂v

∂v

∂φ
+ ∂F

∂vx

∂vx

∂φ
+ ∂F

∂vy

∂vy

∂φ

= ∂F

∂v
β + ∂F

∂vx
βx + ∂F

∂vy
βy
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or,

∂ε

∂ε

∣

∣

∣

∣

ε=0

=
∫∫

dx dy

(

∂F

∂u

)

u=u

η +
(

∂F

∂ux

)

ux =ux

ηx +
(

∂F

∂u y

)

uy=uy

ηy = 0

∂ε

∂φ

∣

∣

∣

∣

φ=0

=
∫∫

dx dy

(

∂F

∂v

)

v=v
β +

(

∂F

∂vx

)

vx =vx

βx +
(

∂F

∂vy

)

vy=vy

βy = 0

Integrating by parts leads to,

∫∫

dx dy
∂F

∂ux
ηx =

(∫

dy
∂F

∂ux
η

)

−
(∫∫

dx dy η
∂

∂x

∂F

∂ux

)

(∫∫

dx dy

(

Fu − ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂u y

)

η

)

+
(∫

dy
∂F

∂ux
η

)

+
(∫

dx
∂F

∂u y
η

)

= 0

By careful choice of η,
(

∫

dy ∂F
∂ux
η
)

and
(

∫

dx ∂F
∂uy
η
)

can be made to disappear, leaving:

(∫∫

dx dy

(

Fu − ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂u y

)

η

)

= 0

Choosing, say,

η(x, y) = ω(x, y)

(

Fu − ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂u y

)

ω(x, y) > 0

Implies,

Fu − ∂

∂x

∂F

∂ux
− ∂

∂y

∂F

∂u y
= 0

Which is, formally, the Euler equation for this system [46] [28][pg. 497]. The equation for φ can

be shown to be,

Fv − ∂

∂x

∂F

∂vx
− ∂

∂y

∂F

∂vy
= 0

It can then be shown that the pair of equations describing the evolution of u and v are,
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MSEu − 2α∇ · ∇u = 0

MSEv − 2α∇ · ∇v = 0

Since the Laplacian in the discrete arena can be formulated as u − u where u is now the mean

u (excluding the centre pixel of the neighbourhood used to compute the mean) [68]. The iterative

version of the above equations now becomes,

uk+1 = −MSEu + 2αu

2α

vk+1 = −MSEv + 2αv

2α

Where,

u = 1

6

(

ui−1, j,k + ui, j+1,k + ui+1, j,k + ui, j−1,k
)

+ 1

12

(

ui−1, j−1,k + ui−1, j+1,k + ui+1, j+1,k + ui+1, j−1,k
)

v = 1

6

(

vi−1, j,k + vi, j+1,k + vi+1, j,k + vi, j−1,k
)

+ 1

12

(

vi−1, j−1,k + vi−1, j+1,k + vi+1, j+1,k + vi+1, j−1,k
)

Where, i denotes the x co-ordinate, j the y and k time. The MSE is usually defined as follows

[9],

MSE(x, y, u, v) = 1

M N

N
2
∑

n=− N
2

M
2
∑

m=− M
2

h(x, y) (I (x + m, y + n, t)− I (x + m + u, y + n + v, t +1t))2

(14.31)

Usually, the weight h(x, y) is one everywhere on its region of support N × M . Weighted MSE

requires that h(x, y) be a smoothing (or low-pass filter) kernel. The iterative equations then become,
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uk+1 =





−1

αM N

N
2
∑

n=− N
2

M
2
∑

m=− M
2

h(x, y) (I (x + m, y + n, t)− I (p, q, t +1t))
∂ I (p, q, t +1t)

∂p



+ u

(14.32)

vk+1 =





−1

αM N

N
2
∑

n=− N
2

M
2
∑

m=− M
2

h(x, y) (I (x + m, y + n, t)− I (p, q, t +1t))
∂ I (p, q, t +1t)

∂q



+ v

(14.33)

where,

p = x + m + uk and, (14.34)

q = y + n + vk (14.35)

The differences in the MSEu and MSEv terms are smoothed by convolving with a 2D function of

support M × N . The choice of region of support for the mean computation (and the kernel) becomes

another algorithm parameter. This would then affect the approximation used for computing the Lapla-

cian. To maintain consistency it is natural to select the region of support for the smoothing filter for

uk and vk to be the same as the region of support for MSEu and MSEv. For simplicity, the kernel may

be chosen to be one within it’s regions of support.

14.5.1 Experimental results

The algorithm was applied to the standard test images (see figure 13.1). The result of the test is

shown in figure 14.4. The block size used was 15 × 15, the α value was 100, and the number of

iterations 8. The parameters were chosen to provide the best performance while maintaining stability,

and minimising the time needed to generate the motion field. The average motion vector is measured

as (0.77, −0.12). The energy in the error image is measures as 22 174 896. The performance is seen

to be poor. It is likely the gradient descent used is becoming trapped in a local minimum.

14.6 Motion from Cluster matching

This algorithm was described by Kottke and Sun [84]. The algorithm is divided into a clustering

phase and, once stable clusters are formed, a cluster matching and thus displacement estimation phase.

Essentially the clustering phase of the algorithm is a variant of K-means clustering [94].

The clustering phase of the algorithm proceeds as follows:

(i) Decide on the number of clusters to use.
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(a) An example motion field due to BME with regularised flow field. Motion field scaled by 4. Average motion
(0.77, −0.12).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 22 174 896.

FIGURE 14.4 Motion estimation via BME with regularized flow field..
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(ii) Tile the image with blocks until all clusters allocated.

(iii) Each cluster has three features, namely, the mean of the x and y positions of the pixels in the

cluster and the mean of the intensities of the pixels in the cluster, or (m j
x ,m j

y,m j
z ) respectively.

(iv) Iterate until the largest shift of the cluster centres fall below a certain threshold.

(v) Each pixel pi is assigned to cluster k j if the distance in the following in feature space is mini-

mum,

εi j =
(

pi − m j)W j(pi − m j
)

(14.36)

(vi) W j is a diagonal matrix with the following weights on the main diagonal w j
x , w j

y and w j
z .

(vii) The weights are:

w j
x = c j

σ
j

x

(14.37)

w j
y = c j

σ
j

y

(14.38)

w j
z = c j

σ
j

z

(14.39)

(viii) The constant c is set as follows,

• If in a noise free region σ j
z == 0 set, w j

x = w
j
y = 0 and w j

z = 1.

• Otherwise set c j = σ
j

x σ
j

y σ
j

z

• σ
j
φ is defined as the unbiased standard deviation in the φ direction and is defined as usual,

σ
j
φ =

√

√

√

√

√

1

N j − 1

N j
∑

φεk j

(φ − m j
φ)

2 (14.40)

The cluster matching phase is as follows:

(i) The following features are added to each cluster’s feature description.

• A measure of the average grey-scale difference,

m j
s =

∑

x,yεk j

I (x, y, t)− I (x, y, t +1t) (14.41)
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• A shape descriptor, the sum of the squared central moments,

m j
m =

∑

x,yεk j

[

(x − x j )2 + (y − y j)2
]

I (x, y) (14.42)

Where x j and y j are the weighted central moments defined as follows,

x j =
∑

x,yεk j
x I (x, y)

∑

x,yεk j
I (x, y)

(14.43)

y j =
∑

x,yεk j
y I (x, y)

∑

x,yεk j
I (x, y)

(14.44)

(ii) The match criterion is the weighted squared Euclidean distance:

D j l =
(

b j − cl
)

U
(

b j − cl
)

(14.45)

Here,

• cl is the cluster which minimises the match between clusters bl and cl .

• U is a 5 × 5 with main diagonal elements u x , u y , uz , um and us . These are the cluster

weights and described later.

(iii) The match process iterates between weight fixing and cluster matching until the total displace-

ment DT = ∑K l

j=1 D j l does not change between iterations. For each iteration the weights are

recalculated as follows,

u y =
ux
∑K j

j=1

(

m j
x − ml

x

)2

∑K j

j=1

(

m j
y − ml

y

)2 (14.46)

uz =
ux
∑K j

j=1

(

m j
x − ml

x

)2

∑K j

j=1

(

m j
z − ml

z

)2 (14.47)

um =
ux
∑K j

j=1

(

m j
x − ml

x

)2

∑K j

j=1

(

m j
m − ml

m

)2 (14.48)

us =
ux
∑K j

j=1

(

m j
x − ml

x

)2

∑K j

j=1

(

m j
s − ml

s

)2 (14.49)
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ux =





K j
∑

j=1

(

m j
y − ml

y

)2





1
5




K j
∑

j=1

(

m j
z − ml

z

)2





1
5




K j
∑

j=1

(

m j
m − ml

m

)2





1
5

(14.50)





K j
∑

j=1

(

m j
s − ml

s

)2





1
5




K j
∑

j=1

(

m j
x − ml

x

)2





− 4
5

(iv) Generating a threshold,

τ = αmax j‖m j
s ‖ · · · α a user supplied parameter (14.51)

The motion vector for each cluster is then,







dx = ml
x − m j

x , dy = ml
y − m j

y, ifτ < ‖m j
s ‖

dx = dy = 0 otherwise
(14.52)

14.6.1 Experimental results

The algorithm was applied to the usual pair of test froth images with the following results as shown in

figure 14.5. The initial number of clusters chosen were 100 with α = 0.1. These parameters provided

the best performance. The average motion vector was measured as (1.7, −0.33). The energy in the

error image is 27 572 317.

14.6.2 Discussion

The advantages of using more clusters than there are bubbles is that deformation can be better handled.

The further advantage of this algorithm is that the search space is greatly reduced from examining

every pixel with other methods to examining a (in comparison) small number of clusters. The disad-

vantage of this method is that, effectively, a sparse motion field is generated. The method replicates

the motion vector of the centroid of the region to each pixel within the cluster. This replication cannot

capture the subtleties of the motion of pixels within each bubble. This explains the poor performance.

14.7 Motion from Watershed segmentation

The watershed algorithm is used after some denoising to segment the individual bubbles from the

froth. Given that the segmentation process has then occurred it is natural to attempt to perform motion

estimation using these segmented regions. Several features are computed from the the bubbles. This

algorithm is inspired by the Motion from Cluster matching algorithm described in section 14.6.

The algorithm proceeds as follows:

(i) After Watershed segmentation a number of features are calculated on each Watershed region.
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(a) An example motion field due to Kottke and Sun. Motion field scaled by 4. Average motion (1.7, −0.33).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 27 572 317.

FIGURE 14.5 Motion estimation via Kottke and Sun cluster matching.
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(a) The grey level mean.

(b) The grey level standard deviation.

(c) The standard deviation of the x coordinates of the pixels.

(d) The standard deviation of the y coordinates of the pixels.

(e) The number of pixels.

(ii) The features (from both frames) are jointly normalised to unit variance and zero mean.

(iii) The the best match region in frame t +1t is found by finding a q which minimises:

ERROR =
(

R p
t − Rq

t+1t

)2 + α((x p − xq)
2 + (yp − yq)

2)

Where p represents the search region in frame t , q the reference region(s) in frame t +1t and

R is the feature vector. α is a composite factor, it consists of a scale factor (β) to ensure that the

longest distance between any two regions is one, and incorporates a scale factor (γ ) to allow for

distance to have a larger or smaller weight as required.

14.7.1 Experimental results

The algorithm was applied to the usual two froth images (as shown in figure 13.1). A marker based

watershed was used to segment the images. The markers used were the domes of the image [144].

The domes of an image are found by subtracting the original image from the grey level reconstruction

of the original image less some integer [144]. The parameters used were, search radius of 40 pixels

and the distance part of the error measure (γ ) is weighted by 10. The parameters chosen penalise very

long motion vectors and provide for the best results. The results of the application of this algorithm

is shown in figure 14.6. The average motion vector was measured as (1.3, −0.53). The energy in the

error image is 27 411 424.

As an aid to visualisation of the operation of the algorithm consider the motion and reference

images watershed segmented after the usual smoothing as shown in figure 14.7.

14.7.2 Discussion

This algorithm is very dependent on the segmentation. Over-segmentation generates more regions

which allows for finer estimation of motion. Under-segmentation (in the case of froth this would be

two or more bubbles regarded as a single bubble), is not desirable since the final motion of the region

would be regarded as a weighted average of the motion of the individual bubbles.

The method used for evaluating the algorithms relies on the computation of a dense motion field.

The method under consideration only generates vectors at the bubble centroids. A centroidal vector

is then replicated to cover the rest of the pixels in a region. The weakness of this algorithm lies in

the replication of the motion vectors. The sparse motion field generated, is hampered by the lack of

correlation between the various regions. This is the reason for the poor quantitative performance.
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(a) An example motion field due to Watershed based Motion Estimation. Motion field scaled by 4. Average motion
(1.3, −0.53).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 27 411 424.

FIGURE 14.6 Watershed based motion estimation.
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(a) Watershed segmented, even field at time t .

(b) Watershed segmented, even field at time t +1t

(c) Watershed lines overlaid. White denotes field at time t . Black denotes field at time t +1t .

FIGURE 14.7 Watershed lines, individually and overlaid, of the test images.
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Chapter 15

Gradient based dense optical flow

This chapter examines some of the gradient-based optical flow algorithms in the literature. The suit-

ability of the approach for motion estimation of froth images is examined. Optical flow is usually

defined as the apparent motion of the brightness patterns within an image. Other possible definitions

exist such as optical flow in feature space (for example, multiple constraint optical flow [138]).

Horn and Schunk [68] first described a solution to the problem of estimating a dense optical flow

field via gradient methods. Since the optical flow constraint equation is under-constrained, a solution

requires regularisation. Different forms of regularisation are possible and are extensively explored in

the literature [2, 11, 117]. The notion of multiple constraint optical flow was developed to overcome

the need for regularisation (see Tistarelli [138]).

Div-Curl stochastic models for optical flow [54, 132] regularise the usual optical flow constraint

equation by using a div-curl spline. Suter [132] then proves equivalence to Horn and Schunks’s optical

flow algorithm.

In all cases examined, the fields used are first de-interlaced and the even field extracted, then

denoised by 4 iterations of Perona and Malik’s Anisotropic Diffusion algorithm [113] (see section 7.1),

here the time step (γ ) used is 0.2 and the K values determined using Canny’s noise estimator as

described by Perona and Malik. The choice of 4 iterations is determined by the tradeoff between

removing noise (and smoothing away bubbles too small to be of significance) and merging bubbles

best left separate.

15.1 Horn and Schunk

This is regarded as a standard work on gradient based optical flow. The algorithm [68] relates the

intensity changes at a pixel to the motion at the pixel. Since the intensity of a point is the same at its

position in one frame and its corresponding position in the next.

Ixu + Iyv + It = 0 is known as the Optical Flow constraint equation, and is derived by assuming

that the pixel intensities between two frames are preserved. The pixel intensities in the next frame is

expanded via a Taylor expansion as follows:

271
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I (x, y, t) = I (x +1x, y +1y, t +1t)

I (x +1x, y +1y, t +1t) = I (x, y, t) + ∂

∂x
I (x, y, t)1x + ∂

∂y
I (x, y, t)1y + ∂

∂t
I (x, y, t)1t

0 = ∂

∂x
I (x, y, t)1x + ∂

∂y
I (x, y, t)1y + ∂

∂t
I (x, y, t)1t

Ix1x + Iy1y + It1t = 0

Ix
1x

1t
+ Iy

1y

1t
+ It

1t

1t
= 0

Ixu + Iyv + It = 0 taking, lim1t → 0 (15.1)

Note that u is the velocity component in the x co-ordinate and v in the y direction. Since the optical

flow constraint equation is an equation in two unknowns, a second constraint is required to solve for

(u, v). Horn and Schunk do this by specifying that the motion vector field is smooth. In other words,

the motion flow field has no sudden discontinuities. The extra constraint is then, u 2
x + u2

y + v2
x + v2

y ,

and must be minimised. In integral form the constraints are,

ε =
∫∫

dx dy
(

Ixu + Iyv + It

)2 + α
(

u2
x + u2

y + v2
x + v2

y

)

(15.2)

and ε needs to be minimised. The calculus of variations is required to find a u and v minimising

ε since both u and v vary according to (x, y) [46]. The corresponding Euler equations [28, 46] are,

I 2
x u + Ix Iyv = α∇ · ∇u − Ix It

Ix Iyu + I 2
y v = α∇ · ∇v − Ix It

Approximating the Laplacian by,

∇ · ∇u = u − u,

where u denotes the mean without the centre pixel (x, y) in the neighbourhood, yields,

(

α + I 2
x

)

u + Ix Iyv = αu − Ix It

Ix Iyu +
(

α + I 2
y

)

v = αv − Ix It

This is a simple system which can be readily solved. The iterative update equations computes the

new motion estimate at a pixel
(

u(n+1), v(n+1)
)

as follows,
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u(n+1) = u(n) − Ix

(

Ixu(n) + Iyv
(n) + It

)

α + I 2
x + I 2

y

v(n+1) = v(n) − Iy

(

Ixu(n) + Iyv
(n) + It

)

α + I 2
x + I 2

y

15.1.1 Experimental results

The algorithm was applied to the standard set of test images (see figure 13.1). The number of iterations

used is 16 and α = 1. These parameters are chosen to provide good performance. The result of the

test is shown in figure 15.1. The average motion vector is measured as (0.94, −0.55). The energy in

the error image is 2 876 750.

15.1.2 Discussion

The smoothing of the motion vector field results in the motion of pixels on the bubbles boundaries

being affected by the motion of neighbouring bubbles. The effect of noise on the motion estimation

process is considered.

The effect of noise on gradient based optical flow

The optical flow constraint equation, formulated in the usual way, assumes that the intensity of pixels

is conserved under motion (see Horn and Schunk’s seminal paper [68] described in section 15.1). This

implies,

f (x + u(x, y), y + v(x, y), t +1t) = f (x, y, t) (15.3)

The presence of noise immediately confounds this assumption. The true state for additive noise,

is closer to,

f (x + u(x, y), y + v(x, y), t +1t)+ η1(x, y) = f (x, y, t)+ η2(x, y) (15.4)

Where η1 and η2 are noise processes. Following the derivation in Horn and Schunk’s paper [68],

f (x + u(x, y), y + v(x, y), t +1t) is Taylor expanded, and the higher order terms truncated to form,
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(a) Motion field, scaled by factor of 4. Average motion (0.94, −0.55).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 2 876 750.

FIGURE 15.1 Optical flow via Horn and Schunk.
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f (x, y, t) +1x
∂

∂x
I (x, y, t) +1y

∂

∂y
I (x, y, t) +1t

∂

∂t
I (x, y, t) + η1(x, y) = f (x, y, t) + η2(x, y)

(15.5)

1x
∂

∂x
I (x, y, t) +1y

∂

∂y
I (x, y, t)+1t

∂

∂t
I (x, y, t) = η2(x, y)− η1(x, y)

(15.6)

Under the assumption of zero mean noise,

E{1x
∂

∂x
I (x, y, t) +1y

∂

∂y
I (x, y, t) +1t

∂

∂t
I (x, y, t)} = E{η2(x, y)− η1(x, y)}

(15.7)

= 0

Where E{·} denotes the expectation operator.

E{1x
∂

∂x
I (x, y, t)} + E{1y

∂

∂y
I (x, y, t)} + E{1t

∂

∂t
I (x, y, t)} = 0 (15.8)

The expectation operator denotes an averaging process [99, 93]. Since the problem is formulated

in a three dimensional environment, averaging over time and the two spatial dimensions is possible.

This provides some justification for the common practice of averaging gradient based motion estimates

either spatially or temporally. Occasionally estimates are smoothed both spatially and temporally [68].

15.2 Div-Curl Optical Flow Methods

These were developed by Suter [132] and constrain the optical flow constraint equation

(Ixu + Iyv + It = 0) using a div-curl spline. Essentially, this is a different form of regularising the

optical flow constraint equation.

The divergence represents the smoothness of the vector field. The curl is dependent on the rotation

and shear of the vector field.

∫∫

(

(Ixu + Iyv + It)
2 + α ‖ ∇ · v ‖2 +β ‖ curl v ‖2) dx dy (15.9)

A motion vector field (u, v) is found which minimises equation 15.9. The implementation in-

volved three steps: creating a variational framework for the equations, solving the variational equa-

tions, and finally generating a numerical scheme for the solution.
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Variational calculus may be used to find the Euler equations for the system,

αux x + βu yy + (α − β)vxy = Ix(Ixu + Iyv + It) and, (15.10)

(α − β)uxy + βvx x + αvyy = Iy(Ixu + Iyv + It) (15.11)

Approximating [73],

ux x ≈ u(i−1, j) − 2u(i, j) + u(i+1, j) (15.12)

u yy ≈ u(i, j−1) − 2u(i, j) + u(i, j+1) (15.13)

vx x ≈ v(i−1, j) − 2v(i, j) + v(i+1, j) (15.14)

vyy ≈ v(i, j−1) − 2v(i, j) + v(i, j+1) (15.15)

Where (i, j) denotes a pixel’s position. The iterative update equations can be shown to be,

u = (α + β + I 2
y )γ1 − Ix Iyγ2 (15.16)

v = −Ix Iyγ1 + (α + β + I 2
x )γ2 (15.17)

where,

γ1 = α(u(i−1, j) + u(i+1, j))+ β(u(i, j−1) + u(i, j+1))+ (α − β)vxy − Ix It (15.18)

γ2 = α(v(i, j−1) + v(i, j+1))+ β(v(i−1, j) + v(i+1, j))+ (α − β)uxy − Iy It (15.19)

15.2.1 Experimental results

Div-curl optical flow was applied to the standard set of test images (see figure 13.1). The parameters

chosen were, number of iterations 16, alpha 0.8, and beta 0.2, in an attempt to provide good perfor-

mance. The result of the application is shown in figure 15.2. The average motion is measured as

(0.44, −0.29). The energy in the error image is 8 160 649.

15.2.2 Discussion

Essentially this is a different form of regularising the optical flow constraint equation. The div-curl

regularisation incorporates Horn and Schunk’s method as a special case (α = β in equation (15.9)).

15.3 Multiple constraint optical flow

This was proposed by Tistarelli [138] to overcome the need to regularise the optical flow constraint

equation. In essence a series of images is generated from each image and the optical flow constraint

equation is applied. An overdetermined set of linear equations results which can then be solved as
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(a) Motion field, scaled by factor of 4. Average motion (0.44, −0.29).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 8 160 649.

FIGURE 15.2 Div-Curl optical flow.
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required. A flaw is that it is possible that at certain pathological points, or even regions, in the image

enough constraint equations may disappear or become ill-posed, to make the set of linear equations

unsolvable. It should be noted that any set of features may be used.

Tistarelli proposed the following scheme,

Ix xu + Ixyv + Ixt = 0 (15.20)

Iyxu + Iyyv + Iyt = 0 (15.21)

Combining the above equations ((15.20) and (15.21)) with the optical flow constraint equa-

tion (15.1) provides three equations in two unknowns. Tistarelli explores the following methods for

computing the optical flow,

(i) Finding the pair of equations with highest determinant and solving for (u, v) from these.

(ii) Computing the pseudo-inverse of the three equations, and solving.

(iii) Averaging the optical flow due to the pair of equation pairs with highest determinant.

Tistarelli proposes the third. While Tistareli proposes extensions, for example, accounting for

linear variations in the motion field, these extensions have been neglected in this implementation. The

added accuracy is not judged worth the extra complexity.

This technique may also be applied in feature space to generate extra constraint equations. Gupta

and Prince et al. proposed a bandpass scheme to provide the extra constraint equations [55]. An

oriented bandpass filter is applied in four directions to yield four images. The filters are orientated

as follows: north to south, east to west, north-east to south-west, and north-west to south-east. The

constraint equations (15.20), (15.21) and the optical flow constraint equation (15.1) are applied to the

four images to yield an overdetermined system of twelve equations. Gupta et al. solve these using

least-squares.

Tistarelli suggests weighting the solutions by the determinant. This results in [138],

(

u

v

)

=
(

∑m+l
i=l Nu

i
∑m+l

i=l Nv
i

)

1
∑m+l

i=l Di

(15.22)

where, N u and N v represent the x and y co-ordinates of the solution of a pair of l constraint

equations. Di represents the determinant of the minor matrix in question. Here, only m of the l

equations are selected, for example, the m pairs of equations with largest determinants. N u and N v

may be computed by direct inverse of the minor matric concerned (where this is possible). The final

step of the algorithm is to smooth the optical flow field in the x and y components using a Gaussian

kernel. A sigma of σ = 1 is used.
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15.3.1 Experimental results

The algorithm was applied to the standard set of test images (see figure 13.1). The threshold testing

the determinants was chosen to be τ = 1 and the standard deviation for smoothing set to σ = 2. A

smaller τ leads to more singular equation pairs and hence less reliable motion vectors at pixels with

small first and second derivatives. A larger τ tends to reject motion vectors where the estimate is

still reliable. The choice of σ lies in a tradeoff between over-smoothing the motion field, and not

regularising the motion estimates enough. The result of the test is shown in figure 15.1. The average

motion vector is measured as (0.45, −0.25). the energy in the error image is 10 795 532.

15.3.2 Discussion

The method has certain difficulties. There are pixels where the sets of equations may be all ill-

conditioned. While these pixels may be detected and discarded, the question of how to compute a

motion estimate for these pixels may be posed. For individual pixels, or small groups of pixels, the

final smoothing stage propagates the neighbouring motion estimates into the discarded pixels.

The second problem lies in the weighting of the solutions. It is possible for a matrix determinant

to be negative. This could result, for example, from using different features (perhaps, variance and

second derivatives) to generate the constraint equations. It is proposed that a weighting using the

absolute value of the determinant be used instead. The relevant equation (equation 15.22) becomes,

(

u

v

)

=
(

∑m+l
i=l |Di |Nu

i
∑m+l

i=l |Di |Nv
i

)

1
∑m+l

i=l |Di |
(15.23)
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(a) Motion field, scaled by factor of 4. Average motion (0.45, −0.25).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 10 795 532.

FIGURE 15.3 Optical flow via Multiple Constraint Optical Flow.
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Hierarchical motion estimation

Several hierarchical motion estimation algorithms are described in the literature [10]. This chapter

describes a general hierarchical framework in which an arbitrary motion estimation algorithm may be

embedded. The algorithm is then used to compute motion at several scales.

Scale space representation of images represent an image in terms of detail. At the highest detail, or

smallest scale, all structures in an image are visible (high resolution). At the lowest detail, or highest

scale, only the large (in spatial extent) features of the image are visible (low resolution). This is the

basis of multi-resolution analysis as used in wavelet analysis of images [3, 51]. One can generate a

scale space pyramid for an image, by low-pass filtering, and then decimating the image. The low-

pass filtering removes high frequency components, which lowers the Nyquist frequency of the image.

This implies the filtered image is over-sampled which allows for decimation to remove the redundant

information (pixels) [3, 130]. At the apex of the scale space pyramid is the low scale (low spatial

resolution) image which is a fraction of the size of the original image.

Generating scale space pyramids can be very efficient. The low-pass filter process may be im-

plemented in the spatial domain as a correlation, but since 75% of the pixels are discarded by the

decimation process, only the correlations at the retained pixels need to be computed. The limiting

factor for computational complexity is then the length of the low-pass filter kernel. A natural opti-

misation for images is the selection of a separable low-pass filter kernel [139]. Separability implies

a two dimensional convolution may be achieved by first row-wise then column-wise convolution (or

vice versa). One would perform the row-wise convolution on each row, and then the column-wise

convolution only at the retained pixels, for example.

The motion vectors are interpolated for the next highest scale, and used to translate the search area

(for Block Motion Estimation (BME)), or to warp the motion frame (frame at time t +1t ) to form a

new motion frame. The advantages of this system include: smaller search areas may be used at each

stage, and correlation between neighbouring motion vectors is enforced by the interpolation of motion

vectors. The low-pass filtering stages improve the noise immunity at higher scales.

One previous approach (see [10]) required registering the motion frame using the interpolated mo-

tion field, and then computing the motion at the new scale using the registered image as the reference

281
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frame.

In all cases the fields used are first de-interlaced to remove motion artifacts produced by the inter-

lacing process, then denoised by 4 iterations of Perona and Malik’s Anisotropic Diffusion algorithm

[113] (see section 7.1), here the time step (γ ) used is 0.2 and the K values determined using Canny’s

noise estimator as described by Perona and Malik. The choice of 4 iterations is determined by the

tradeoff between removing noise (and smoothing away bubbles too small to be of significance) and

merging bubbles best left separate.

The chapter proceeds by first describing the frameworks. The application of the frameworks to

various motion estimation algorithms is described. Finally the results are examined.

16.1 The proposed frameworks

Two frameworks will be considered. One takes advantage of the structure of block (or region) match-

ing algorithms. The other is a more general framework, in that no assumptions of the motion estima-

tion algorithm used are made, with the exception that the motion estimation algorithm used, produces

a dense motion field (in other words, a motion estimate at every pixel).

16.1.1 Framework 1

A possible modification to block based motion estimation algorithms is simple: whenever a search

block is accessed, an offset is added to the position of the search block. This offset corresponds to

the interpolated motion field from the previous stage. In essence the origin of the search space used

when computing the motion vector at a particular pixel, is translated by the interpolated motion field

as generated by the previous stage of the algorithm. The same process is used for segmentation and

cluster based motion estimation algorithms.

The framework (Framework 1) is as follows (similar to the algorithm described in [139][pg. 438–

441]:

(i) Generate scale-space pyramids for a preselected number of scales for the motion and reference

images by low-pass filtering and then decimation of the rows and columns of the images by a

factor of 2:

(a) Low-pass filter via a Gaussian filter with σ = 1 and radius = 4σ . Gaussian filters possess a

maximum principle which prevents maxima (or minima) from being formed which were not

present in the unfiltered image [7, 113]. The width of the Gaussian is chosen to eliminate

aliasing after the decimation process.

In the calculations following, a normalised frequency is used. The normalisation is achieved

by dividing the angular frequencies through by the sampling frequency (in Hertz). The

angular sampling frequency then occurs at 2π .
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It can be shown that the -3dB frequency of a Gaussian is at ω = 1
σ

√

3
20 ln(10), effectively

for sigma of one, ω = 0.588, which is well before the desired new Nyquist frequency of

ω = π . At the new Nyquist frequency the gain of the filter (with a sigma of one) is -85dB.

This justifies the sigma value used.

The Gaussian kernel is truncated to speed the low-pass filtering, the Gaussian is otherwise

of infinite extent. The size of the footprint chosen allows most of the energy within the

Gaussian kernel to lie within the footprint selected. The choice of neighbourhood size is

otherwise arbitrary.

(b) Decimate each row and column by 2 to generate an image at the new scale.

(c) Repeat at the next scale using the old scale image as input.

(ii) For each scale starting at the lowest:

(a) Interpolate the motion field by a factor of two. The interpolation proceeds as follows,

(1) Super-sample by factor of two. This introduces zero value pixels between valid pixels.

(2) Convolve each component of the motion vector field with a Gaussian of σ = 1 and

radius = 4σ to interpolate between the samples.

(b) Apply the block motion estimation algorithm on the motion and reference image at this

new scale to generate a new motion field. Note that the search window is translated by the

interpolated motion estimate from the previous stage. The new motion estimate at a pixel

lies within the search region. This new motion estimate is added to the old motion estimate

from the previous stage, and passed on to subsequent stages.

16.1.2 Framework 2

It is not clear, however, how Framework 1 may be extended to gradient based optical flow algorithms.

At a particular scale, an estimate of the motion field may be generated. After the interpolation to the

next higher scale, this motion field may be used to warp the frame at time t +1t (the motion frame).

The warped image becomes the reference frame for the next application of the motion estimation

algorithm. The thresholded difference between the warped and the reference frame (the frame at

time t ) yields points, or regions, which need better motion estimates. The motion estimation stage

may then focus exclusively on generating motion estimates for these pixels. This promises a speed

improvement.

In temporal compression of image sequences a similar technique of examining differences is used

for comparing different block motion estimation algorithms [139][pg 440–442]. Hierarchical frame

rate conversion uses a scheme of using a motion field to interpolate between frames [10].

The alternate framework (Framework 2) is then,

(i) Select a motion estimation algorithm.
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(ii) Generate a scale pyramid for a preselected number of scales (scale zero is the original image)

for the motion and reference images,

(a) Low pass filter via a Gaussian filter with σ = 1 and radius = 4σ .

(b) Decimate each row and column by 2 to generate image at new scale.

(c) Repeat at next scale using old scale image as input.

(iii) For each scale starting at the highest,

(a) Interpolate by a factor of two for the motion field. The interpolation proceeds as follows,

(1) Super-sample by factor of two. This introduces zero value pixels between valid pixels.

(2) Convolve each component of the motion field with a Gaussian of σ = 1 and

radius = 4σ to interpolate between the samples.

(b) Generate a new reference frame from the interpolated motion field and the current motion

frame. The intensity at each pixel in the new reference frame may be found by averaging

a small neighbourhood of pixels located at the terminus of the motion vector at the pixel in

question (interpolation). A Gaussian kernel of σ = 0.5 is suggested for the averaging, with

a neighbourhood of size 4σ × 4σ .

(c) Apply the motion estimation algorithm to the new reference and old motion frames to gen-

erate a new motion field.

(d) Add the new and old motion fields. This is the result motion field passed to the next stage.

16.2 Application of the frameworks

The two algorithm frameworks described are applied to some motion estimation algorithms and the

results examined. The full search algorithm, Minimum Absolute Difference (MAD) based Successive

Elimination Algorithm (SEA), Mean Square Error (MSE) based Successive Elimination Algorithm

(SEA), motion from watershed and Horn and Schunk’s algorithm are examined.

16.2.1 Application to a full search

A simple full search is applied at each level of the pyramid. The full search algorithm finds the MSE

at every pixel in a small search window (sometimes the entire image) [9, 87, 159]. The motion vector

is then the difference in position between the best-match position and the origin of the search space.

The block size and search area is 3 × 3 pixels. The small search blocks and search space implies that

the full range of motion within the froth images will not be explored. A 3 × 3 search space cannot

estimate motion vectors larger than one pixel, this implies that any pixels with larger motion will have

inaccurate motion estimates. A single stage full search algorithm with block sizes and search areas as
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specified, cannot then be expected to do well. Any benefits, therefore, is due to the hierarchical nature

of the algorithm frameworks examined.

The smoothing and interpolation kernel used is a Gaussian with σ = 1. The Gaussian is truncated

to lie in a 4 × 4 pixel area. At the coarsest scale (lowest spatial resolution or detail) a 3 × 3 block size

and search area on the sub-sampled image, results in an effective 24 × 24 block size and search area

on the full sized image.

Framework 1

Figure 16.1 shows the application of the hierarchical method (Framework 1) to the standard test im-

ages (see figure 13.1). The average motion vector is (0.76, −0.51). The energy in the error image is

2 821 950.

Framework 2

Applying the full-search algorithm as part of Framework 2 is shown in figure 16.2. The average

motion vector is (0.92 − 0.52). The energy in the error image is 1 717 858. The average motion is

close to that found for Framework 1, and the energy in the error image is smaller.

Comparing the frameworks

The two motion fields as generated by Frameworks 1 and 2 can be compared. The allowed difference

between corresponding motion vectors from the different frameworks is arbitrary, but selected to pass

motion vectors with approximately the same orientation and length. A variation of up to 50% of the

length and orientation of the motion vectors of Framework 2 will be allowed. In other words the

corresponding motion vector of Framework 1 may only vary by up to 50% in length and orientation,

in order to be counted as correct.

This finds that only 53.0% of the total number of motion vectors generated by Framework 1, lies

within the specified variation of the motion vectors as generated by Framework 2. The percentage of

motion vectors whose length lies within the variation is 74.6%, and the percentage of motion vectors

whose orientation lies within the variation is 62.3%. The motion fields as generated by these two

frameworks are thus very different.

Visual inspection of the two motion fields in figures 16.1 and 16.2 show them to be similar looking.

Framework 2 produces a significantly lower error energy than Framework 1.

16.2.2 Application to Minimum Absolute Difference (MAD) Successive Elimination
Algorithm (SEA)

This is Li and Salari’s algorithm [87] (see subsection 14.4.1). The only modification made was to limit

the size of the search area to 15 × 15 pixels. The size of the search block used is 7 × 7. The height of

the pyramid used is 4. The application of the block size and search area specified on the subsampled
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(a) Motion field, scaled by factor of 4. Average motion (0.76, −0.51).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 2 821 950.

FIGURE 16.1 Hierarchical motion estimation via full search, Framework 1.
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(a) Motion field, scaled by factor of 4. Average motion (0.92 − 0.52).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 1 717 858.

FIGURE 16.2 Hierarchical motion estimation via full search, Framework 2.
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image of lowest resolution, results in a maximum search area of 120 × 120, and a maximum search

block of 56 × 56 pixels, at the coarsest scale (lowest detail) on the full sized image.

Framework 1

Figure 16.3 shows the application of Framework 1 to the standard test images (figure 13.1). The

average motion vector is (1.3, −0.70). The energy in the error image is 1 774 367. Note the correlated

motion field and the low error energy.

Framework 2

Figure 16.4 shows the application of Framework 2 to the standard test images (figure 13.1). The

average motion vector is (1.4, −0.67), and the energy in the error image is 2 081 428.

Comparing the frameworks

The two motion fields as generated by Frameworks 1 and 2 can be compared. The allowed difference

between corresponding motion vectors from the different frameworks is arbitrary, but selected to pass

motion vectors with approximately the same orientation and length. A variation of up to 50% of the

length and orientation of the motion vectors of Framework 2 will be allowed. In other words the

corresponding motion vector of Framework 1 may only vary by up to 50% in length and orientation,

in order to be counted as correct.

This finds that only 59.7% of the total number of motion vectors generated by Framework 1, lies

within the specified variation of the motion vectors as generated by Framework 2. The percentage of

motion vectors whose length lies within the variation is 80.7%, and the percentage of motion vectors

whose orientation lies within the variation is 68.0%. The motion fields as generated by these two

frameworks are thus very different.

Visual inspection of the two motion fields in figures 16.3 and 16.4 show them to be similar looking.

The average motion vectors are close, but the error energies differ significantly (by more than 10%),

for the two frameworks.

16.2.3 Application to Mean Square Error (MSE) based Successive Elimination Algo-
rithm (SEA)

The size of the search block is 7 × 7 pixels. The smoothing and interpolation kernel is Gaussian with

σ = 1. The Gaussian is truncated to lie within a 4 × 4 window. The size of the search area is limited

to 15 × 15 pixels. The height of the pyramid used is 4. On the subsampled image of lowest spatial

resolution, this then allows for a maximum search area of 120 × 120, and a maximum search block of

56 × 56 pixels, if one were to interpolate this low resolution image to full image size (the size of the

high detail image).
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(a) Motion field, scaled by factor of 4. Average motion (1.3, −0.70).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 1 774 367.

FIGURE 16.3 Hierarchical motion estimation, test algorithm MAD based SEA, Framework 1.
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(a) Motion field, scaled by factor of 4. Average motion (1.4, −0.67).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 2 081 428.

FIGURE 16.4 Hierarchical motion estimation, test algorithm MAD based SEA, Algorithm 2.
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Framework 1

Figure 16.5 shows the application to the standard test images (figure 13.1). The average motion is

(1.3, −0.70). The energy in the error image is 1 832 788. Note the small error and the correlated

motion field. Comparison with section 16.2.1 shows the improvement in performance as the size of

the search area and the search block increases.

Framework 2

Figure 16.6 shows the application of Framework 2 to the standard test images (figure 13.1). The

average motion vector is (1.3, −0.68), and the energy in the error image is 1 924 062.

Comparing the frameworks

The two motion fields as generated by Frameworks 1 and 2 can be compared. The allowed difference

between corresponding motion vectors from the different frameworks is arbitrary, but selected to pass

motion vectors with approximately the same orientation and length. A variation of up to 50% of the

length and orientation of the motion vectors of Framework 2 will be allowed. In other words the

corresponding motion vector of Framework 1 may only vary by up to 50% in length and orientation,

in order to be counted as correct.

This finds that only 60.1% of the total number of motion vectors generated by Framework 1, lies

within the specified variation of the motion vectors as generated by Framework 2. The percentage of

motion vectors whose length lies within the variation is 81.2%, and the percentage of motion vectors

whose orientation lies within the variation is 68.2%. The motion fields as generated by these two

frameworks are thus very different.

Visual inspection of the two motion fields in figures 16.5 and 16.6 show them to be similar looking.

The two frameworks generate similar average motion vectors. The registered error energies differ by

less than 5%, implying the performance of the two frameworks is similar for this motion estimation

algorithm (for the algorithm parameters specified).

16.2.4 Application to Watershed based motion estimation

The watershed based motion estimation algorithm is described, in detail, in section 14.7.

Framework 1

The application of Framework 1 is shown in figure 16.7. The average motion vector is (1.8, 0.22),

and the energy in the error image is 20 903 965.
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(a) Motion field, scaled by factor of 4. Average motion (1.3, −0.70).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 1 832 788.

FIGURE 16.5 Hierarchical motion estimation, test algorithm MSE based SEA, Algorithm 1.
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(a) Motion field, scaled by factor of 4. Average motion (1.3, −0.68).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 1 924 062.

FIGURE 16.6 Hierarchical motion estimation, test algorithm MSE based SEA, Algorithm 2.
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(a) Motion field, scaled by factor of 4. Average motion (1.8, 0.22).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 20 903 965.

FIGURE 16.7 Hierarchical motion estimation, via Watershed based motion estimation, using Frame-
work 1.
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(a) Motion field, scaled by factor of 4. Average motion (1.98, −1.89).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 12 839 272.

FIGURE 16.8 Hierarchical motion estimation, via Watershed based motion estimation, using Frame-
work 2.
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Framework 2

The effect of using Framework 2 is shown in figure 16.8. The average motion vector is (1.98, −1.89),

and the energy in the error image is 12 839 272. Note the highly correlated motion field and the

considerably smaller error than for Framework 1.

Comparing the frameworks

The two motion fields as generated by Frameworks 1 and 2 can be tested. The allowed difference

between corresponding motion vectors from the different frameworks is arbitrary, but selected to pass

motion vectors with approximately the same orientation and length. A variation of up to 50% of the

length and orientation of the motion vectors of Framework 2 will be allowed. In other words the

corresponding motion vector of Framework 1 may only vary by up to 50% in length and orientation,

in order to be counted as correct.

This finds that only 34.4% of the total number of motion vectors generated by Framework 1, lies

within the specified variation of the motion vectors as generated by Framework 2. The percentage of

motion vectors whose length lies within the variation is 57.9%, and the percentage of motion vectors

whose orientation lies within the variation is 53.9%. The motion fields as generated by these two

algorithms are thus very different.

This is also apparent from a visual inspection of the motion fields in figures 16.7 and 16.8. The

average motion vectors as well as the register error energies are very different for the two frameworks.

16.2.5 Application to Horn and Schunk Optical Flow

Horn and Schunk’s motion estimation algorithm is embedded in Framework 2 and applied to the

standard test images for motion (see figure 13.1). Horn and Schunk optical flow is described in

section 15.1 (see [68] for details).

The application of Horn and Schunk’s is shown in figure 16.9. The average motion vector is

(1.0, −0.53), and the energy in the error image is 4 054 200.

16.3 Discussion

The frameworks have the advantage of creating a correlated motion field. For froth images where there

is a definite trend in the motion of the froth, this can be beneficial. For image sequences composed of

separate objects moving with different velocities in different directions (the general motion estimation

problem) this can be a disadvantage. Framework 2 is a general framework for any motion estimation

algorithm, and across the range of motion estimation algorithms examined performs well. As an

example of the benefits a hierarchical framework offers, consider the full search case. The energy in

the error image is low, despite the small search blocks and search regions used.
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(a) Motion field, scaled by factor of 4. Average motion (1.0, −0.53).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 4 054 200.

FIGURE 16.9 Hierarchical motion estimation, via Horn and Schunk, using Framework 2.
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For block motion estimation algorithms Framework 1 offers the better framework, provided the

BME algorithm covers the full range of motion within the image. This is apparent if one compares

the full search to the SEA cases. The full search algorithm examines a small part of the motion

search space compared to the SEA algorithms. For watershed based motion estimation Framework 2

significantly improves the results.

The motion vectors generated by Frameworks 1 and 2, for the cases where both frameworks are

used, do not agree well, even with the large variation allowed, see table 16.1. This illustrates a

difficulty in comparing motion estimation algorithms in the absence of some base-line (or, knowledge

of the actual motion).

Motion Estimation Motion Vectors within 50% Motion fields
Algorithm Length Orientation Both compared visually

Full Search 74.6 62.3 53.0 Similar
MAD SEA 80.7 68.0 59.6 Similar
MSE SEA 81.2 68.2 60.1 Similar
Watershed based motion estimation 57.9 53.9 34.4 Different



Chapter 17

Detecting bubble bursts and merges

This chapter examines the effect of bubble bursts or merges on the motion estimation process. It is

hypothesised that a burst or merging bubble will result in a discontinuity within the motion vector

field. This chapter will consider the suitability of several motion estimation algorithms for detecting

burst or merge events. A framework for the detection of these events will be proposed.

Once a motion field is generated for a pair of successive images, and one suspects the presence of

burst or merge events, the motion field needs to be processed. This may be done by computing the

variance of the X and Y components of the motion vector field and thresholding. Several thresholding

techniques exist, of these Lorentz thresholding will be employed. Lorentz thresholding is an example

of a parameter free thresholding technique and is explored subsequently.

17.1 Lorentz thresholding

This is an instance of a percentage thresholding technique [51][pg. 216-218]. The technique was

proposed by Goel and Vidakovic [49] in the context of wavelet based denoising. The Lorentz curve

of a data set is defined as follows,

S(x) =
∑x

k=1 m(k)
∑N

i=1 m(i)
(17.1)

where, m(k) denotes the members of the population ranked in increasing magnitude. x, k , i are

remapped to lie within 0 and 1. Originally, S(x) denoted the total wealth of a number of individuals

in a population, if the individuals were ranked in order of increasing wealth [49, 79, 37].

The threshold is selected by setting the pixels below the average energy of the image to zero.

Lorentz thresholding sets the pixels at, or above, the average energy to the maximum value allowed

(for example, 255). Lorentz filtering leaves coefficients with energy above, or at, the average energy

alone.

The proportion of pixels remapped is the proportion of pixels with energy less than, or at, the

average energy of the pixels. The lower p0 × 100 pixels are removed (set to zero).

299
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p0 = 1

N

∑

k=1

N I (m2(k) ≤ m2) (17.2)

where n is the number of coefficients, and I () is an indicator function,

I (w) =







1, I (m2(k) ≤ m2

0, otherwise
(17.3)

and,

m2 = 1

N

∑

k=1

Nm2(k) (17.4)

A Lorentz thresholded image may not localise the regions of interest (pixels with large energies)

sufficiently, this implies a pre-processing stage is needed. To reduce the number of pixels thresholded,

the high energy pixels should be increased in magnitude and the low energy pixels decreased. This

makes the Lorentz curve more convex, and more coefficients then lie below the average energy, this

implies that fewer pixels are thresholded. This suggests the use of an increasing function for re-

mapping the pixels intensities. An increasing function, by definition, has the following property,

f (x +1x) ≥ f (x), for some 1x ≤ 0, which implies f ′(x +1x) ≥ f ′(x) also holds [75, 134].

17.2 Comparing motion estimation algorithms

Consider a bubble bursting, provided the surrounding bubbles are unaffected, the bubble (or bubbles)

beneath the burst bubble are exposed. Similarly two bubbles merging result in the highlights of both

bubbles disappearing and a new highlight being generated elsewhere on the new bubble. A burst or

merge event generates a new region, or regions, in an image which have no analogue in the previous

image. This implies that a region matching motion estimation algorithm will have difficulty matching

regions in the unmerged, or burst, bubbles to regions in the bubbles of the next image. In optical flow

type algorithms, this leads to large temporal errors which implies large motion.

It is then reasonable to expect that large errors will be generated in the motion estimation process if

bubbles burst or merge. This suggests that the difference between the warped and reference image (the

error image) will show large errors at the discontinuity, or in the region of this burst or merge. Pixels

with large intensities on the error image may then be used as indicators of motion discontinuities.

In view of the qualitative performance of the algorithms considered in the previous two chapters,

and brevity, only Horn and Schunk’s gradient based optical flow algorithm [67] (see section 15.1),

and the hierarchical MSE based SEA algorithm will be considered. It is important that the motion
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estimation algorithm used generates small error images (i.e. is a good motion estimator). Small

error images imply that a large error is significant, and should have an identifiable cause in the image

pair considered. This prevents false positives (incorrectly detecting a burst or merge event), and

improves localisation. Figure 17.1 shows a bubble burst, and the images immediately before and

after. Similar for figure 17.2, only for bubble merges. Given that the motion estimates at the edges of

the images are suspect (this depends on how pixels outside the boundaries of the image are handled

by the motion estimation algorithm), the edge pixels, and pixels close to the edges, should be ignored

for the purposes of post processing of the motion field.

Once the motion fields are computed, the variance of the X and Y components of the motion

field are computed. The variance is computed within a disc shaped neighbourhood of radius 8. This

large variance allows for local deviations form the average motion to be smoothed away, while not

smoothing away the discontinuity caused by the burst or merge event. The radius is chosen to localise

the motion field discontinuities well, but at the same time prevent fragmentation of the discontinuity on

the thresholded variance image. This explains the somewhat circular regions visible on the variance,

and thresholded variance, images (see figure 17.4 and 17.5 for example). The composite variance

image is formed by the pointwise maximum of the X and Y variances. This preserves pixels where

the variances are large.

Thresholding the variance images provides localisation of the motion vector discontinuities.

Lorentz filtering [37, 49] is used in an attempt to threshold the variance components of the motion

field in a parameter free way. Prior to thresholding, the variance images are pre-processed by tak-

ing each pixel to its 5-th exponent, and then rescaling the pixel values to lie between their original

maximum and minimum values. The pre-processing stage preferentially maintains the larger pixel

intensities. Admittedly, using a pre-processing stage replaces the choice of a simple threshold, for

example, by the choice of the shape of the pre-processing function and its parameters. Lorentz thresh-

olding, and pre-processing prior to Lorentz thresholding, is explored in section 17.1. Investigation

shows that the preprocessing used provides good localisation of the events, without including minor

eddies and swirls in the motion field.

A motion field allows for the warping of the next image in the sequence. This is essentially an

estimation of the current image, given the motion estimate between the current and next image. The

absolute difference between the estimated and current image, yields the error in approximation. The

thresholded approximation error yields pixels where the motion estimation process does not predict

the change in pixel intensities due to motion. This implies that the thresholded pixels occur where

sudden changes in intensity occur. This includes bubble bursts and merges. Examination of the burst

test images, show changes in the position and intensity of highlights. It is expected then, that these

highlight changes will show themselves in the thresholded approximation. Again, Lorentz filtering

is used with a pre-processing stage which takes the 5-th exponent of the pixels in an image before

re-mapping the pixels intensities to lie in the range of intensities of the original image. The pre-

processing stage allows for significant errors to be localised without including less significant ones.
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(a) Image at t −1t .

(b) Image at t .

(c) Image at t +1t .

FIGURE 17.1 A bubble burst event.
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(a) Image at t −1t .

(b) Image at t .

(c) Image at t +1t .

FIGURE 17.2 A bubble merge event.
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The parameters are found by investigation.

This does suggest an iterative improvement motion estimation scheme. If the prediction error

at a pixel is larger than some threshold, or the average error is larger than some threshold, then a

new motion estimate for that pixel is computed with finer accuracy. With block motion estimation

algorithms, for example, this would involve larger block and search window sizes. For optical flow

type algorithms this may involve more iterations during the update stage.

The remainder of this chapter examines the issue of localising the discontinuities within the motion

vector field.

17.2.1 Horn and Schunk’s algorithm

Horn and Schunk’s algorithm is evaluated for its utility in detecting burst of merge events. The

algorithm parameters used are: alpha is α = 1 and the number of iterations 16. These are the same

parameters used for motion estimation (see section 15.1). These parameters are selected to give the

best backward predicted frame at time t , given the motion field and the next image in the sequence at

time t +1t .

A bubble burst

Horn and Schunk’s algorithm is applied to the images at t −1t and t of the burst test images (fig-

ure 17.1). Figure 17.3 shows the effect of a bubble burst on the motion field. Figure 17.4 shows the

X, Y, and the point-wise maximum of the X and Y variances of the motion field. Figure 17.5 shows

the thresholded variances. Note that the Lorentz thresholded composite variance image shows only

two objects of significant size, these correspond to the bubble burst and a merge event respectively.

The smaller objects correspond to simple highlight changes. The energy in the difference between the

image at time t and the predicted image is 11 258 428.

The energy in the difference image when one repeats the process for the next image, that is,

generating a new motion field for images at time t and t +1t , and then using the motion field to

predict the image at time t using the image at time t +1t , yields the energy in the error image as

6 079 348. Examination of the images in question (see figure 17.1) show that no burst or merge event

is visible, although some highlight changes do occur.

Figure 17.6 shows the thresholded highlights which are coincident with the thresholded motion

discontinuities. These show that the burst event is coincident with some highlight changes and the

merge event with a significant one. The smaller objects are then highlight changes, but not significant.

A bubble merge

Similarly to the burst detection case, figure 17.7 shows the effect of a bubble merge. Figure 17.8 shows

the X, Y, and the point-wise maximum of the X and Y variances of the motion field. Figure 17.9 shows

the thresholded variances. Note that the Lorentz thresholded composite variance image shows a single
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(a) Motion field, scaled by factor of 4. Average motion (1.6, −0.11).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 11 258 428.

FIGURE 17.3 Effect of a bubble burst, measured using Horn and Schunk’s algorithm.
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(a) Variance of the X component of the motion field, inverted.

(b) Variance of the Y component of the motion field, inverted.

(c) Maximum of the variance of the X and Y components of the motion field, inverted.

FIGURE 17.4 The variances of the X and Y components of the motion field, via Horn and Schunk.
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(a) Variance of the X component of the motion field, thresholded, inverted.

(b) Variance of the Y component of the motion field, thresholded, inverted.

(c) Intersection of the thresholded X and Y component of the motion field, inverted.

FIGURE 17.5 The thresholded variances of the X and Y components of the motion field, via Horn
and Schunk.
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(a) Lorentz thresholded error image.

(b) Thresholded highlights coincident with motion discontinuities.

FIGURE 17.6 Thresholded highlights and coincident with motion discontinuities, via Horn and
Schunk.
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object, which corresponds to the merge event. The energy in the error image is 12 083 425. The error

image is generated by predicting the image at time t using the motion field and the image at time

t +1t . If the error estimation process is repeated for the images at time t and t +1t , then the error

is 12 147 623. Examination of the images in question (figure 17.2) show that no burst or merge event

is visible.

Figure 17.10 shows the thresholded highlights which are coincident with the thresholded motion

discontinuities. These show that the merge event coincides with a single significant highlight change.

17.2.2 Hierarchical Minimum Absolute Difference (MAD) based Successive Elimina-
tion Algorithm (SEA)

The Hierarchical MAD based SEA algorithm is examined to test its suitability for burst and merge

detection. The algorithm parameters used are: a search block size of 7 × 7 and a search area of

15 × 15. These parameters are the ones used in the general motion estimate in (see section 16.2.2)

and allow for a tradeoff of performance vs. speed.

A bubble burst

Hierarchical SEA is applied to the images at time t −1t and t of the burst test images (figure 17.1).

Figure 17.11 shows the effect of a bubble burst on the motion field. Note the motion field is especially

uncorrelated at the burst. Figure 17.12 shows the variance of the X and Y components of the motion

field. Figure 17.13 shows the variance images thresholded. Note that several regions are extracted by

the thresholding of the point-wise maximum of the variance of the X and Y components of the motion

field. The point-wise maximum operation ensures that the composite variance is large whenever either

of its components is large. Careful comparison of the positions of these regions to the test images (see

figure 17.1), show the following: a bubble burst, and regions corresponding to highlight changes. The

energy in the error between the predicted and the image at time t is 2 893 428.

Figure 17.14 shows the thresholded highlights coincident with the thresholded motion discontinu-

ities. A significant highlight change, and three clustered smaller highlight changes are detected. The

clustered trio of highlight changes occur in the vicinity of the bubble burst.

If the process is repeated for the two succeeding images, at time t and time t +1t respectively of

the burst test images (figure 17.1), then the energy in the error between the predicted and the image at

time t is 2 019 299. Examination of the images in question (figure 17.1) show that no burst or merge

event is visible, though some highlight changes do occur.

A bubble merge

The process is repeated, but for a bubble merge event. Figure 17.15 shows the effect of a bubble

merge. Note the correlated motion field. Figure 17.16 shows the variance of the X and Y components
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(a) Motion field, scaled by factor of 4. Average motion (−0.17, −1.6).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 12 083 425.

FIGURE 17.7 Effect of a bubble merge, measured using Horn and Schunk’s algorithm.
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(a) Variance of the X component of the motion field, inverted.

(b) Variance of the Y component of the motion field, inverted.

(c) Maximum of the variance of the X and Y components of the motion field, inverted.

FIGURE 17.8 The variances of the X and Y components of the motion field, merge event, via Horn
and Schunk.
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(a) Variance of the X component of the motion field, thresholded, inverted.

(b) Variance of the Y component of the motion field, thresholded, inverted.

(c) Intersection of the thresholded X and Y component of the motion field, inverted.

FIGURE 17.9 The thresholded variances of the X and Y components of the motion field, merge event,
via Horn and Schunk.
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(a) Lorentz thresholded error image.

(b) Thresholded highlights coincident with motion discontinuities.

FIGURE 17.10 Thresholded highlights and coincident with motion discontinuities, merge event, via
Horn and Schunk.
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of the motion field. Figure 17.17 shows the variance images thresholded. Note that a single object is

visible after Lorentz thresholding. The object corresponds to the position of the merge event.

Figure 17.18 shows a single significant highlight coincident with the thresholded motion compos-

ite variance. Figure 17.18 shows that the highlights of the merged bubbles are not predicted well.

The energy in the error between the predicted and the image at time t is 3 236 513. If the process

is repeated for the two succeeding images, then the energy in the error between the predicted image

and the image at time t +1t is 1 438 988. Examination of the frames in question (figure 17.2) show

that no burst or merge event is visible.

17.3 Discussion

Clearly, a bubble burst, merge, or highlight change causes a discontinuity in the motion vector field.

Thresholding the variance of the X and Y components of the motion field results in the localisation

of the discontinuities in the motion vector field. Discontinuities in the motion field are not limited to

bursts or merges, to a lesser extent discontinuities may be caused by different parts of the froth having

different local motion. A second cause lies in the change of aspect of a bubble, causing the highlight

to change position.

Of the pair of algorithms considered for burst detection, Horn and Schunk’s algorithm performs

better than the Hierarchical MSE based SEA algorithm. Horn and Schunk’s algorithm provides good

localisation and shows a large difference between the average error energy between the image pair

with the burst event and the next pair of images.

Merge detection, however, shows Horn and Schunk’s algorithm providing good localisation. The

difference in the average error between the image pair containing the merge and the next image pair

is not significant. The Hierarchical MSE based SEA algorithm does not localise as well, but shows

a clear distinction in the average prediction error between the image pair with the merge and the

successive pair of images.

The localisation difficulty with the Hierarchical MSE based SEA algorithm is likely due to the

good motion estimates provided at each pixel. (A motion estimate can be ranked in terms of the

prediction error for the associated motion estimate.) The fragmentation may be partially offset by less

pre-processing of the error image prior to Lorentz thresholding. This, clearly visible in the Lorentz

filtered images, has the result of localising pixels with less significant prediction errors of motion

estimate variances. On the other hand, these other regions sometimes correspond to highlight changes.

The Hierarchical MSE based SEA algorithm shows significant average prediction errors for burst

and merge events. This suggests a method for finding images in a sequence where changes have

occurred, images are selected for further analysis if the prediction error is above some threshold, or

significantly larger than the average prediction error for the previous image pair.1

It is clearly feasible to find candidate images in a video sequence for significant bubble bursts,
1This may also be utilised for camera, or scene, change detection in television sequences, for example.
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(a) Motion field, scaled by factor of 4. Average motion (2.2, −0.10).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 2 893 428.

FIGURE 17.11 Effect of a bubble burst, measured using MAD based SEA.
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(a) Variance of the X component of the motion field, inverted.

(b) Variance of the Y component of the motion field, inverted.

(c) Maximum of the variance of the X and Y components of the motion field, inverted.

FIGURE 17.12 The variances of the X and Y components of the motion field, via MAD based SEA,
burst event.
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(a) Variance of the X component of the motion field, thresholded, inverted.

(b) Variance of the Y component of the motion field, thresholded, inverted.

(c) Maximum of the variance of the X and Y components of the motion field, inverted.

FIGURE 17.13 The thresholded variances of the X and Y components of the motion field, via MAD
based SEA, burst event.
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(a) Lorentz thresholded error image.

(b) Thresholded highlights coincident with motion discontinuities.

FIGURE 17.14 Thresholded highlights and coincident with motion discontinuities, via MAD based
SEA.
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(a) Motion field, scaled by factor of 4. Average motion (−0.20, −2.0).

(b) Registered image.

(c) Registered error, stretched. Energy in error image is 3 236 513.

FIGURE 17.15 Effect of a bubble merge, measured using MAD based SEA.
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(a) Variance of the X component of the motion field, inverted.

(b) Variance of the Y component of the motion field, inverted.

(c) Maximum of the variance of the X and Y components of the motion field, inverted.

FIGURE 17.16 The variances of the X and Y components of the motion field, via MAD based SEA,
merge event.
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(a) Variance of the X component of the motion field, thresholded, inverted.

(b) Variance of the Y component of the motion field, thresholded, inverted.

(c) Maximum of the variance of the X and Y components of the motion field, inverted.

FIGURE 17.17 The thresholded variances of the X and Y components of the motion field, via MAD
based SEA, merge event.
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(a) Lorentz thresholded error image.

(b) Thresholded highlights coincident with motion discontinuities.

FIGURE 17.18 Thresholded highlights and coincident with motion discontinuities, via MAD based
SEA, merge event.
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merges or highlight changes. These candidate images may then be further processed in an attempt to

localise the event in question. Highlight changes tend to occur in conjunction with high variances in

the motion field. This has the effect of over-estimating the number of burst or merge events.
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Chapter 18

Comparisons of the various motion

estimation algorithms

It is fairly difficult to compare the various motion estimation algorithms on a sequence of froth images

without introducing some observer bias. After all, if the motion of the froth at each pixel were known

already for calibrating the motion estimation algorithms, then there would be no need for testing

algorithms since the problem would already have been solved. In the absence of known motion on a

pixel by pixel basis, all that can be done is observing that the candidate algorithms find the trend of

motion and comparing the algorithms on artificially warped froth images.

The alternative proposed here is to use the motion field and one of the images to estimate the

other. The energy in the difference between the image at time t , and the interpolated image generated

from the motion field and the image at time t +1t , can be used to rank algorithms. It is possible to

generate the image at time t +1t , from the motion field and the image at time t but this would involve

interpolation of the motion field as well as the image in question. A further issue is the selection of

optimal parameters for the various algorithms to render them suitable for froth image sequences.

18.1 The test set used

The test set used consists of 224 frames (≈ 9s) taken taken on nine flotation banks as shown in

table 18.1. The data set comprises 1 116 frames in all. The data is all collected from the Merensky

flotation circuit an the AngloPlats Amandelbult Concentrator. The images used are the even fields

of two consecutive frames. This is not the only way to overcome the interlacing problem, odd fields

may be used, or the even and odd fields interpolated up to full frame size before being processed.

De-interlacing removes motion artifacts introduced by interlacing. Recall that the even and odd fields

in a frame are taken at different times (a 1
50 th of a second apart).

325
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TABLE 18.1 The data set used for motion estimation.

Image collection Bank collected from Time Date Operational notes

Cleaner 1 Cleaner 17h04 June 1997 Normal
Rougher 1 Rougher 19h55 June 1997 Normal
Rougher 2 Rougher 20h07 June 1997 Normal
Rougher 3 Rougher 10h52 18 June 1998 Normal
Rougher 4 Rougher 19h03 17 June 1998 Normal
Rougher 5 Rougher 19h31 17 June 1998 Higher interface
Rougher 6 Rougher 19h40 17 June 1998 Low airflow
Rougher 7 Rougher 19h55 17 June 1998 Low depressant
Rougher 8 Rougher 20h07 17 June 1998 High frother

18.2 Selection of parameters for various motion estimation algorithms

The parameters used in the different motion estimation algorithms are selected by hand. This allows

for good performance, since domain specific knowledge is used, coupled with reasonable running

times. In principle, selection of optimal parameters is a combinatorial optimisation problem.

A cost function can be proposed, for an algorithm’s parameters, as follows. Once the motion

field has been generated, the motion field can be used to warp an image to produce an estimate of the

current image in the sequence of images. This estimate can then be compared to the original and an

error measure applied.

This allows for an optimisation algorithm to be used to compute, for a given training sequence

of images, the parameters for a motion estimation algorithm which best captures the motion between

successive images. There are a large number of optimisation algorithms described in the literature

(see [115] for algorithms and a succinct overview of some popular types). The better known com-

binatorial optimisers include Population Based Incremental Learning (PBIL) [8] a variant of genetic

algorithm. Simulated annealing [1] is another. Other deterministic optimisers include gradient descent

type algorithms.

The parameters used for the different motion estimation algorithms are,

• Block and region matching algorithms,

Pixel Tracing Block size 101 × 101 pixels and 30 pixels searched along each search direction.

MAD based SEA Block size of 9 × 9 and a search area of 5 × 5.

MSE based SEA Block size of 9 × 9 and a search area of 5 × 5.

Kottke and Sun 400 regions used, and confidence (α) of 1. The clustering stops when the

largest cluster shift is less than 1 pixels.

Watershed based motion estimation The search radius is 40 pixels and the distance to best

match weighted by 10.
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• Gradient based optical flow,

Horn and Schunk 16 iterations, with α = 1.

Div-Curl Optical Flow 16 iterations, α = 0.8 and β = 0.2.

Tistarelli A sigma of σ = 2 and τ = 1.

• Hierarchical algorithms. The depth of the scale space pyramid used is 4, and the sigma of the

low-pass Gaussian kernel used is σ = 1. The spatial extent of the Gaussian kernel is selected

to be 4 × 4.

MAD based SEA Block size of 5 × 5 and a search area of 3 × 3.

MSE based SEA Block size of 5 × 5 and a search area of 3 × 3.

Motion from Watershed The search radius is 40 pixels and the distance to best match

weighted by 10.

Horn and Schunk 16 iterations, with α = 1.

18.3 Comparison of algorithms on the standard test set

A number of motion estimation algorithms are evaluated on the froth image sequences. The algorithms

are compared by treating motion estimation as an image registration problem and computing the

registration error. Traditionally, proposed motion estimation algorithms are compared on data where

the motion is known beforehand (for, example, on artificial data) [68]. A second technique relies on

an observer judging by eye whether a motion field is reasonable [84].

Given two successive images, the motion field is computed using some algorithm. The motion

field shows the pixels moving from their positions in the first image (the reference image), to their

new positions as shown in the successive image (the motion image). The comparison method used

inverse warps the motion image using the motion field, in other words, an estimated reference image is

generated from the motion image using the motion field. The warp used estimates the pixel intensities,

interpolated using a small sigma Gaussian kernel (σ = 0.5 used), at the predicted position of the pixel.

The sigma is chosen to interpolate without smoothing the warped image significantly. This warping

procedure is significantly simpler than the alternative, which is projecting the pixels in the first image

onto their new positions as predicted by the motion field, and then interpolating to find the intensities

on the rectangular grid. The warped image is compared to the first image.

This technique is related to existing methods for comparing temporal compression in image se-

quence compression (see [139][pg. 440–442]), television frame rate conversion [10] and motion

detection [154].

Szeliski proposes a similar metric for comparing motion estimation and stereo correspondence

algorithms [137]. Szeliski, however, incorporates a second warping stage of less than one pixel at

worst, in order to correct for possible mis-registrations in the first registration stage. It should be
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noted, however, that the registration algorithm used will bias the results of all the motion estimation

algorithms compared. Since this bias is common to all the results, correction of mis-registrations may

well be unnecessary.

If one can regard a motion estimation algorithm as a form of image registration, then the registra-

tion error can be used as a means of comparison. The registration error is the difference between the

reference image and the motion image warped by the final motion flow field. Tables 18.3 and 18.4

show the MAD and MSE for different motion estimation algorithms. Figures 18.1 and18.2 show the

MAD and MSE of the cumulative registration error.

Another criterion for evaluating algorithms is the processing time required for generating the mo-

tion flow field. This is especially important for potential real time applications. Table 18.2 includes the

time taken to execute the algorithm on a FreeBSD dual processor Pentium II machine. The algorithms

were all implemented in Java running on a Java 1.3.0 virtual machine.

The difficulty in comparing algorithm processing required is comparing a multiple correlation

algorithm like MSE based SEA to a feature based region comparison algorithm (such as watershed

based motion estimation). One cannot here look at the numbers of pixels processed, or even the puta-

tive number of operations (can one really claim that a floating point operation is similar in execution

time to an integer operation?). Examining computational time, while not ideal, is (under the same

process load conditions) simpler and perhaps more indicative of the complexity of an algorithm.

TABLE 18.2 Comparison of running times.

Algorithm Running Time(s)

BME regularised 3254052
MAD based SEA 118920
MSE based SEA 38137
Pixel Tracing 932
Kottke and Sun 7408
Motion from Watershed 35533

Div Curl 50055
Horn and Schunk 9205
Tistarelli 243460

Hierarchical Framework 1 MAD based SEA 13540
Hierarchical Framework 1 MSE based SEA 38137
Hierarchical Framework 1 Motion from Watershed 55497

Hierarchical Framework 2 Horn and Schunk 66118
Hierarchical Framework 2 MAD based SEA 32221
Hierarchical Framework 2 MSE based SEA 51976
Hierarchical Framework 2 Motion from Watershed 81098
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FIGURE 18.2 Registered Error (as MSE), test set.

18.4 Comparison of algorithms on artificially warped images

A second data set is generated by translating the pixel intensities of the first data set by (5, 3). The

choice is arbitrary, but needs to be away from the North-East and North-West diagonal of the image

as well as from the axes. This enables errors in motion estimation to be localised as errors in the x or

y direction as needed. Since the pixel by pixel motion field is known, the error between the computed

and known motion fields can be examined. To facilitate the comparisons, only a subregion of the

motion fields are compared, a rectangular region from (20, 20) to (620, 220), this is chosen to avoid

possible image boundary effects. Table 18.5 and 18.6 summarises the error between the known and

computed motion fields for the various algorithms tested.

A final criterion is the error in the difference image between the reference image, and the motion
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image as inverse warped by the motion field. This gives some indication of the registration capability

of the algorithm. The better the algorithm the lower this error should be. Again, the performance of

the algorithms with regard to this criterion is summarised in tables 18.7 and18.8 for MAD and MSE

respective.

Figures 18.3, 18.4 show the error in recovering the motion field used to generate the artificial

data from the froth image data set. Figures 18.5 and 18.6 compare the error in the difference image

between the reference image and the reference image as warped by the recovered motion field.
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FIGURE 18.3 Error in reconstructed warp field (as MAD), artificial data.

MSE

A
lg

or
ith

m

0 250 500 750 1000

BME_regularised
Kottke_and_Sun
MAD_based_SEA
MSE_based_SEA
Motion_from_Watershed
Pixel_Tracing

Div_Curl_OF
Horn_and_Schunk_OF
Tistarelli_OF

HF1_MAD_based_SEA
HF1_MSE_based_SEA
HF1_Motion_from_Watershed

HF2_Horn_and_Schunk_OF
HF2_MAD_based_SEA
HF2_MSE_based_SEA
HF2_Motion_from_Watershed

FIGURE 18.4 Error in reconstructed warp field (as MSE), artificial data.

18.5 Discussion

The rankings of algorithms in terms of smallest error is different for the error norms used. This can

be attributed to the relative weighting of large errors. MAD weights each error linearly, whereas,

MSE weights each error quadratically. Table 18.9 shows the different rankings of the various motion

estimation algorithms in terms of increasing error.

Clearly the BME estimation algorithms, for the MSE measure, minimises the occurrence of large

errors. This is a likely consequence of the robustness of correlation based methods. The warped data

shows BME estimating large motion well.

Framework 1 is shown to better estimate the warping field than Framework 2. This implies that

Framework 1 is a better estimator of the actual motion field. The implication is that the method used
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TABLE 18.9 Ranking motion estimation algorithms.

Standard test set Warped images
Warp field Registered error

MAD MSE MAD MSE MAD MSE

Horn Schunk MAD SEA HF1 MSE SEA HF1 MAD SEA Watershed Watershed
MAD SEA MSE SEA HF2 MAD SEA HF1 MSE SEA Pixel Tracing Pixel Tracing
MSE SEA HF2 MAD SEA HF2 MSE SEA HF2 MAD SEA HF2 Horn Schunk HF2 Horn Schunk
HF2 MAD SEA HF2 MSE SEA HF2 Watershed HF2 MSE SEA MAD SEA HF2 MSE SEA
HF2 MSE SEA HF1 MAD SEA MSE SEA MAD SEA MSE SEA MAD SEA
HF2 Horn Schunk HF1 MSE SEA MAD SEA MSE SEA Horn Schunk HF1 Watershed
HF1 MAD SEA Horn Schunk Tistarelli HF2 Watershed HF1 Watershed MSE SEA
Tistarelli Tistarelli HF2 Horn Schunk HF2 Horn Schunk HF2 MSE SEA HF2 MAD SEA
HF1 MSE SEA HF2 Horn Schunk Horn Schunk Pixel Tracing HF2 MAD SEA HF1 MSE SEA
Div Curl Div Curl HF1 MAD SEA Watershed Tistarelli Horn Schunk
Pixel Tracing Pixel Tracing HF1 Watershed Horn Schunk HF1 MSE SEA HF1 MAD SEA
Watershed Watershed Watershed HF1 Watershed HF1 MAD SEA Tistarelli
HF1 Watershed HF1 Watershed Pixel Tracing Tistarelli HF2 Watershed Kottke Sun
Kottke Sun Kottke Sun Kottke Sun Kottke Sun Kottke Sun Watershed
HF2 Watershed HF2 Watershed Div Curl Div Curl Div Curl Div Curl

for comparing motion fields, namely the error between the reference image and the estimated reference

image (created from the motion field and the motion image) should be used with care. However, when

baseline motion data is unavailable, the method of comparison (a modified form of that due to Szeliski

[137]) may be the only way to quantatively compare motion estimation algorithms.

Note that Tistarelli’s algorithm always performs nearly as well, or worse than Horn and Schunk’s

algorithm. This indicates the utility of diffusing neighbouring motion estimates into regions were

Tistarelli’s algorithm cannot estimate the motion.

Motion in froth image sequences is a simpler problem than the general motion estimation problem.

The general motion estimation problem must be capable of accounting for the motion of different

objects in an image. The objects may well have very different motion, and the motion estimation

algorithm must respect the boundaries of the objects, and not assign incorrect motion of one object to

another or to the background. This, for example, leads to the complex regularisations used in gradient

based optical flow in the literature [2, 11, 103]. Froth image sequences, however, exhibit different

motion, the motion of a pixel is highly correlated to its neighbours. This is unsurprising, each pixel

on a froth surface is physically coupled to its neighbours. Thus, examining complex regularisations

becomes unnecessary.

It is clear that optical flow algorithms do not estimate large motion well. This is a result of the

gradient estimation operating on a small local neighbourhood only. Embedding Horn and Schunk’s

algorithm in a hierarchical framework is seen to perform well, however.

While the motion fields generated by Watershed based motion estimation and Kottke and Sun’s

motion from cluster matching, show discontinuities, and qualitatively, does not estimate the motion

well, the artificial data set does show it estimates large average motion well.



18.5 Discussion 340

Div Curl optical flow is not suited to estimating uniform motion. The regularisation, while capable

of being reduced to Horn and Schunk’s, assumes a complex motion field.

There exists a performance vs. processing time tradeoff. An application may settle for a lower

performance algorithm provided this algorithm was fast, compared to another algorithm with better

performance but is slower. An extreme example of this is Horn and Schunk’s algorithm (section 15.1)

vs. MSE based SEA (section 14.4). Block motion estimation algorithms provide good performance

for large block sizes and area of the motion image searched. The computational time, however, is

slow. Contrasting are the hierarchical methods, small block sizes and regions searched on the motion

image perform well in a hierarchical framework. The results show Framework 2 performs better than

framework 1 for the standard test set.

Real time applications demand fast algorithms. This suggests, for relatively small motion, using

Horn and Schunk’s algorithm followed by hierarchical MAD or MSE based SEA within Framework 1.

While Framework 2 does perform better, it is considerably slower because of the extra interpolation

stage, and does not estimate the actual motion field as well for uniform motion. If a fast uniform

motion froth, close to a cell’s launder, for example, is of interest, then a Framework 1 is preferable to

Horn and Schunk’s algorithm.
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Chapter 19

Conclusions and Recommendations

The issues of denoising, segmentation and motion analysis are examined. Finally, future work is

proposed.

19.1 Denoising

Some form of denoising or smoothing of the froth images is essential. The over-segmentation is not

simply an additive noise problem (although this does play a role) but is complicated by miniscule

bubbles on top of large bubbles, fragmentation of the highlights and what appears to be reflections

of small bubble highlights off of the large bubbles. The nature of the denoising, unfortunately, is

that some decision will have to be made regarding a tradeoff between correctly segmenting the large

bubbles and removing the small bubbles. Correctly preserving bubble boundaries wherever possible

demands the use of a non-linear denoising algorithm. Denoising has the added advantage of improving

the robustness of the motion estimation process.

Of the denoising algorithms examined, mean filtering, using a Gaussian kernel, performed well,

but does not preserve small bubbles. The added requirement of preserving small bubbles is satisfied

by the family of anisotropic diffusion algorithms. These provided acceptable performance without

being too computationally demanding. Perona and Malik’s algorithm (at least for a small number

of iterations) performed acceptably. Tukey’s bi-weight function, used as the g(·) function, preserves

edges well and is recommended. It should be noted that few iterations are required for adequate

denoising. Catte et al’s algorithm did not denoise as much, but preserved detail better, implying more

iterations to achieve the same denoising as Perona and Malik’s algorithm. Catte et al’s algorithm does,

however, avoid certain difficulties with Perona and Malik’s formulation, for example, noisy edges.

Median filters are shown to combine good preservation of edges, noise rejection, and speed. The

simple median filter provides the best denoising performance among the family of median filters

examined. The better detail preserving filters denoising performance is significantly worse, implying

noise is being preserved.

Wavelet based denoising is fast, and preserves edges well. Wavelet denoising will not remove
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artifacts, such as small bubbles on large bubbles, but does remove random noise well. Use of wavelet

denoising will require marker processing to reduce the effect of artifacts on the segmentation.

The remaining algorithms lack either the detail preservation requirements, or are too slow. Rolling

ball openings, for example, preserve detail but, especially for larger radii, are too slow for real-time

use.

The artificial images generated are visually very similar to natural froth images. This suggests

that the piecewise spherical or elliptical model for a froth surface is potentially useful, for example,

for shape from shading.

The speed requirements for a real (or near real) time algorithm ranks the algorithms discussed

in the following order: simple median, Wavelet denoising, Perona Malik and, finally, Catte et al’s

algorithm.

19.2 Segmentation

The use of the watershed algorithm for segmentation raises the issue of choosing markers (seed re-

gions) for the watershed regions. The issue of correct choice of the markers is at least as difficult

as segmenting the image correctly, since correct choice of the markers will result in perfect, or near

perfect, segmentation. The issues of extracting and then processing the markers were examined. The

literature only speaks of using subtraction and then greyscale reconstruction to create the domes.

Investigation showed that any anti-extensive filter followed by greyscale reconstruction is capable of

providing acceptable domes. Erosion of the inverted image (using a rolling ball) followed by greyscale

reconstruction was finally selected as the most appropriate technique. The radius of the rolling ball

selects the minimum scale of the bubble highlights actually maintained. Since highlights are used

for locating the markers, it is reasonable to reject any potential marker generated by the previous

step whose average intensity (on the original image) is too dark. Rejecting markers whose average

intensity is less that 50% of the maximum intensity improves the segmentation without significantly

merging bubbles. Dilating (or closing) the markers serves to join close markers. This is not unreason-

able since it is observed that, except for small bubbles clustered together, highlights are not very close

to each other. Merging close markers also serves to merge fragmented markers.

The process of filtering the markers (essentially via a connected components approach) makes

the segmentation more robust to a denoising algorithm not performing well. A real, or near real

time, system demands speedy algorithms. This does suggest using wavelet based denoising followed

by marker processing. It should be remembered that wavelet denoising runs in linear time, and the

running time of a multi-resolution analysis is proportional to Nlog(N) (N is the number of pixels in

an image).
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19.3 Motion estimation

Motion estimation of froth images remains a difficult problem. The first difficulty is that froth struc-

tures are not rigid by any means. The motion estimation problem is severely limited by the lack of

any means of determining the actual motion of the froth. This lack makes it difficult to quantitatively

compare the motion fields generated.

Clearly there is a relationship between running time of an algorithm and the performance of the

algorithm. The block matching algorithms are slow but perform well (excepting hierarchical algo-

rithms). Provided the motion is small, the optical flow algorithms perform well.

The performance of the motion estimation algorithms is compared by, essentially, an image reg-

istration approach. Once a motion field is generated, however this may be, an image at time t +1t

may be warped onto its predecessor at time t . The difference between the predicted and the actual

pixel intensities is clearly related to how well the motion estimation algorithm has performed. The

literature usually test motion estimation algorithms on artificial data (where the motion is known),

or show images and motion fields and appeal to reader to judge what is reasonable (the literature is

replete with such examples, see [72, 84] for example).

The comparison technique has the advantage of a numerical means of comparison (the MSE of

the error image for example). This allows for a motion estimation algorithm (or algorithms) to be

embedded in an optimisation framework and the algorithm’s parameters estimated. This, once an

algorithm has been selected, turns the embedded motion estimation process into a “black-box” which

is, essentially, self-calibrating.

It is shown that discontinuities in the motion field correspond to bubble bursts, bubble merges and

highlights changing position or shape. It is shown that detection of these events is feasible.

It is shown that when robustness, speed, and motion estimation ability, especially for large uniform

displacement is considered, then MAD or MSE based SEA embedded in Framework 1 is preferred.

For small motion, Horn and Schunk’s algorithm, followed by MAD or MSE based SEA embedded in

Framework 2 is suggested.

19.4 How the thesis goals have been addressed

The following has been addressed within this work,

(i) For segmentation,

(a) Careful marker processing improves the noise immunity of marker based watersheds.

(b) Watershed on the distance function of an edge map, provides a simple technique for closing

gaps in an edge detected froth image.

(c) Anti-extensive filters, after dome extraction, produce better markers than simple subtraction

alone.
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(ii) For denoising,

(a) Edge preserving denoising is shown to produce better watershed segmentations than linear

filtering.

(b) The artificial froth image model is shown to be useful for quantitatively comparing denoising

algorithms for this application.

(c) Fast denoising algorithms which do not affect the segmentation are shown to exist.

(d) Wavelet based Occam filters denoise well and fast. The principles of Occam flters are based

on image coding, which implies wavelet based compression for froth images. JPEG based

denoising is shown to introduce artifacts without appreciable denoising. This indicates that

froth image sequences intended for processing should not be compressed using a JPEG

based coder (for example MPEG and MPEG2).

(iii) For motion analysis,

(a) The influence of increasing block size and correlation between neighbouring motion vectors

is demonstrated.

(b) A motion estimation algorithm, Mean Square Error Successive Elimination Algorithm is

proposed.

(c) It is shown that bubble bursts and merges may be detected by finding discontinuities in dense

motion fields.

(d) An algorithm suitable for fast and robust dense motion field estimation is shown to exist.

19.5 Future work

Given the number of research groups active in this area now, and work at the University of Cape

Town, further examination of classical watershed based techniques on froth images now seems of

limited use.

The problems encountered in the use of watershed include “comet-tailing”, this could be reduced

if a shape constraint were imposed on growth of the watershed regions. This issue of constrained

contour evolution has been extensively addressed in the literature on snakes (see [116] and references

therein). In the context of froth imaging this corresponds to model based segmentation.

Colour analysis of froth images needs to be examined. Platinum is somewhat unusual since the

froth is grey. In copper and tin, for example, the colour of the froth is a useful indicator of process

performance [59, 61, 97]. The issue of conflicts between illumination for the machine vision system

and the general plant illumination needs to be examined. The requirement that there be a single

highlight per bubble will not hold if other strong light sources are present. If the extraneous light

sources have a different colour, for example, general plant lighting has a strong red component, as
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opposed to the machine vision system lighting being essentially white, then colour analysis could be

used to find, and remove, extraneous highlights.

Shape from
�

(
�

could be shading, texture, motion, etc.) could be used to generate a height

map of a froth image. Watershed on this height map would then yield a better estimate of the bubble

boundaries. This is because the grey level intensity is dependent in a nonlinear way on shape.

Motion estimation remains an area of further work, especially since bubble merge and burst events

need robust and reliable detection. It has been shown that discontinuities in the motion field corre-

spond to bubble bursts, bubble merges, and highlight changes. Classifying these events remains an

area of further work.

A metric used to compare motion estimation algorithms involves subtracting an estimated refer-

ence image from the reference image. The average error using MAD or MSE is an indication of how

well a motion estimation algorithm performs. The estimated image is generated by inverse warping

the motion image using the motion field. It is possible to use an optimisation algorithm to find the

parameters of a motion estimation algorithm which optimises the performance of the algorithm (this

is in fact suggested by Szeliski [137]). Finding a fast and robust optimiser would turn the motion

estimation process into a self-calibrating component.

Use of wavelet based Occam filters for denoising requires a wavelet matched to the characteristics

of froth images. This problem may be framed as finding a wavelet which best compresses froth images

(or classes of froth images, perhaps). Is froth appearance under different operating conditions (froth

types) different enough to require different wavelets for optimal compression? Would this allow for

classification of froth images based on appearance?

The alternative definition of diffusion (equation 7.4) needs to be compared against Perona and

Malik’s model.
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Appendix A

Wavelets – a brief overview

This chapter presents a brief overview of wavelets. A number of good introductions to wavelets exist

in the literature. A difficulty is that most seem to written from a mathematician’s perspective. A good

introduction from the perspective of filter banks is Vetterli and Kovacevic [139]. Goswami and Chan

[51] provide a good introduction with some example applications.

A.1 A brief description of wavelets

Wavelet analysis covers two areas: multi-resolution analysis and the wavelet transform. For simplicity

the wavelet transform is examined first.

A wavelet is constructed in terms of a scaling function which is itself defined in terms of itself at

higher scales [3].

φ(x) = 2
∑

k

hkφ(2x − k) (A.1)

The wavelet is then defined,

ψ(x) = 2
∑

k

gkφ(2x − k) (A.2)

In the frequency domain as one increases the domain of the scaling function equation (A.1) becomes.

8(ω) = 2H(
ω

2
)8(

ω

2
) (A.3)
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It becomes clear then that as one iterates the scaling function then,

8(ω) =
[

n
∏

k=1

H(
ω

2k
)

]

8(
ω

2
) (A.4)

or, after iterating to infinity,

8(ω) =
∞
∏

k=1

H(
ω

2k
) (A.5)

This explains why the scaling function is sometimes referred to as the refinement equation. The

refinement equation can be used to generate the scaling function at different scales.

A.1.1 Constraints and convergence

Uniqueness of the coefficients h k and gk is ensured by the following, (by integrating),

∫

φ dx = 2
∑

k

hk

∫

φ(2x − k) d(2x − k)

∫

ψ dx = 2
∑

k

gk

∫

ψ(2x − k) d(2x − k)

which ensures,

∑

k

hk = 1

∑

k

gk = 1

Both the above equations are normalised, in the sense that,
∫

φ dx = 1 and
∫

ψ dx = 1. All

the constraints provide is that particular set of h k and gk will have one particular scaling function

and wavelet. Naturally, these constraints are very dependent on the definition of wavelet and scaling

functions used.

Invertibility of the wavelet transform, or multi-resolution analysis, is the so-called admissibility

criterion,

Cψ = 1

2π

∫ ∞

−∞
‖9(�)‖2 d�

‖�‖ < ∞ (A.6)

A.1.2 Polynomial approximation

Equation (A.6) must converge for the wavelet transform to be invertible. Alternatively, this implies

zero mean of wavelet,
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9(0) = 0 (A.7)

To improve the efficiency of the wavelet at finding singularities, the wavelet may be required to

have a number of vanishing moments,

∫ ∞

−∞
xnψ(x)dx = 0 (A.8)

The following Fourier identity explains why the number of vanishing moments is related to the

number of zeros at w = 0.
∫ ∞

−∞
xnψ(x)dx H⇒ 1

2π

1

(− j)n
d9(ω)n

dωn

∣

∣

∣

∣

ω=0

(A.9)

Any F(ω) can be rewritten as a rational function factorised in to poles and zeros. Differentiating

this rational function and evaluating the result at ω = 0 results in only the zeros or poles at ω = 0 being

significant. The other poles and zeros can be ignored. N zeros at ω = 0 correspond to differentiation

of the function in the time domain N times. This implies that for a power series approximation of the

function, the low order terms up to a power of N − 1 can be ignored. A wavelet having N vanishing

moments, is then only non-zero at a point where the function has significant energy in the higher order

terms in a power series expansion around this point.

Put another way, the wavelet transform can approximate functions which can be locally approxi-

mated by polynomials of up to power N − 1 with zero or small detail coefficients. The approximation

is then done by the scaling function. Equation (A.9) is only zero if the integrand is zero identically.

This approximation quality of wavelets translates to the scaling function as follows (after all, what

information cannot be carried by the wavelet coefficients must be contained in the approximation

coefficients):

• The first N − 1 zeros must exist. Zeros exist at multiples of 2π .

• The scaling function cannot have zero mean.

• Given (from equation (A.4),

8(ω) =
[ ∞
∏

k=1

H(
ω

2k
)

]

then the constraint on zeros of 8(ω) translates to zeros of H(ω) at ω = 2πn. Each factor of

8(ω) is H( ω2k ) at k = 1, 2, 3, .... Since the constraint on the mean prohibits any zero at ω = 0

all other possible zeros of 8(ω)must lie at ω = π . (By periodicity any odd multiple of π is the

same as π .) The different factors of 8(ω) divide the the input frequencies by powers of 2. The

input frequency is a multiple of two. Each factor is the evaluated either on a multiple of 2π or

an odd multiple of π .

The zeros of 8 are then controlled by the zeros of H .
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• The zeros of H(ω) at ω = π are a necessary condition for regularity, but, of itself, not sufficient

to ensure regularity. Regularity ensures that the scaling and wavelet functions are the impulse

responses of low and high pass filters respectively. This also corresponds to the wavelets from

filter banks approach. The scaling function is set by the low pass channel, and the wavelet by

the high pass channel.

A.1.3 Construction of the Wavelet from the Scaling Function and vice versa

In order to provide an efficient decomposition the wavelet is always orthogonal to the scaling function.

One can be constructed from the other. Orthogonal implies that the inner product of the two functions

is zero, irrespective of position.

A wavelet can be created from the scaling function as follows,

ψ(x) =
∑

k

Wkφ(2x − k) (A.10)

〈φ(t − k), ψ(t)〉 = 0
∫

8(ω)e jωk9∗(ω) dω = 0 (A.11)

The wavelet from scaling function is usually defined as,

ψ(x) =
∑

k

(−1)kc1−kφ(2x − k) (A.12)

This equation does follow from the requirement that the wavelet and scaling function be orthogo-

nal. Some common wavelets are summarised in table A.1.

A.1.4 Time-frequency resolution

The time-frequency resolution of wavelets is measured by the product of the Root Mean Squared

(RMS) spread of the scaling and function in the time and frequency domain [3].

σ 2
T =

∫

(t − t)‖φ(t)‖2dt

E
(A.13)

σ 2
� =

∫

(�−�)‖8(�)‖2d�

E
(A.14)

Where E is the energy in the scaling function or,

E =
∫ ∞

−∞
‖φ(t)‖2dt = 1

2π

∫ ∞

−∞
‖8(�)‖2d� (A.15)
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Name Index Scaling Coefficients Wavelet Coefficients

Haar 0 1√
2

1√
2

1 1√
2

−1√
2

Daubechies N2 0 0.4829629131445341 -0.1294095225512603
1 0.8365163037378077 -0.2241438680420134
2 0.2241438680420134 0.8365163037378077
3 -0.1294095225512603 -0.4829629131445341

Daubechies N3 0 0.3326705529500825 0.0352262918857095
1 0.8068915093110924 0.0854412738820267
2 0.4598775021184914 -0.1350110200102546
3 -0.1350110200102546 -0.4598775021184914
4 -0.0854412738820267 0.8068915093110924
5 0.0352262918857095 -0.3326705529500825

Daubechies N4 0 0.2303778133088964 -0.010597401785069
1 0.7148465705529155 -0.0328830116668852
2 0.6308807679398587 0.0308413818355607
3 -0.0279837694168599 0.1870348117190931
4 -0.1870348117190931 -0.0279837694168599
5 0.0308413818355607 -0.6308807679398587
6 0.0328830116668852 0.7148465705529155
7 -0.010597401785069 -0.2303778133088964

Daubechies N5 0 0.1601023979741929 0.0033357252854738
1 0.6038292697971895 0.012580751999082
2 0.7243085284377726 -0.0062414902127983
3 0.1384281459013203 -0.0775714938400459
4 -0.2422948870663823 -0.0322448695846381
5 -0.0322448695846381 0.2422948870663823
6 0.0775714938400459 0.1384281459013203
7 -0.0062414902127983 -0.7243085284377726
8 -0.012580751999082 0.6038292697971895
9 0.0033357252854738 -0.1601023979741929

Daubechies N6 0 0.1115407433501095 -0.0010773010853085
1 0.4946238903984533 -0.0047772575109455
2 0.7511339080210959 5.538422011614E-4
3 0.3152503517091982 0.0315820393174862
4 -0.22626469396544 0.0275228655303053
5 -0.1297668675672525 -0.0975016055873225
6 0.0975016055873225 -0.1297668675672525
7 0.0275228655303053 0.22626469396544
8 -0.0315820393174862 0.3152503517091982
0 5.538422011614E-4 -0.7511339080210959

10 0.0047772575109455 0.4946238903984533
11 -0.0010773010853085 -0.1115407433501095



A.2 Bi-orthogonality 356

and,

t =
∫∞
−∞ t‖φ(t)‖2dt

E
(A.16)

and,

� =
1

2π

∫∞
−∞�‖8(�)‖2d�

E
(A.17)

A.2 Bi-orthogonality

The notion of Bi-orthogonality involves the generating a wavelet transform or multi-resolution us-

ing one scaling function and wavelet and then reconstructing using a different scaling function and

wavelet. If φ and ψ are Bi-orthogonal to φ̃ and ψ̃ then,

< φ̃,ψ(· − l) > =< ψ̃, φ(· − l) >= 0 (A.18)

and;

< φ̃, φ(· − l) > =< ψ̃,ψ(· − l) >= δl (A.19)

As an aside on notation,

< φ ,ψ(· − l) >
def=

∫ ∞

−∞
φ (x)ψ(x − l)dx (A.20)

Bi-orthogonality can be illustrated as follows:

(i) If one has an N dimensional vector space then a basis is defined as orthogonal if the dot product

of each basis vector with every other basis vector is zero identically.

(ii) A Bi-orthogonal basis in contrast has some correlation between the various basis vectors. Note

that none of the basis vectors is redundant, or put another way, every point in this N dimensional

vector space can be reconstructed using these N slightly correlated basis vectors.

(iii) Projecting a vector onto these Bi-orthogonal basis vectors leaves the problem of perfect recon-

struction. Unlike the orthogonal basis case, reconstruction is not simply adding the basis vectors

weighted by the inner product of the input vector and the basis vectors. A vector used for re-

construction must correlate with the corresponding vector used to project an input vector into

the basis space, but still be orthogonal to other basis vectors. As an example suppose (1, 0) and

(1, 1) happen to be the projection be-orthogonal basis pair for a two dimensional vector space.
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The reconstruction pair will then be (1,−1) and (0, 1) respectively. Note that (1, 0) and (0, 1)

are orthogonal as are (1, 1) and (1,−1). On the other hand (1, 0) and (1,−1) correlate as do

(1, 1) and (0, 1).

A.3 Wavelets from filter banks

A close relationship between wavelets and filter banks exist, a wavelet transform is essentially a

perfect reconstruction filter bank with either/both high-pass and low-pass channels filtered again into

high and low pass bands and so on. Figure A.1 shows a simple filter bank with reconstruction from

the high and low-pass channels.

To maintain the possibility for Bi-orthogonality the different filters are denoted as follows:

(i) g̃ is the high pass filter.

(ii) h̃0 is the low pass filter.

(iii) g0 reconstructs the high pass coefficients after super-sampling.

(iv) h reconstructs the low pass coefficients after super-sampling.

The perfect reconstruction property ensures that the output is identical to the input.

This can be shown as follows for images provided the filters are separable [3],

H P(z2) = 1

2

(

g̃(z)I (z)+ g̃(−z)I (−z)
)

(A.21)

Adding the g̃(−z)I (−z) term ensures that the odd powers of z cancel.

L P(z) = 1

2

(

h̃0(z)I (z)+ h̃0(−z)I (−z)
)

(A.22)

The reconstructed signal is then,

R(z) = g0(z)H P(z2)+ h(z)L P(z2)

= g0(z)
1

2

[

g̃(z)I (z)+ g̃(−z)I (−z)
]

+ h(z)
1

2

[

h̃0(z)I (z)+ h̃0(−z)I (−z)
]

= 1

2

[

g0(z)g̃(z)+ h(z)h̃0(z)
]

I (z)+ 1

2

[

g0(z)g̃(−z)+ h(z)h̃0(−z)
]

I (−z)

= T (z)I (z)+ S(z)I (−z) (A.23)
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Perfect reconstruction demands,

T (z) = 1

S(z) = 0

S(z) = 0 implies no aliasing and for this to hold,

h = F(z)g̃(−z)

g0 = −F(z)h̃0(−z)

T (z) = 1, implies F(z) must be,

F(z) = 2

h̃0(z)g̃(−z)− h̃0(−z)g̃(z)
(A.24)

F(z) is derived by solving S(z) for g0(z) in terms of g̃0, h̃0 and h; substituting into T (z) and solving

for h. Similarly for g0. The form of F(z) in equation (A.24) implies F(z) = −F(−z). T (z) = 1 then

becomes,

T (z) = 1

2

(

g0(z)g̃(−z)+ h(z)h̃0(−z)
)

= 1 (A.25)

and,

T (z) = 1

2

(

g̃0(z)g0(z)+ g̃0(−z)g0(−z)
)

= 1 (A.26)

By substituting for g̃(z) and g̃(−z) to yield the duality condition. g0(z)g̃(−z) then has no even terms

in z, and is then the convolution expression,

∑

k

g0[k]g̃[2n − k] = δ[n] (A.27)

Similarly for h̃0 and g̃,

T (z) = 1

2

(

− g̃(z)h(z)− g̃(−z)h(−z)
)

= 1 (A.28)
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and again h̃0(z)h(−z) then has no even terms in z, and is then the convolution expression,

∑

k

h̃0[k]h[2n − k] = δ[n] (A.29)

(A.30)

Note that:

g̃(z)h(z) = F(z)h(−z)h(z) and

h̃0(z)g0(z) = −F(z)g0(−z)g0(z) are both odd polynomials.

2

2~
h 0

g
~

2

HP

LP

2

g
0

h

I(x,y) R(x,y)

FIGURE A.1 A simple filter bank

A.3.1 A brief introduction to the wavelet transform

A wavelet transform is usually defined as the projection of the signal onto a wavelet for all wavelet

positions and all scales.

W f (a, b) = 1√
a

∫ ∞

−∞
ψ(

t − b

a
) f (t)dt (A.31)

The inverse transform is given by,

f (t) = 1

C

∫ ∞

−∞

∫ ∞

0

W (a, b)ψab(t)

a2
dadb (A.32)

Where C is given by:

C =
∫ ∞

0

‖9(�)‖2

�
d� (A.33)
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A.3.2 An overview of multi-resolution analysis

Multi-resolution analysis decomposes a signal into into its average and detail components [3]. The

process can be repeated for both parts but is usually only done for the average coefficients. The

average coefficients are calculated by projecting the signal onto the scaling function and the detail

coefficients by projecting the signal onto the wavelet. Because of redundancies in the representation

the average and detail coefficients can be subsampled without loss of information [3].



Appendix B

Mathematical Morphology – some

definitions

This chapter will briefly define some mathematical morphology terms used in this thesis. The reader is

referred to [35, 63, 64, 65, 124, 125] for a more complete introduction to Mathematical Morphology,

[35, 64] serves as a good introduction, and [65] shows examples of applying morphology to real

world problems. As the term implies, morphology is concerned with shapes of objects within an

image. Originally morphology was based on set theory and later extended to greyscale functions.

Subsequently only greyscale morphology will be defined.

B.1 Binary morphology

After [124, 125] binary morphology will be defined as below, table B.1,

Operation Operator Definition Properties

Dilation ⊕ ⋂

b∈g f−b Increasing, extensive
Erosion 	 ⋃

b∈g f−b Anti-extensive
Opening ◦ ( f 	 g)⊕ g Idempotent, anti-extensive
Closing • ( f ⊕ g)	 g Idempotent, extensive

Where f−b is the set f now centred on −b, and b ∈ g. g is considered to be the structuring

element and f an object in a binary image. The dilation of an object, allows for all pixels which,

when g is centred on a pixel p, gp intersects the object. Similarly, the erosion of an object results in

the set of pixels which, when g is placed one of these pixels p, g p is a proper subset of the object (is

contained in the object).

The properties attributed to binary morphological operators are defined as follows, with φ() de-

noting an operation, and Q denoting an arbitrary binary region,

Extensive φ(Q) ⊃ Q.

361
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Anti-extensive The above is not true for φ, φ(Q) ⊆ Q.

Idempotent Repeating the operator has no further effect, φ(Q) = φ(φ(Q)).

Increasing If R ⊆ Q, φ(R) ⊆ φ(Q).

Clearly binary morphological filters are translation invariant.

B.2 Greyscale morphology

A greyscale image can be decomposed into a series of level sets. A level set, at level t , is the image

thresholded at level t (denoted by χt ). The level sets can then be filtered and then reconstituted to

form the output image. These ideas form the basis of greyscale morphology [124, 125].

After [124, 125] greyscale morphology will be defined as below, table B.2,

Operation Definition

Dilation ( f ⊕ g)(x, y) = ∧

(a,b)∈D{ f (a, b)+ g(a − x, b − y)}
Erosion ( f 	 g(x, y) = ∨

(a,b)∈D{ f (a, b)− g(a − x, b − y)}

Note that function g is mirrored about the axes. D is the domain of the image f . The properties

of the greyscale filters are identical to those of the binary operators. The definitions for opening and

closing coincide as well.

Morphological operations have one or more of the following properties, where φ() denotes a

greyscale morphological operator, and f denotes a greyscale image.

Extensive φ( f ) ≤ f .

Anti-extensive φ( f ) ≤ f .

Idempotent Iterating the morphological filter has no further effect.

Increasing If g ≤ f , φ(g) ≤ φ( f ).

B.3 Greyscale reconstruction

Two greyscale reconstruction techniques exist, namely, greyscale reconstruction by dilation, and

greyscale reconstruction by erosion [144]. Greyscale reconstruction by dilation is binary conditional

dilation extended to greyscale images. Recall that conditional dilation may be defined as [144, 35]

[65][pg. 368],

I k+1
out =

(

I k
out ⊕ sel

)

∩ Imask (B.1)
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where, I 0
out is initialised to a given marker image. The structuring element used is the unit circle

for the sampling grid used. The dilation is repeated until stability. Figures B.1(a) and B.1(b) shows

the structuring elements for four and eight connected objects on the rectangular sampling grid.

1
1 0 1

1

(a) The four connected unit circle.

1 1 1
1 0 1
1 1 1

(b) The eight connected unit circle.

FIGURE B.1 Unit circles for the rectangular sampling grid.

Reconstruction by erosion may be similarly defined,

I k+1
out =

(

I k
out 	 sel

)

∪ Imask (B.2)

Fast algorithms to perform the above do exist, see, for example, Vincent [144].

B.3.1 A fast greyscale reconstruction algorithm

Beucher and Meyer describe a fast greyscale reconstruction algorithm [13]. Only the greyscale re-

construction by dilation will be described, the modification for reconstruction by erosion is trivial. As

it stands, however, the implementation due to Beucher and Meyer is less efficient than it could be.

Beucher and Meyer’s algorithm will be described, and modifications proposed.

Beucher and Meyer

The greyscale reconstruction by dilation algorithm due to Beucher and Meyer is as follows [13]:

(i) Sort the pixels of the marker image into descending intensity. An ordered Queue is used. An

ordered queue associates a queue with each intensity value in the image. All pixels with the

same intensity are inserted into the same queue. If interrogated, the ordered queue returns the

pixel with the largest intensity first, before removing this pixel from the queue.

(ii) For each pixel in the ordered queue,

(a) For the next unprocessed (unlabelled) pixel p in the ordered queue, and its unprocessed

neighbours, q

Result(q) = Minimum(Mask(q),Marker(p)) (B.3)

Place q, into the ordered queue with the same priority (intensity) as Result(q). Label q as

being in the ordered queue (label 1).

Note that q is marked as processed, to ensure that a pixel is processed once only.
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(b) If the next pixel in the ordered queue has been processed, then assign a new label (label 2)

to the pixel.

As a optimisation Beucher and Meyer suggest representing a pixel by its address. This assigns a

unique integer to each pixel, in order of occurrence in the raster scan of the image, for example.

Some modifications

The peaks of a marker image in the reconstruction algorithm are important. Recall that greyscale

reconstruction by dilation is an iterative flat dilation, using a disc structuring element of radius one (a

“plus” shape if four connectivity is assumed on the rectangular grid, a square shape if eight connec-

tivity is assumed). After each flat dilation the pixel-wise maximum of the mask and marker images

is taken to produce the new marker image. The dilation is iterated until stability. The marker image

then never exceeds the mask image, and, since flat dilation is used, the maximum intensity in the final

result image is the maximum intensity in the original marker image.

In principle, given the definitions for conditional dilation, one may perform conditional dilation

on the level sets of the mask and marker images. Recall that level sets of an image may be generated

by thresholding an image with all thresholds possible [17].

The reconstruction stage examines a pixel once only. The reconstruction stage is then proportional

to the number of pixels in the image (or order n, O(n)). The sorting stage may not be order n if the

image pixels are floating point numbers. It is known that the fastest floating point sorting algorithm,

Quicksort, is O(nlog2n) [150]. If the pixel intensities are integer valued, however, an order n sorting

algorithm, Bucket sort, exists [150].

Bucket sort has been used in Beucher and Meyer’s watershed segmentation algorithm [13]. Bucket

sort [150], essentially, associates a list with each pixel intensity. As the image is scanned, the pixel

under consideration is added to the list corresponding to its intensity.

Some difficulties with Beucher and Meyer’s algorithm include,

(i) How are non-integer valued intensity images to be handled? The sorting algorithm used in

Beucher and Meyer’s algorithm assumes integer valued pixels for fast sorting.

(ii) All pixels in the marker image are placed in the ordered queue, when only pixels on the peak are

important.

It should be emphasised that some care is needed in the implementation of the queue, and the

representation of the pixels (p and q). The alternative is a slow implementation. It is suggested that a

circular integer list be used.

(i) Non-integer valued pixels imply non-integer valued priorities. The priority queue recommended

by Beucher and Meyer may be replaced by a min heap (see [150] for an introduction to min

heaps). A min heap is a data structure allowing for fast extraction of the maximum (or minu-

mum) element of a list.
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(ii) Scanning along each row and column of an image allows for the local maxima to be extracted.

If a pixel is lower in intensity than its predecessor, then the predecessor is a peak pixel. This

does not extract all pixels on a local maximum, but will find at least one pixel at the intensity of

the local maximum. Only peak pixels need to be inserted in the priority queue or min heap.

(iii) Convergence of the algorithm may be improved by first reconstructing using Vincent’s sequential

reconstruction algorithm [144]. In the case of greyscale reconstruction by dilation, a new marker

image is generated. Pixels on the new marker image at the same intensity as the mask image

may be labelled as processed and not considered at all subsequently.

In the instance of froth image analysis, the marker image is generated in some way from the

mask image (the original froth image. The mask and marker images are than likely to be similar

in shape, and a sequential preprocessing stage is likely to eliminate a large number of pixels from

consideration. Non-integer valued pixel intensities are likely given most low-pass filter kernels and

filtering techniques like anisotropic diffusion [113]. The results of filtering must then be rounded to

integer values and represents another source of noise.

It should be noted that Beucher and Meyer’s marker based watershed segmentation algorithm uses

a form of sorting to optimise finding, and flooding from, minima in an image. Using a min heap allows

extends this algorithm to handle real valued images.
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