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Abstract

Structured Incorporation of Model Uncertainty for Bayesian Adaptive

Tracking and its Application to Maritime Surveillance

by Charles Bradshaw

Adaptive visual object tracking (VOT) is one of the fundamental tasks in machine vision,

with active research and far-reaching implications. Bayesian methods are commonly

used in adaptive VOT. However, we propose that the current tendency is to restrict

the inference to a subtask (e.g. classification), rather than phrasing the entire task,

including the adaptive observation model, within the Bayesian inference. In this thesis

we develop a framework for simultaneous modelling and estimation (SMAE), in which

the common Bayesian recursive estimator (BRE) is extended to include estimation of

the underlying hidden Markov model (HMM). The framework is developed not only for

the task of adaptive VOT, but also for persistent tracking: the long-term task including

automatic detection and tracking of multiple targets in a scene in a manner such that

performance improves as a function of deployment time.

To prove that the framework is usable and leads to tractable implementations, it is

applied to the challenging task of maritime surveillance. Oceans provide a non-trivial

noisy background against which many adaptive trackers struggle. Our developed adap-

tive tracker creates a baseline in which the joint distribution across observation model

and target state is maintained in an adapted particle filter. A persistent tracker is then

built around the adaptive tracker to produce improved results using the information

from previous observations. Both the adaptive tracker and the persistent tracker use

the holistic Bayesian framework described by SMAE. We find that SMAE does lead to

tractable solutions that include the strength of Bayesian methods for the observation

model component in adaptive VOT. In addition to this, contributions are made to the

current maritime surveillance literature, in the form of a better performing salience filter

for maritime and littoral scenes, and a Bayesian means for combining different salience

filters. This last contribution may seem trivial, however we were unable to find it in the

maritime literature.

This work also includes the application of SMAE to more philosophical topics. Although

the discussion may seem informal in light of the technical nature of the body of our work,

it was an integral part of the development of the framework.
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Chapter 1

Introduction

Adaptive tracking is an active research field in which Bayesian frameworks are often

used. However, the current literature appears to have a deficiency regarding a holistic

Bayesian approach to the adaptive tracking problem, and it is this deficit that the current

work addresses. In this chapter we present a summary of the document. The chapters

that follow will provide detail, justification, and implementation for the various points

made here.

This chapter starts off with section 1.1, establishing the concept that will underpin this

work and presenting our hypothesis. Section 1.2 covers the context from which our re-

search grows, leading into its purpose and scope. In section 1.3 we unpack the motivation

behind, and the main features of, the framework that will be the key contribution of this

work. Our choice of maritime surveillance as an application is covered in section 1.4, and

the less concrete applications which we will discuss in the final chapter are established

in section 1.5. We finish this chapter off with a summary of our novel contributions in

section 1.6 and an overview of the rest of the document in section 1.7.

1.1 The Approach Spectrum

Most machine vision solutions can be seen as lying somewhere on spectrum that stretches

from principled to practical (figure 1.1). The focus on the left is on accurately mod-

elling the underlying problem, while approaches on the right are justified by “It works.”

Consider two solutions to tracking a red ball across a white background: the first so-

lution is a Bayesian recursive estimator (BRE) implemented as a particle filter using

template-matching for an observation model; the second is a graph-cut algorithm that

separates the red voxels from the white voxels in the video sequence’s space-time volume.

Figure 1.2 illustrates the task and the solutions.

1
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Figure 1.1: The approach spectrum. On the left we have approaches that attempt to
model the problem as precisely as possible, and on the right we have solutions that try
only to provide meaningful results. A principled approach tends to lead to approximate
solutions to the exact problem, whereas a practical approach leads to exact solutions

to an approximation of the problem.

Even though the first solution contains approximations of the appearance model, the

motion model, and the PDF, it is still modelling the underlying situation. The second

solution will most likely produce excellent results, but there is a weak connection between

the tracking problem and the voxel separation algorithm. Segmentations that are valid

for voxels are not necessarily sane paths for an object through space-time. These two

solutions represent the two sides of the spectrum.

While the first solution is an approximate solution to the exact problem, the second

solution is an exact solution to an approximation of the problem. This is an important

distinction. Algorithms always need re-factoring to improve or adapt to new problems.

If a solution is an approximate solution to the exact problem, then its adjustments can

be seen as moving through the space of all solutions. On the other hand, adjustments

to an exact solution for an approximation of the problem move through the space of all

problems.

Consider changing the trackers to a more realistic problem with a cluttered background

and a more detailed object. For the first solution, moving through the space of solu-

tions, we can check the validity of the assumptions and approximations, and change

the functional blocks accordingly. Moving through the space of problems is a far less

tractable problem. The second solution relied on ‘gimmicks’ in the data. A designer

would be forced to try define edge weights in the voxel space so that the graph cut still

approximates the tracking task, and it is not guaranteed that this is possible. Addition-

ally, debugging for the first solution involves comparing the output for the various stages

to the outputs those stages would have if the solution were not an approximation, and

investigating assumptions and approximations accordingly. Debugging for the second

solution involves adjusting the parameters until the designer has a feel for what they

each do. This is a far less certain process. Thus we can see that the first solution is
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(A) A trivial tracking problem

(B) A principled solution

(C) A practical solution

Figure 1.2: A trivial tracking problem illustrating the difference between principled
solutions and practical solutions. The task is to track a red ball across a white back-
ground as shown in (A). A principled approach to this task might lead to a Bayesian
recursive estimator (as illustrated in (B)) using template-matching for an observation
model and a simple Gaussian motion model. A practical approach to this task might
lead to a graph-cut implementation on the space-time voxels (as illustrated in (C)),
using an energy function to separate the red voxels from the white background. Both
solutions are valid, yet they represent very different methodologies, and lead to very

different design practices.

more generic, easier to adapt to new problems, and easier to debug1. The downside

of principled solutions is a tendency to have larger processing requirements. Because

they try to maintain a more accurate model of the problem, they tend to require more

computing power, and can lead to intractable formulations.

This gives each side benefits and challenges. Few problems are simple enough that no

heuristics would be required to model them in a tractable manner (hence the far left

is ruled out), or that procedurally-generated algorithms would solve them (ruling out

the far right). This means that designers face a choice. They can start on the left,

1To be clear, we are not speaking against dual problems. Solving a mathematically isomorphic
problem is still mathematically solving the same problem, and hence lies on the left.
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creating a principled framework that models the larger aspects of the problem, and then

make approximations and use heuristics (i.e. lean to the right) as necessary towards a

tractable solution. Alternatively, they can start on the right and lean left by connecting

known components together in an ad hoc manner, and adjusting each component in

isolation.

We propose that the current approaches to adaptive tracking fall in the latter category

(a statement we will justify in section 1.3). Most approaches treat the learning of the

observation model as a black-box inside a function approximator. Even if the tracker

and classifier modules are both principled frameworks, current solutions characteristi-

cally lack a global framework that encompasses them both. This is understandable, as

adaptive tracking is a very intricate problem to encompass entirely within an accurate

model, and so solutions on the right have made advances. Our hypothesis is that it is

possible to approach adaptive tracking in a manner that encompasses the entire task

(including learning of the observation model) within a Bayesian framework and still

leads to tractable solutions.

1.2 Project Context, Purpose and Scope

Bayesian methods have far-reaching implications and applications. The uninitiated hear

of Bayesian methods and assume that the application of Bayes’ rule is all that is be-

ing referred to, whereas in truth Bayesian thinking extends to almost every conceivable

mental task. In his seminal work [2], Edwin Jaynes establishes probability as the exten-

sion of Aristotelian logic into a world with imperfect knowledge. Rather than reserving

probabilities only for events that occur from repeatable trials, he shows that there is

only one way a rational entity with a defined set of information can assign a value to an

uncertain event in a manner that is consistent with what we consider common sense —

a way that conforms to the rules of Bayesian probabilities. Thus he establishes probabil-

ities not as a limit of repeated trials, but as an indicator of a rational entity’s knowledge

of a situation.

His presentation of the work is singular, and any summary we present will be deficient,

yet we must proceed nonetheless. The central workhorse of Bayesian probabilities is the

assignment of a representative value for a hypothesis X in light of observations Y as

p(X|Y ) ∝ p(Y |X)p(X). (1.1)

Here the posterior p(X|Y ) is the only value that could be assigned to X in light of

the observation Y by a rational entity consistent with common sense (as proved by
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Jaynes [2]). The likelihood p(Y |X) is the probability of event Y happening if X were

true. The prior p(X) is our acknowledgement that it is impossible to present a posterior

without recognising our prior information, and the proportionality constant normalises

the probabilities across all possible hypotheses.

This is all to say that Bayesian thinking epitomises the principled side of the approach

spectrum. If a rational entity can only assign values to uncertain events in one way, then

that way holds a monopoly on principle. We will assume that the reader is familiar with

Bayesian reasoning. If our assumption is wrong, we refer the reader to Jaynes’ work.

Bayesian methods are a staple of visual object tracking, and it is in the context of this

field that we present our work. Many adaptive trackers use Bayesian frameworks such

as the Bayesian recursive estimator (BRE), the Kalman filter, and the particle filter to

handle the state estimation, yet we believe that there is a key approximation being made

that they do not address. That is the ad hoc learning of the appearance model. We will

justify this statement in section 1.3, but we reference it now because it is the inciting

context for our project. Our purpose is to develop a principled Bayesian framework that

encompasses both the tracking and the model learning in a tractable way.

There is a chance that in the sections to follow, it may appear as though we are advo-

cating our method as the only ‘correct’ method. This is not the case. We work in a

pragmatic field, and ultimately it is results that justify any work. There are valid reasons

why authors have avoided a holistic Bayesian adaptive tracker. Our work here explores

the hypothesis that a tractable, fully Bayesian, adaptive tracker can be envisioned and

created.

The development of an untested framework is useless, so our scope will include both the

development of the framework and its application on a real-world problem. In addition,

during our work with the framework, we noted applications in modelling situations we

face as humans. After we have derived and tested the framework, we will include these

observations as an epilogue in chapter 7. They are not part of the scope of our work,

but they are still useful and interesting applications of the framework.

1.3 The Call For Bayesian Adaptive Trackers

We pose the question, ‘What makes a Bayesian tracker Bayesian?’

Does using a Kalman filter on the output make it Bayesian? Does framing one aspect

of the problem as an Hidden Markov Model (HMM) make it Bayesian? Is it enough to

use a Bayesian tool for an aspect of the task at hand? It can be. Each field defines what
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words mean in its context. As authors, we use the word to imply more. We envisage a

Bayesian adaptive tracker in which the entire task is encapsulated in a single monolithic

inference: where the uncertainty in every variable is handled in a principled manner,

and all observations are used.

In the paragraphs below, we point out attributes of particular trackers, and trends in

the field that we believe do not epitomise this Bayesian approach. Our intention is not

to cast judgement on the trackers we mention. Ours is a practical field, and success

ultimately justifies any tracker. We draw attention to these Bayesian trackers, as they

have proved the applicability of Bayesian methods to tracking, and in their ad hoc

components we see the potential for a fully Bayesian approach.

Pèrez et al. [3] present a tracker that uses a particle filter to approximate the underlying

BRE. For their observation model, they use a similarity measure between the color

histogram of the candidate particle’s bounding box and that of the initial frame. This

limits the observations to include only the pixels within the bounding box. Later in the

paper they include dividing this observation model by the similarity to the background,

in contexts where it is possible to build a background model. This decision is presented

as if motivated in an ad hoc way to improve results.

Zhang et al. [4] present a tracker that uses structured multi-task sparse learning (and

is a generalisation of the L1 tracker by Mei and Ling [5]). The tracker uses a particle

filter to approximate the BRE, and also considers the cropped bounding box as the

observation. They reconstruct the resized patch as a linear combination of templates,

and use the error of that reconstruction for the observation model. The templates are

updated so as to keep those that are most relevant and useful in the template set.

Kwon and Lee [6] use a set of trackers that are combined in a way very similar to boosting,

and whose particle filters interact. This is done using a BRE as justification, with

each weak tracker providing an observation probability based on templates of previous

tracking results and a motion model. The observation model represents only the cropped

data. The fusing of the different sub-models is done as a weighted average, which while

simple to code is a heuristic (the MIL tracker uses a more appropriate fusion model;

we discuss it next). The tracker updates by including new trackers into the set of sub-

trackers each time instant, with the new template cropped by the MAP estimate. This is

done outside of the Bayesian framework, leaving us with no estimate on the uncertainty

related to the new model.

The work closest to our own is the MIL tracker by Babenko et al. [7]. The main focus of

their paper is the use of multiple instant learning (MIL) in labelling samples: a cunning

way of cropping several templates from around the target and, without deciding which,
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using the fact that at least one of them is the right cropping. The tracker uses a boosting

formulation where each weak tracker is in the form of the log likelihood ratio (LLR):

hk(x) = log

[
pt(y = 1|fk(x))

pt(y = 0|fk(x))

]
. (1.2)

Here the k-th classifier hk uses the k-th Haar feature fk, and both the positive and nega-

tive likelihoods are learned Gaussian distributions in the fk dimension. While a Bayesian

framework is not mentioned for the combined system, combining different classifiers by

adding their LLRs is consistent with Bayesian reasoning for independent classifiers. We

will show that using the LLR in this manner is equivalent to including the entire frame

inside the observation, although this is not apparent in the text. Indeed, a Bayesian

framework for the larger system is not presented. The learning of the foreground and

background models, and the calculation for the boosting coefficient are justified by being

functional. While a larger Bayesian framework may exist, it is not presented, and so

one would not know what approximations and assumptions are being made in applying

this framework.

The above are four examples, but the trend continues with other Bayesian trackers.

There are two common traits in the literature: limiting the observations to the pixels

inside the bounding box, and ad hoc observation model changes. It may seem unfair to

point out these theoretical issues on working trackers, but we justify their importance

below and more fully in chapter 3.

When a tracker either states explicitly or implies through its implementation that the

observation Yt will be the pixel values of the cropped candidate target (or features

calculated from them), it butchers the assumption of the underlying HMM2 in the BRE.

In a HMM, the values of Yt are dependent3 on the unknowable yet definite value of the

hidden variable Xt. These trackers make the values of Yt dependent4 on the BRE’s choice

of Xt. To put it another way: all rational observers should agree on the observation

values. Labelling the bounding box’s values as Yt means that different considered states

Xt will experience different observations Yt. Enabling an inference engine to decide

which values should be included in the observation is innately troubling. What makes

this situation curious is that it is possible to construct a framework that is principled

and justifies the current methods. If we pursue the principled approach (including the

entire frame in Yt), we will find it is equivalent to using a LLR for the cropped bounding

box. Using a LLR seems intuitively a good idea — the tracker will be both pulling

2Out of concern for space in this chapter, we assume the reader is acquainted with the use of a hidden
Markov model and Bayesian recursive estimation in visual object tracking. This is dealt with in a less
accelerated manner in chapter 3.

3In the probability sense of the word.
4That is, what is actually observed changes.
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towards something favourable and pushing away from something negative, rather than

only pulling. Many trackers use the LLR but still imply that Yt is the cropped frame; we

have not seen it shown as a consequence of the more appropriate definition of Yt. Using

the cropped bounding box as Yt is consistent with an author using a Bayesian tool (that

is, an approach from the right leaning left in figure 1.1): one of the sub-tasks is to make

inferences on a cropped image; Bayesian inference is used for this sub-task. Using the

entire frame as Yt is appropriate for a holistic Bayesian tracker (i.e. an approach from

the left leaning right): there is a task; use all observations to infer a PDF on the output

variables.

The second issue is the ad hoc model update. First note that both the observation

and the motion models of the traditional BRE are time invariant. If Yi = Yj and

Xi = Xj then we would expect p(Yi|Xi) = p(Yj |Xj), and similarly for p(Xi|Xi−1). The

mathematics does not allow for adaptation. Our solution will be the partitioning of Xi

into a model component M and a state component St, so that the knowledge of M will

be able to parameterize these models. While this may seem like an obvious fix that will

simply describe the current adaptive trackers by lumping their ad hoc methods in M ,

we will prove its utility. Handling the observation model explicitly in M means that

the posteriors are correctly normalised. Seeing the adaptive tracking problem as an

inference across the joint (M , St) space will make us more aware of the approximations

we are making. All this means that the final tracker will be more principled, and hence

it will be easier to adapt to new situations. Not knowing what approximations are being

made while using an ad hoc adaptive model means further ad hoc adjustments to find

a solution that may or may not exist.

The issues we raise may seem trivial, however they characterise a different position on

the approach spectrum. The strength in Bayesian methods is in their all-encompassing

grasp on a problem. When we use a Bayesian tool for a subtask within a larger problem,

we disempower the strength of its normalisation and rob the posteriors of their full

meaning. This difference is illustrated in figure 1.3, which shows the difference between

the characteristic architecture of current adaptive trackers and what we envision as a

holistic Bayesian adaptive tracker. With this, it becomes clear that the above two issues

that seem so peculiar for a holistic Bayesian tracker are just symptoms of a different

model.

While current Bayesian trackers have success, any implementation of them that runs into

challenges with the classifier must end up tweaking an ad hoc system. In a full Bayesian

framework we can always test the validity of our approximations and the appropriateness

of our priors. The fact that Bayesian systems are performing the optimal inference gives

their results meaning, and ultimately makes them easier to debug. Thus, in striving
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(A) The structure of our envisioned Bayesian tracker

(B) The general structure of most current Bayesian trackers

Figure 1.3: The difference between holistic and current Bayesian adaptive track-
ers. The holistic tracker (A) phrases the entire task as a single inference. Its internal
structure mirrors the BRE equation (discussed in chapter 3); a set of hypotheses is
generated by feeding the previous time instant’s posterior through a motion model.
Each of these hypotheses has its prior (using the motion model and previous posterior)
and likelihood (using the current observations) calculated. These are then multiplied
together and normalised across hypotheses to calculate the current time instant’s pos-
terior. Finally, any internal variables are marginalised out to leave only the relevant
output variables. Most current Bayesian adaptive trackers can be reduced to the form
of (B). Here the structure of the inference engine remains the same, but the input it
receives is no longer the system’s input and the likelihood function is updated in an ad
hoc manner. Rather than encompassing the entire task, it is a functional block used

inside another framework.

for a Bayesian framework that encompasses the entire task and not just the functional

modules, we are not making an esoteric theoretical argument out of an irrelevant issue.

Rather, we are striving to enable practical systems that are debuggable, maintainable,

reasonable, and ultimately understandable.

We acknowledge that a holistic Bayesian tracker is not intrinsically better than current

Bayesian trackers. All points along the approach spectrum have strengths and weak-

nesses. Our purpose in this discussion is to show that there is unexplored space to the

left of current working trackers. We provide a more thorough justification for the above

points in chapter 3, and derive a form of the BRE that fits in this space.

1.4 Maritime Surveillance

We will be testing our framework on maritime surveillance. While this may seem like a

peculiarly specific choice to test a general framework, it is justified below.
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The general tracking task is an ill-posed problem. The quantity of prior information a

human brings into understanding a general scene is incredibly difficult to replicate. We

want to see the framework’s capability to learn and process commonalities in its input,

but we lack the space to develop and test it on the same quantities of data received by

our biological. The quality of inference a system can make is a function of the density

of learning data in its problem space. When data is sparse, the prior must dominate

behaviour. A design that works because of its prior demonstrates learning on the part

of its designer, not the machines. By limiting the scope of the learning task, we select

a problem that is tractable under the quantity of information we can give the system.

We chose maritime surveillance as there is structure in the background off which a naive

system cannot leverage.

Maritime surveillance is an important economic activity, and also a non-trivial object

tracking task. There are existing systems (which are described in section 2.2), however

research continues as the problem has not been fully solved.

We pick an instantiation of the maritime surveillance problem such that our framework

can show its strengths without requiring too involved a formulation. That is: automati-

cally initiating a multiple target tracker (MTT) on mostly small vessels against a variety

of sea conditions from a static camera positioned high above the ocean. Our goal is to

ratify our framework, so we will include enough detail into the problem to show how

it can accommodate challenges, but will not waste effort on unnecessary features. We

discuss this choice more in section 4.1. Our choices are guided by the desire to provide

a use case as an example for the application of our framework.

We develop three modules in approaching this task. The first is an effective salience

filter, which we test against current approaches. With this, we propose a principled

way of combining salience filters. The second is an adaptive MTT, which demonstrates

our framework’s application to observation model learning. The third is a persistent

tracker: a tracker that can be installed and whose performance will improve over time.

In the case of maritime surveillance the biggest challenge is wave noise, so we focus on

improving rejection of waves.

We draw attention to the difference between an adaptive tracker and a persistent tracker.

An adaptive tracker’s task is to follow a single target while maintaining an appropriate

appearance model. The adaptive tracker uses the information from each frame to prepare

it for subsequent frames. A persistent tracker’s task is the long-term tracking problem.

It follows a scene, tracking any relevant targets that enter and leave, improving as its

deployment time increases. Each instantiated track of a persistent tracker is an adaptive

tracker, and the persistent tracker uses the results of each track to improve its models
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for subsequent tracks. The relationship between a persistent tracker and each adaptive

track is the same as the relationship between an adaptive tracker and each frame.

While the focus of our work is on the contributions to adaptive tracking in the frame-

work developed, we observe some deficits in the current maritime surveillance literature.

Specifically: a principled way of combining salience filters; a salience filter that works

well on the challenging data sequences we tackle; and a principled way of improving

wave rejection while tracking (that is, the use of our framework). We list these points

under our novel contributions despite the fact that our focus is on the general framework

more than on maritime surveillance, as we did not find them in the current literature

and believe they do add to the field.

1.5 Use in Modelling Human Interactions

In working with our framework we found it increasingly applicable to our everyday

interactions. While this is probably true of any Bayesian work, we found that considering

a separate model component M and state component S modelled social interactions

particularly well. That people never say what they mean is cliché, and the use of

Bayesian inference to decode this is a straightforward idea. However, we found the

separate modelling of the questions ‘What is the person trying to say?’ and ‘What can I

infer about the person?’ to be a pertinent description of how we handle social situations.

We explore this in more depth, along with its links to the Turing test, and apply it to

a specific social ritual in chapter 7.

1.6 Summary of Novel Contributions

In this section we summarise our novel contributions so that the reader may easily

identify them in the body of the work. These are covered in more detail throughout

the document, and will be summarised again at the end of this document with a more

thorough justification. In our work we:

• Illustrate the inappropriateness of the BRE to adaptive tracking.

• Formulate and implement a holistic Bayesian adaptive tracking framework that

incorporates model estimation into the PDF.

• Draw attention to the difference between an observation model in the form of a

probability distribution, and one that is held in a distribution as a probabilistic

variable itself.
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• Emphasise and prove that considering the whole frame as observation (which is the

more principled way to approach tracking) is equivalent to considering the contrast

between the foreground observation and the background observation models for a

bounding box.

• Develop a MTT particle filter that handles the multiple hypotheses in a novel

manner and avoids the holding of joint solutions.

• Create a salience filter for maritime surveillance that is an improvement on the

current state of the art.

• Highlight an appropriate measure of data fusion for maritime salience filters.

• Develop a persistent maritime tracker that improves at wave rejection in a princi-

pled manner.

1.7 Document Overview

The rest of this document proceeds as follows: chapter 2 covers the relevant literature to

which we refer throughout our work. Chapter 3 contains the derivation of a framework

that can achieve Bayesian adaptive and persistent multiple target tracking, which we

will call SMAE (for Simultaneous Modelling and Estimation). Chapters 4 and 5 describe

the application of this framework to the task of maritime surveillance. In chapter 4 we

cover the maritime data set we will be using, and develop a salience filter to be used

as a pre-filter for our tracking system. With these topics addressed, we focus on the

application of SMAE to maritime surveillance in chapter 5. Having verified that SMAE

is of practical use, we explore some of the more abstract applications of the framework

in chapter 7. On account of these being outside of the central scope of this work, we

include them as an epilogue after our concluding discussion in chapter 6.

A cursory reading of this work might give the impression that it is primarily about

the development of a system for maritime surveillance, seeing chapter 5 as the primary

focus. This is not the case. Our focus is on creating a framework for fully Bayesian

adaptive tracking into which smaller modules can fit. Rather than the derivation being

a stepping stone, and hence secondary to the maritime chapter, the maritime chapter is a

ratification of and hence secondary to the derivation chapter. This has two implications

that should be addressed before we enter the bulk of the document. Firstly, because the

framework contains the bulk of our contribution, we devote sufficient time and space to

it in the derivation chapter. The reader may find this chapter longer than the equivalent

chapters in works where the implementation is the primary contribution. Secondly, a
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reader who skims the derivation may feel underwhelmed by the maritime chapter; it is

after all not our major contribution, but is included to prove that the framework is not

just impractical theory.



Chapter 2

Literature Review

In this chapter we cover the relevant literature to which we refer in the rest of the

work. Object tracking is a large field, so we focus in on the most relevant contributions.

In section 2.1 we cover general Bayesian tracking: approaches to the challenging and in

many ways ill-posed problem of tracking arbitrary objects in a free-form environment. In

preparation for our application in chapters 4 and 5, we survey the literature pertaining

to maritime surveillance in section 2.2. We have already mentioned Jaynes’ work [2]

and recommend it to any reader: it does not fit concisely into our sections and there is

nothing directly to which we want to draw attention, however it is foundational to the

thinking behind our work and we will reference it often.

2.1 Bayesian Tracking

We assume the reader is familiar with the Bayesian recursive estimator (BRE), and

its instantiations as the Kalman filter for ‘nice’ systems and the particle filter as an

approximation. We do cover the BRE briefly in section 3.2 as a lead up to our framework.

We omit repetition of the discussion of the trackers by Pèrez et al. [3], Zhang et al. [4],

Mei and Ling [5], Kwon and Lee [6] and Babenko et al. [7] presented in section 1.3.

While there are many adaptive trackers that use Bayesian justifications for the tracking

framework, we were unable to find any that include the adaptive observation model in

that framework. The overview of Bayesian tracking in video presented by Dore et al. [8]

is another useful resource, covering the theoretical foundations underpinning many of

these trackers. While there have been many advances in many of the fields around

machine vision through deep learning and specifically convolutional neural networks

(CNN’s), we will not cover these as they epitomise the right of the approach spectrum,

and have little to do with the current work.

14
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Multiple hypothesis tracking (MHT) was presented by Reid [9], and in many ways is

a foundation for most Bayesian multi-object trackers. His proposed multiple object

tracker is suited more to radar-like contacts than to video sequences, but it creates a

powerful framework that many use. Upon each time instant, each measurement (i.e.

co-ordinates of possible target) is assigned to either an existing object, a new object, or

a false positive. The permutations of all these allocation history choices are held as dif-

ferent hypotheses. He presents several ways of keeping the branching tree of hypotheses

manageable. The first option is a zero-scan algorithm: collapsing the distribution down

to only one hypothesis at each time instant, either using the most likely hypothesis or a

weighted sum of the hypotheses (JPDAF will be discussed below). The second option

is multiple-scan algorithms: maintain the most likely hypotheses, and join hypotheses

together if they are similar enough. This is tractable in the radar context, but becomes

extremely tangled in adaptive tracking. The third option is simplifying the hypothesis

matrix and initiating confirmed targets: looking for associations that are the same in

all viable hypotheses and separating them into different clusters, thus only considering

permutations among relevant targets. This is similar to how our implementation works.

Another approach we have seen [10] is to limit the depth of any forks in the hypothesis

tree. This implies that ambiguity in the underlying system should only last a set period

of time, after which the most likely case should win out. The MHT uses “all available

information such as density of unknown targets, density of false targets, probability of

detection, and location uncertainty” [9]. If these values are unknown, or imprecisely

known, the framework does not have a way to accommodate them. The framework we

propose will encompass not only the model uncertainty in an adaptive tracker (i.e. a

single object’s appearance model), but also uncertainty relating to macro-variables like

those mentioned that affect the whole task.

Fortmann et al. present the now widely-used joint probabilistic data association filter

(JPDAF) [11] for Bayesian multiple target tracking in the context of radar. They con-

sider the posterior probability of all the valid associations of contacts to targets. For

each target’s predicted location, they take the weighted average across all the associa-

tions. In this way they collapse the ‘jointness’ 1 of the distributions at each time instant.

Considering the target’s PDF as a union of the different permutations of associations

is similar to the step in our framework where we consider a target’s PDF as a union

of the different sets of other visible targets. The approximation (collapsing the joint

distribution) makes JPDAF a lightweight alternative to a more rigorous MHT (whose

framework allows subsequent information to influence previous associations) in cases

where the ambiguity in association is rare or limited in effect.

1That is, the co-dependence of targets’ locations.
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Kahn et al. [12] present a multi-object tracker that uses a Markov random field (MRF)

defined on local clusters to modulate the sampling probability of the particles. These

are considered as a joint random variable to avoid coalescence. Hess and Fern [13] use

a similar approach to track American football players. The focus of their work is on

discriminatively training the weights used for the re-sampling of the particle filter. In

this way they avoid many of the ‘jointness’ problems associated with MTT particle filters

(discussed in 3.3).

Koller et al. [14] present a multiple object tracker for road surveillance. This is similar

to our problem in chapter 5: rigid vehicles moving along a 2D surface observed by a

static camera. The main difference is the hostile nature of water as a background, in

comparison to road surfaces. Background subtraction is a simple task for roads, and

leads to far fewer ‘clutter’ objects. They model their objects by boundary contours and

track the affine transformations on these contours. The focus of their work is on handling

occlusions in a way that does not lead to errors in the affine parameter estimates. We

find this noteworthy in that, although the task is similar, their approach is different.

There is no adaptive modelling. Data association is done in an admittedly heuristic

fashion, and while Kalman filters are used for shape estimation and motion tracking,

there is a notable lack of Bayesian reasoning in occlusion. We believe that this is largely

because tracking cars on a road is an easier task than tracking vessels (which have a

greater variance in shape and size) on water (which exhibits more noise). We bring this

up because our framework encompasses all of these challenges, updating models in a

principled manner even while tracking occluding multiple objects.

The book by Stone et al. on Bayesian multiple target tracking [15] is an excellent

reference. There are two topics we highlight. The first is tracking before detection, the

essence of which is running a BRE across the entire state space rather than waiting

for a cogent event to trigger initialisation. By doing this the need for a threshold is

removed, and objects can be detected with much lower signal to noise ratios. They

present convincing results in the detection of periscopes on a radar feed. The second

topic is a multi-target version of the same idea, presented in section 4.4: a PDF is

maintained for a two object, single-dimensional problem. This PDF is a two-dimensional

one, where each dimension represents the location of one of the targets. We discuss this

more in section 3.3.

Bloisi et al. [16] present a Bayesian multiple target multiple sensor2 tracker. However, it

is not an adaptive tracker; the visual classifier is trained offline to recognise boats using

a cascade of Haar features, and this is used to detect boats. While the multi-target

BRE seems similar to what we present, it represents the distribution as a Gaussian

2AIS (Automatic Identification System) data and surveillance cameras.
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mixture model (GMM), which suggests that the targets are multiple modes in the same

distribution (more on this in section 3.3). The handling of occlusions is done by tracking

the merged entity and re-assigning the identities upon splitting. This is functional, and

necessary with their approximation, but a step away from the Bayesian approach. We

find that, while the system is successful, it does not explore the strengths of the Bayesian

approach in both adaptive modelling and multi-target tracking.

Another trend worth mentioning is that of interactive multiple models (IMM) such as

used by Blackman et al. [17] and Blom and Bloem [18]. IMM is an effective tool for

objects that have several modes of motion, for example targets that can manoeuvre

rapidly. While this has been shown to be useful, our focus is more on observation

models, and our targets do not have rapid movement changes on the space-time scales

we are at which we are observing. Hence we settle on a simple Gaussian motion model.

Many of the MTTs mentioned above are developed for radar [9, 11, 17]. Here the

measurements are discrete contacts, which need to be allocated to different targets. This

has several implications. Firstly, it means that there is no need or space for adaptive

tracking. Secondly, data association becomes a well-posed task. In the case of visual

object tracking, while we can associate on a pixel-by-pixel level it is often more practical

to consider associations on a patch-by-patch basis. In doing so, handling the overlaps

for different valid bounding boxes in a target’s PDF can get involved. It is this intricacy

that our derivation seeks to tackle in a principled manner. Radar formulations solve

nice tractable forms of the problem, which make them good initial frameworks around

which to build a visual object tracker.

Finally, we discuss some performance metrics used for tracking. It is common for trackers

to use a measure for bounding-box overlap (such as Dice’s coefficient, or the intersection-

to-union ratio) or the distance between centroids to give a measure of how well a par-

ticular target matches the ground truth. Also common is to set a threshold on these

measures to define hits and misses, and hence precision, recall and F-score for the re-

sults. These are good measures for single target trackers, but do not detect the failure

modes associated with MTTs.

Smith et al. [19] cover a set of measures for the performance of MTTs. They define:

FP = 1
nFrames

∑
frames

Number of false positives
max(number of visible targets,1)

FN = 1
nFrames

∑
frames

Number of missed targets
max(number of visible targets,1)

MO = 1
nFrames

∑
frames

∑
trackers on target

(number of targets best described by tracker−1)

max(number of visible targets,1)



Chapter 2. Literature Review 18

MT = 1
nFrames

∑
frames

∑
tracked targets

(number of tracks assigned to target−1)

max(number of visible targets,1)

CD = 1
nFrames

∑
frames

|number of targets - number of tracks|

FIT = 1
nFrames

∑
frames

number of tracks which are not the primary track for their target
max(number of visible targets,1)

FIO = 1
nFrames

∑
frames

number of targets tracked by a track other than their primary track
max(number of visible targets,1)

TP = 1
nTracks

∑
tracks

number of frames track is associated with its primary target
number of frames track is visible

OP= 1
nTargets

∑
targets

number of frames target is tracked by its primary tracker
number of frames object is visible .

Here FP, FN, MO, MT and CD take into account errors within a particular frame — false

positives, false negatives, multiple objects (covered by a particular track), multiple tracks

(for a particular object) and counting errors; and FIT, FIO, TP and OP correspond to

allocation errors — falsely identified track, falsely identified object, tracker purity and

object purity. These last four assume that each track should be associated with a

dominant target, and vice versa. Any track other than a target’s dominant track or any

target other than a track’s dominant target is counted as an error. This can lead to

peculiar situations, such as that in figure 2.1: under their measures a target that was

tracked 51% of the time by one track and the rest by another track is outperformed by

one which was tracked by one track 52% of the time, and then covered by 5 different

tracks. We illustrate this point only with FIT errors, but the point is valid for the other

three as well. We propose that the number of switches is a more relevant measure than

percentage of time with most common track, and so use the SW measure defined in

section 5.1.2.

Bernardin et al. [20] propose the multiple object tracking precision (MOTP) which

describes the average distance target and response, and multiple object tracking accuracy

(MOTA) which describes the frequency of false positive,false negatives, and mismatches.

We chose not to use the former, as localisation is less important in our use case; or the

later as it aggregates too many failure modes in one metric; but mention them here for

completeness.

Much discussion has gone into the difference between generative trackers and discrimi-

native trackers. Generative trackers focus on modelling the distribution from which the

observations are drawn, whereas discriminative trackers focus on modelling the bound-

ary between target and background in the considered feature space. This maps onto

the approach spectrum (figure 1.1) well. Discriminative trackers exploit the fact that
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Figure 2.1: Two different tracking results and their FIT and SW error rates. Each
row shows a possible tracking history for a target over 100 frames, with time as the
horizontal axis. Each line segment represents a track that is associated with that target.
Result 1 shows a target that was followed by one track for most of the time until it
lost track, and was followed by another track for the rest of the time. Result 2 shows
a similar situation, however once the initial track is lost, 5 different tracks are initiated
and soon lost. The FIT counts any track that is not the dominant track for a target as
an error, giving both of these similar ratings. The first result seems intuitively better,
yet is rated worse according to FIT errors. Our measure counts the number of switches

per frame, which matches our intuition for these results.

the only part of feature-space that is relevant to the tracking task is the region between

foreground and background. Generative trackers, on the other hand, attempt to accu-

rately estimate the full observation model. We would place discriminative trackers to

the right of generative trackers.

Our approach will fall into the category of generative trackers. We draw attention to

the difference between a distribution that observations are drawn from (i.e. p(Y |X)),

and holding this observation distribution in a probabilistic variable (i.e. p(M |X) where

M = p(Y |X)). The first is a common trait of generative trackers, while the second is the

focus of our work. It is the holding of the observation model as a probabilistic variable

that enables us to extend the BRE to a framework applicable to adaptive tracking.

2.2 Maritime Tracking

In this section we discuss the relevant literature in maritime surveillance. We start in

section 2.2.1 with an overview of the current state of the field. Section 2.2.2 covers the

commonly used salience filters. In section 2.2.3, we look at the tracking frameworks that

are commonly used. Section 2.2.4 discusses and provides examples of the data used by

many papers, and section 2.2.5 addresses other relevant topics.

2.2.1 State of the Field

Moreira et al. present a good survey on maritime surveillance [21] that is fairly recent

(2014). The main topics they discuss are horizon line detection, initial detection, and
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vehicle tracking. The horizon line detection is not relevant to us, but the other two

topics have a fair overlap with the use case we pursue. Much of the initial detection

focuses on detecting salient patches to start tracking. Although they do not fit the

form of a salience filter, this is a useful and relevant discussion which we include into

section 2.2.2. Their section on vehicle tracking covers several common elements in a

maritime tracker: Kalman filters, successive clustering, mean shift, template matching,

histogram matching, and active contours. Most of the learning appears to be done in an

offline fashion which, while reasonable for a facility as large as a harbour, does not explore

Bayesian model updating. Several template-matching schemes are discussed, though

none in as detailed a Bayesian update model as ours. The paper also discusses the use

of FLIR cameras instead of sensing in the visible spectrum, discussing their insensitivity

to lighting changes and white foam, but points out their high energy consumption and

that ‘they limit the quantity of features that can be extracted’ [21]. We assume this is

a comment on resolution. Many papers recommend the use of IR because the lack of

temperature difference between the troughs and peaks of waves will lead to less noise,

but the examples in section 2.2.4 show otherwise.

There are several working systems that have been deployed and tested in situ, namely

ARGOS [10], MAAW [22], and DeMarine-DEKO [23].

ARGOS, presented by Bloisi and Iocchi [10], is an extended surveillance system for boat

traffic monitoring in Venice. Their system does image segmentation via background

subtraction, with improvements using optical flow and clustering, fed into a MHT sys-

tem running on Kalman filters. Gupta et al. present the Maritime Activity Analysis

Workbench (MAAW) [22]. Their work is focused on building a full system incorporating

elements such as vehicle classification and behaviour interpretation. All learning is done

in an extensive offline manner, and their use case seems to focus on boats in the harbour

that fill an appreciable portion of the frame (it is unclear, as only one example image is

present). The DeMarine-DEKO project by Saur et al. [23] focuses on synthetic aperture

radar (SAR) images, which present very different problems and whose solutions do not

have much impact on our problem. More recently, Bloisi et al. [16] presented a multiple

target, multiple sensor system for maritime surveillance. This, however, uses a static

system, in which all learning happens offline.

We list and describe these systems to show the level of complexity required to develop a

workable solution. Our goal is not to outperform them; our goal is to tackle a challenging

problem (to which the complexity in these systems and the ongoing research attests),

and to prove that our framework provides a competitive solution. For these systems,

the paradigm is to deploy a fully working system; our paradigm is to deploy a solution

that has the capability to bootstrap itself to become a fully working solution. Thus our
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focus is on producing passable initial results, and proven improvement through longer

deployment. In this way our focus on Bayesian adaptive tracking presents a different

approach that is absent in all of these papers.

There are many different modes of surveillance that are explored in the literature. They

include 360◦ camera clusters on small boats [24], buoy-mounted systems [25], static

mounted colour cameras [26], omni-cameras looking down the mast [27], satellite im-

ages [28], and pan-tilt-zoom cameras mounted on land [16] and on boats [29]. Each of

these present different challenges and different advantages. We will focus on single static

land-mounted cameras, as it is a common mode of surveillance and lends itself to our

framework.

Many authors discuss the difficulties associated with maritime visual object tracking.

Bachoo et al. [1] present a summary in figure 2.2.

Figure 2.2: Summary of difficulties in maritime surveillance [1].

2.2.2 Salience Filters

Any system that automatically initialises needs a way to detect new targets — some

method of detecting salient objects. In this section we cover the many techniques used

to detect salient patches in a maritime sequence.

One of the two most common approaches to salience detection is building a history

for each pixel, and marking pixels that do not fit their history. This history often

takes the form of a probability distribution across pixel values, with low likelihood

pixels presumed to be foreground. Alternatively, the history can be in the form of an
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expected background, and deviation from this background image marks salience. Wang

et al. [30] use an IIR filter on the input signal (Bgn = Bgn−1 + α(Imn − Bgn−1))

to create a filtered image for background subtraction. They do not give a value for

alpha. In such a system, there are trade-offs on the value of alpha. A large alpha value

creates a short time-constant; this would include foreground that does not move quickly

into the background. A small alpha value creates a long time-constant, making the

system susceptible to sudden global changes (for example lighting changes, or camera

movement). Inappropriate alpha choices can also lead to ‘salience shadows’ behind boats,

where the background model has learned the foreground as its ‘background’ and flags

the true background as different to its model (which is of foreground). Socek et al. [31]

also use background subtraction learned through an IIR filter. Hu et al. [26] create a

background image from a median value over 6 images, then salience is determined for

each pixel as the smallest distance from the current pixel to its 9-neighbourhood in the

background image. If a pixel is sufficiently different for a sufficiently long time period, the

background will update again. Szpak and Tapamo [32] approximate each pixel’s history

as a Gaussian distribution. New values outside three standard deviations are marked as

foreground, and put into a buffer. If they persist, they are considered background and are

included into the distribution. Gupta et al. [22] perform background subtraction using a

weighted average for past values, that favours medium-term historical values over recent

values (which may be a salient object starting to appear) or long-term values (lighting

conditions may have changed). Frost and Tapamo [33] use a kernel density estimate to

model the history for each pixel taking n frames spaced s frames apart (by doing this,

they avoid including slow-moving objects in the background without including a overly

large number of history pixels). Bloisi and Iocchi [10] use a GMM with up to 7 modes

to describe each pixel’s background distribution. The histories are updated every 20 to

60 seconds depending on the lighting conditions. Robert et al. [34] group the image into

macro-pixels, and test if the average value of the sub-pixel is sufficiently different from

a single reference taken up to 3 minutes earlier.

The other common approach to salience detection builds its background model using

the values in a single frame. This can be done either to set up a distribution, with

unlikely values marked as salient, or as a background subtraction. Tao et al. [35] do a

mean shift segmentation to detect salient regions. Liu et al. [27] use local color and edge

orientation histograms. Patches are marked as containing salient objects if the distance

(using the Bhattacharyya measure) between their histogram and the histogram of the

area surrounding the patch is large enough. Smith and Teal [36] create a histogram for

the average greyscale distribution of the sea; the tracker then measures the similarity

between 32-by-32 pixel patches. If a patch’s histogram gets a score of over 90% in its

comparison to the sea’s histogram (the paper does not define a comparison metric), then
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the entire patch is marked as not salient. If the comparison scores less than 90%, ‘the

tile is further processed and classification is done on a pixel by pixel basis’ [36]. Islam

et al. [37] detect salient pixels by using a difference of Gaussians to detect pixels that

are different from their surroundings. Selvi and Kumar [38] add the magnitude of the

Sobel edge detector to the raw image, followed by a threshold that maximises inter-class

variance while minimising intra-class variance. Saur et al. [23] use a combination of

adaptive and absolute thresholds, which works on their SAR images. Pires et al. [39]

approximate the whole sea frame using a Gaussian distribution, and look for outliers.

Wei et al. [40] use iterative re-weighted least squares regression to fit a plane to the image

before performing background subtraction. Teusch and Krüger [41] use several different

markers to detect salient regions, then create a salience mask for the bounding box using

several strategies. These involve a comparison to different regions: the horizontal mirror

of the patch, the rest of the image, and the rest of the row. The considering of the entire

frame’s ocean as a static distribution (as in the second strategy) is a common trend, and

works if the ocean is homogeneous. In many cases the model of the ocean fits better

when considered by row (as in the third), as lighting and ocean conditions change as a

function of distance, for which height in frame is a good proxy. This is advantageous

over a static model for the ocean, and we will take the idea further in our salience filter,

presented in section 4.3.2.

There are a few other approaches that do not fit into these two categories. Fefilatyev

et al. [25] present a tracker mounted on a buoy. Because their camera is mounted so

low, all boats to be detected are against the horizon line. Near the horizon line, water

and sky have little texture, so they uses a thresholded colour gradient image on the

image strip proximate to the horizon. Sanderson et al. [42] use a FFT on 32-by-32

pixel sub-windows, subtract from it an average frequency response (calculated from 10

sub-windows in the sequence), inverse FFT the difference, and finally stitch the patches

together.

Several maritime trackers have no salience filters. Bachoo et al. [1] present a maritime

tracker without a salience filter. Theirs is a first-generation single object tracker that

uses a fairly off-the-shelf template tracker. They use a particle filter and deviation from

template for the observation model, achieving good results. They only handle the STT

case and require initialisation from a user. This explains their lack of a salience filter

(which is frequently used to initialise tracks). Their straightforward approach solves the

initialised-STT version of the problem well, whereas auto-initialised-MTT versions are

very complex. This illustrates how large a component salience filters and initialisation

is to the MTT task. Sullivan and Shah present another tracker that does not use a

salience filter [43]. Instead, the tracker uses a maximum average correlation height

(MACH) template built from extensive offline tracking, and looks for good matches
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in the image using cross-correlation in the frequency domain. Bloisi and Iocchi [16]

use a boosted cascade of Haar features, which are extensively trained offline. These

classifiers are fast enough that they do not need a salience filter to limit the number of

candidate targets tested. A surveillance system using this approach (learning different

vessels offline and only searching for them) might be concerning, as any vessel that has

a sufficiently peculiar shape may go undetected. In addition, our approach focuses on

giving the tracker the minimum prior possible so that it can develop its own rich filter,

thus excluding extensive training such as in these systems.

Bechar [44] presents a salience filter that is a combination of sub-filters (many trackers

use multiple components, but Bechar’s is the closest we could find to a Bayesian method).

He sets

p(pix|obj) ∝ 1− ω ×A×B × C ×D (2.1)

where

• ω is a scaling variable,

• A ∝ Probability of drawing the pixel in question from the brightest class, assuming

Gaussian observation distributions,

• B ∝ Probability of drawing the pixel in question from the bluest class, assuming

Gaussian observation distributions,

• C ∝ is a measure of how spread out the colour is in the frame (higher spread means

the color is less likely to be boat), and

• D is a measure of dynamic texture (correlation between neighbouring pixels).

The components are set up as probabilities; however, combining them in a ‘noisy OR’

like this is ad hoc. We will discuss a more appropriate method in section 4.3.1.

There are several post-processing steps that are used on the salience filter response to

suppress noise. Small connected components are often ignored [10, 30, 33, 36, 40]. Frost

and Tapamo [33] also use a variable-size threshold dependent on the y-value to perform

a perspective-independent threshold on connected components. Bloisi and Iocchi [10]

use clustering of sparse optical flow results to separate objects whose images form one

connected component in the image (which also suppresses wakes). Morphological opera-

tors are frequently used [22, 31, 32, 40] to treat the image for salt-and-pepper noise. Wei

et al. [40] use a structuring element whose size dependents on the y-position, in order

to take perspective into account. Saur et al. [23] use the Hough transform to filter for

boats whose outline is dominated by two long lines (which is relevant for SAR images).
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Selecting for salient patches in which the bottom is a long straight line may work for

large boats on calm seas, but we do not believe it would work well in our conditions.

Frost and Tapamo [33] use motion persistence (area must be salient for a while). This

implies a strong prior on p(boat|speed), which we feel is unjustified.

A final point worth mentioning is brought up by Moreira et al. [21]. The success of

a salience filter or initial vessel detector is dependent on the application. Different

conditions will favour different filters, and so it is important to see the filters in light of

the sequences on which they are run. It would have been preferable to include sample

images from each paper in this section. However, that would have undermined the

portrayal of the common structure in the literature, so we instead examine sample

images in section 2.2.4.

2.2.3 Trackers

In this section we describe the commonly used trackers. There are three relevant topics:

feature sets, classifiers, and trackers. We review these in turn.

There is a large variety of features used. We first list them before drawing together

the common threads. Gupta et al. [22] use the feature set {position, velocity, Hu’s im-

age moments (up to 4th order), category of nearest object, distance to nearest object,

bearing of nearest object}. Sanderson et al. [45] use {Hu’s image moment, PCA of

multiple templates, local features via the 2D Hadamard transform}. Feineigle et al. [46]

use SIFT features (which is appropriate for the large vessels in their use case). Teutsch

and Krüger [41] use a set of 342 features that include information from {Hu’s moments,

statistical image properties (variance, contrast, entropy), gradient features, local binary

patterns}. To describe the set fully would take too much space. From this set they use

a greedy algorithm to select the best features using linear discriminant analysis. Wei et

al. [40] also use an extensive set of features including Gabor wavelet co-efficients, colour

histograms, histograms of edge points, edge orientation, edge length, shape moments,

angular area histogram, Fourier descriptors, and boundary statistical features (mean

value, standard deviation and histograms of curvatures)3. Alfadda [47] uses GIST (a

spatial/scale array of Gabor-like filters), HOG and DeCAF (deep convolutional acti-

vation feature) and a collection of other features (LBP, LBPHF, line features, SSIM,

texton histograms, geometric probability map and SIFT). Mattyus [28] and Bloisi et

al. [16] use Haar features. Bousetoune and Morris [48] use CNNs trained on large data

sets (ImageNet) stripped of their last layer to generate features from the second last

3Some of these seem vague, and the original paper does not offer much of a description.
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layer. Selvi and Kumar [38] use aspect ratio, compactness (perimeter2/area), convex-

ity (area/area-of-convex-hull), first seven image moments, statistical measures of grey

value (mean, variance, moments, and entropy), and wavelet-based features (as described

in their paper). Bloisi and Iocchi [10] do not use features, rather tracking clusters of

salience (with optical flow to separate collisions). Liu et al. [27] use no features, but

instead track the best ellipse of salience (switching between colour spaces favouring the

most discriminating one). Bachoo et al. [1] and Hu et al. [26] both use the raw pixel

values as the features to be used for tracking with a template.

The main trend in this list is the lack of a dominant technique. While many of the

common tracking features are present (Haar, HOG, SIFT etc.), they form a minority.

Most of the repeated features are more structural features of the image, such as Hu’s

moment or gray-scale entropy. We believe this is because waves are noisy, and any

feature that focuses on detail will find a patch of water displaying similar detail. The

larger structure of the target, on the other hand, is more discriminative. This is also

pertinent in our case, as we focus on smaller boats and so will usually have less space

for detail-based features.

Once features have been decided upon, they need to be used. Usually some sort of

classifier is used to decide which candidate best fits the object or class of interest.

Teutsch and Krüger [41] use two SVM stages to classify targets of interest; the first

distinguishes between objects and clutter, and the second distinguishes suspicious boats

from other objects. Sanderson et al. [45] test the functionality of both a single Gaussian

and a GMM approximation of the training examples to classify new samples. Selvi and

Kumar [38] propose using either a KNN or a SVM classifier (although neither is actually

implemented in their paper). Mattyus [28] uses an adaBoost framework, Wei et al. [40]

use a decision forest, and Bloisi et al. [16] use a boosted cascade of classifiers.

While the general tracking problem sees much activity in the form of authors testing new

classifier frameworks, the classifier is seldom the focus in maritime surveillance papers.

We list these examples to show that, although some may have Bayesian foundations,

none approach the adaptive tracking with the thorough framework we develop.

Several tracking frameworks occur repeatedly, namely: mean-shift [27, 29, 35], the

Kalman filter [10, 27, 49], MHT [10, 25], and active contours [32, 33]. A more thor-

ough analysis is given by Moreira et al. [21].
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2.2.4 Data Sets

For any task in machine vision the performance of the system is intricately linked with

the data set on which it is tested. This is especially true in maritime surveillance, as

the condition of the ocean has a large variance and can change the background from a

nearly homogeneous sheet to cluttered, noisy turmoil. The choice of boat size relative

to the frame also has a large effect on the challenge to the system. In this section we

present sample images and describe the testing data set from the referenced papers, so

that the reader has an idea of the instances of the problem tackled by current systems.

We display a representative sample of other authors’ data sets that the relative difficulty

of our data set, presented in section 4.2, may be appreciated.

Our description of the sample frames and the availability of data may sound critical.

This is not to cast judgement on the authors: we understand the space limitations that

go with journal publication and the difficulties of presenting representative samples of

video sets. We adopt candour so the reader will understand the challenges in perceiving

the level of difficulty of data that is standard in the field.

Bloisi and Iocchi [10] tested their system (ARGOS) extensively in situ; a sample frame

is shown in figure 2.3(A). Alfadda [47] and Bloisi et al. [16] use the MarDCT data sets

available from www.dis.uniroma1.it/~labrococo/MAR/, which has 20 sequences for

detection, 4774 cropped images for classification, and 9 sequences for tracking. A sam-

ple frame from one of the tracking sequences is shown in figure 2.3(B). Hu et al. [26] do

not say where their data comes from, but it is implied that it is self-generated. Most of

the experiments occur on only one sequence. A sample frame is shown in figure 2.3(C).

Sullivan and Shah [43] recorded their own footage, and used sequences available online

(www.uscg.mil, www.bbcmotiongallery.com, and www.nvmc.uscg.gov). Several sam-

ple frames are shown (e.g. figure 2.3(D)), yet the quantity of data from each source is not

mentioned. Gupta et al. [22] analysed two days of video of from the Potomac River in

Washington, with 1578 tracked objects. The only example image given is figure 2.3(E).

Tao et al. [35] test their segmentation algorithm on six frames from a single sequence

(sample shown in figure 2.3(F)). Socek et al. [31] refer to a number of scenes, but only

show one (sample image in figure 2.3(G)). No quantitative results are given. Wang et

al. [30] test their algorithm with 3 sequences (sample frame in figure 2.3(H)). Bechar et

al. [44] show 4 ‘shots’ (shown in figure 2.3(I)); it is unclear whether this is a cropping

from the frame (they seem to have narrow FOVs) or the whole frame. They claim to

have run their algorithm on ‘a dozen of realistic sequences’ [44], but no quantitative

results are shown.

www.dis.uniroma1.it/~labrococo/MAR/
www.uscg.mil
www.bbcmotiongallery.com
www.nvmc.uscg.gov
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(A) (B)

(C) (D) (E)

(F) (G) (H)

(I)

Figure 2.3: Sample images from current literature review: Bloisi and Iocchi [10] (A),
the MarDCT data set used by Alfadda [47] and Bloisi et al. [16] (B), Hu et al. [26] (C),
Sullivan and Shah [43] (D), Gupta et al. [22] (E), Tao et al. [35] (F), Socek et al. [31] (G),
Wang et al. [30] (H), Bechar et al. [44] (I) (it is unclear whether these are frames, or

cropped from frames).

The following papers’ data sets were captured on the South African coast, which has

harsher sea conditions, as opposed to conditions on the Mediterranean and in har-

bours. Bachoo et al. [1] use three data sequences, sample frames of which are shown

in figure 2.4(A). Szpak and Tapamo [32] test their algorithm on four sequences, giving

sample frames in pseudo-colour for all of them; the three greyscale images they give

are shown in figure 2.4(B). Frost and Tapamo [33] use a set of ten maritime sequences

obtained from the Council of Science and Industrial Research (South Africa). The only
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sample frame is shown in figure 2.4(C). These sequences have more challenging ocean

conditions, and smaller targets relative to the frame.

(A)

(B)

(C)

Figure 2.4: Sample images from current literature review (captured in South Africa):
Bachoo et al. [1] (A), Szpak and Tapamo [32] (B), Frost and Tapamo [33] (C).

Many systems use IR cameras. Wei et al. [40] tested their surveillance system on data

provided by Lockheed Martin, including visible and IR sequences (sample frames in

figure 2.5(A) and figure 2.5(B) respectively). The extent and exact nature of all the

data is not provided. Islam et al. [37] test their system on 132 standard and IR camera

images from ‘army night vision lab’[sic]. Sample images are shown in figure 2.5(C)

and figure 2.5(D). Robert et al. [34] test their system on two visual and IR sequences,

samples of which are shown in figure 2.5(E) and 2.5(F). Krüger and Orlov [50] claim their

system is tested on a large set of IR sequences captured in the North Sea. Several sample

frames are given (e.g. figure 2.5(G) and figure 2.5(H)), but no quantitative results are

given. Pires et al. [39] test their system on four sequences from different IR cameras,

giving a thorough description of each sequence (example frames in figure 2.5(I) and

figure 2.5(J)). Teutsch and Krüger [41] test their algorithm with 19 sequences (sample

frame in figure 2.5(K)). However, not all sequences are described, and no reference is

given.
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(A) (B)

(C) (D) (E) (F)

(G) (H)

(I) (J) (K)

Figure 2.5: Sample images from current literature review (papers including IR): Wei
et al. [40] (A) and (B) (visible spectrum and IR respectively), Islam et al. [37] (C)
and (D) (visible spectrum and IR respectively), Robert et al. [34] (E) and (F) (visible
spectrum and IR respectively), Krüger and Orlov [50] (G) and (H) (both IR, showing
different target size), Pires et al. [39] (I) and (J) (both IR, showing different conditions),

Teutsch and Krüger [41] (K).

We do not include data samples from the classification papers, as they contain pre-

cropped boat images, and similarly for the papers with different surveillance modes (e.g.

buoy-mounted, satellite images, etc.). We list the above trackers to show the trends

in the current maritime literature: commonly the focus is on large vessels and easy sea

conditions; algorithms are tested on a few sequences; often data is not available, and only
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a few sample frames are shown; results are usually focused on qualitative illustrations of

a working system, rather than on quantitative results (if any are given). We believe this

is because of the nature of maritime surveillance. All authors have their own use case

in mind, and their own setup to construct. Any reader will likely be solving a slightly

different problem; quantitative results are not necessarily relevant to that problem. Value

can be found in qualitative results showing the sorts of data a technique works on and

the sorts of results it can give. This is very different to the standard VOT community,

which is built around standardised data sets and comparative quantitative results.

2.2.5 Other Pertinent Topics

Finally, we address several other points raised in the literature that we find pertinent.

The tracker developed by Fefilatyev et al. [25] is bouy-mounted, and deals with large

amounts of camera movement. A fair portion of their paper addresses horizon detection,

for which they assume that most of the frame is divided into two sets of pixels (sky and

water). They test the validity of this assumption for each frame, and if it is false (due

either to extreme camera pitch or a boat filling the frame) they discard the frame. We

find this noteworthy for two reasons: having a concrete statement of your assumptions is

useful, and building checks for those assumptions is useful as well. Also, in dealing with

edge cases, such as when assumptions are wrong, the choice of an algorithm’s response

must be a function of the task at hand. The assumption that boats are small makes

the algorithm weak in detecting large boats. In our case, this is safe as it is the smaller

boats that are more likely to be missed by human operators.

Szpak and Tapamo [32] justify the choice of grey-scale sequences over colour sequences:

long range cameras are usually gray-scale due to the resolution-colour trade off, and it

also avoids blue channel saturation.

Lastly, the frequent comment that IR cameras produce more homogeneous ocean colour-

ing should be viewed in light of figure 2.5: many IR images still display wave noise, and

have an intensity gradient as the ocean tends towards the horizon.
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Derivation of Mathematical

Framework

We now move on to the main contribution of this work. In this chapter we derive a

Bayesian framework that approaches the adaptive MTT problem in a holistic manner,

framing the entire task in its inference. Because it is easier to follow the derivation with

a concrete problem, we use a small synthetic problem to visualise the different variables

and processes.

We start off in section 3.1, by introducing the synthetic problem with which we walk

through the derivation. In section 3.2 we consider the single target version of this

problem, discussing the common Bayesian approaches and introducing our framework.

Section 3.3 extends this framework to the adaptive MTT case and discusses the problems

with traditional approaches. We address the difference between adaptive MTT and a

persistent tracker (and our framework’s encompassing of both) in section 3.4. Finally,

we present the changes that would be necessary to extend the tracker from the sample

problem to a visual object tracking (VOT) problem in section 3.5.

3.1 Synthetic Problem

For our synthetic problem we consider a one-dimensional tracking task where the obser-

vations are a line of 40 scalar-valued pixels Yt ranging from 0 to 1, and the targets are

single pixel aberrations on the background. For readability, we will show these values as

a chromatic change instead of gray-scale. We draw background pixels from a Gaussian

distribution centred on zero, and targets will be drawn from a Gaussian distribution

centred on µ (which is a parameter of the object). All observation distributions will

32
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have a standard deviation of 0.1, and will be clipped to the range [0, 1]. The targets will

have a state with a single variable x (the location of the aberration) which will follow a

Gaussian random walk with a standard deviation of 1 pixels.

Figure 3.1 shows a sample instance of the problem. The horizontal axis represents the

dimension the targets are being tracked across, and the vertical axis represents time

(increasing towards the bottom of the image). Low values are shown with blue pixels,

high values with red pixels. Three targets move through the scene with µ values of

0.15, 0.7 and 0.5 from left to right at the start of the sequence. The image on the left

represents the ground truth; the image on the right is the actual observations.

Figure 3.1: Sample instantiation of the synthetic one-dimensional adaptive tracking
problem.

3.2 Adaptive Single Target Tracking

We first consider a single target tracking (STT) version of the problem. A fairly common

approach to adaptive tracking is the use of a BRE (through its approximations the

Kalman filter and the particle filter). The BRE poses the tracking problem as a hidden

Markov model (HMM) in which the underlying state (which we will call Xt) evolves in

a stochastic manner that is only dependent on the current value (i.e. it has the Markov

property), and the estimator has access only to observation variables (which we will

call Yt) that are dependent on the state. We will call the distribution p(Xt|Xt−1) the

transition or motion model, and the distribution p(Yt|Xt) the observation model (which
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is called a likelihood if seen as a function of Xt). Figure 3.2 shows a graphical model of

a HMM.

Figure 3.2: Bayesian network for a HMM. At each time instant, the current state Xt

is dependent only on the previous time instant Xt−1. The state is not observable, so
all reasoning about the system state needs to be done through the observable variables

Yt that are dependent on Xt.

Application of Bayes’ rule reduces the posterior to

p(Xt|Y1:t) =
p(Yt|Xt, Y1:t−1)

∫
p(Xt|Xt−1, Y1:t−1)p(Xt−1|Y1:t−1)dXt−1

p(Yt|Y1:t−1)
. (3.1)

This is often broken up into a prediction step (the contents of the integral) and an update

step (scaling the prediction by the likelihood, followed by normalisation). Because the

system has the Markov property, the history Y1:t−1 holds no extra information and can

be dropped from the motion and observation models, giving

p(Xt|Y1:t) =
p(Yt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1

p(Yt|Y1:t−1)
. (3.2)

The major problems with this formulation stem from its assumption that the motion and

observation models are known a priori. Adaptive trackers adapt in order to overcome

a lack of this exact information at initialisation time. This problem can be seen in

the equation: p(Xt|Xt−1) and p(Yt|Xt) are time-independent. Given Xi−1:i = Xj−1:j ,

Yi = Yj and i 6= j, we should have p(Xi|Xi−1) = p(Xj |Xj−1) and p(Yi|Xi) = p(Yj |Xj).

However, this would not be true for an adaptive tracker. The history of observations

Y1:t−1 is still relevant, and hence the Markov property is not appropriate.

The obvious fix is to include more into our state Xt until the Markov property is met. In

order to do so, we partition the state Xt into two components M and St. The quantity St

contains all the time-varying properties we traditionally see as the state, and M contains
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all the information we have learnt in previous frames1. The quantity M will get more

intricate later, but for now it will only hold a distribution on the HMM models. After

substituting2, our equation becomes

p(M,St|Y1:t) =
p(Yt|M,St)

∫
p(St|M,St−1)p(M,St−1|Y1:t−1)dXt−1

p(Yt|Y1:t−1)
. (3.3)

This has much the same structure as equation 3.2, except that now we are maintaining a

PDF across the joint (M ,St) space. The model M is now given for both the motion and

the observation models, thus it can modulate them. Even thoughM is not a time-varying

property (as indicated by its lack of subscript), each point in the joint space has specific

observation/motion models attached to it. There are two ways of thinking about this

process. The first (more accurate) way is to think of each model having its own inference

engine that runs in parallel to the rest, calculating its own likelihood and prediction. The

normalisation then occurs across all models together. The second is to imagine the PDF

moving through this joint space, with different motion and observation models becoming

appropriate as it moves. This second approach is tempting, yet misleading. Even though

the weight of the PDF may move in the M dimensions, the normal movement (i.e. the

diffusion that happens during the prediction step) in the inference occurs only along the

St dimensions. Any transfer of mass in the PDF that occurs along the M dimensions is

a result of normalisation. A sample iteration of this inference is illustrated in figure 3.3.

While we use M to parameterise a simple model space, the system could accommo-

date convoluted spaces that select between any number of different observation mod-

els: all that is required is that these models make predictions for p(Xt|M,Xt−1) and

p(Yt|M,Xt)
3. To name this framework, we note that the key factor that differentiates

it from the BRE is the principled incorporation of model adjustment, and so we call it

simultaneous modelling and estimation, or SMAE.

Our sample problem is small enough that we can maintain a decent discretised version

of the PDF for the joint (M ,St) space4. Our state is defined by a single variable x,

and the model by the centre of the observation distribution µ. We will assume a known

motion model for simplicity (however, the parameters for it could easily be included in

M). We define each pixel p’s observation to be Y p
t and assume independent pixels (a

1It is tempting to put in a subscript Mt, however the model is not a time-varying property; it is our
information about M that changes with further observations. Hence p(M |Y1:t) is a function of time, but
M is not.

2Recognising that p(M |M,S1:t−1)=1; that is, the motion model of Xt is static in all dimensions
associated with M (by definition).

3One could say that all these functions are already in our M domain, and that we have set their prior
to zero.

4We are still considering the case in which we assume there is only one target.
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Figure 3.3: A single inference step for the synthetic problem. The observations
(Yt) for a particular time t are shown in (A). Each pixel (Y pt ) in the observation is
used to calculate background likelihoods (p(Yt|Bgp)) in (B) and foreground likelihoods
(p(Y pt |M,St)) in (C). As an object affects only the pixel value at its location, the
foreground likelihood is composed of slices for each pixel location, defining how well each
model predicts the observed pixel. We look at this more in figures 3.4, 3.12 and 3.13,
and define it as the update function. The calculation of the log likelihood ratio is done
in (D). Each slice in (C) is divided by the appropriate value from (B), and the quotient’s
log is shown in (E). This forms the observation half of equation 3.2. The posterior
for the previous time instance (p(M,St−1|Y1:t−1)) is shown in (F). This is updated by
convolution with the motion model (G) to produce the prediction (p(M,St|Y1:t−1)) (H).
The motion model never moves PDF mass from one M value to another, as all the
time-varying properties are in St. Each M plane can define its own motion model. The
prediction and the observation model are combined according to equation 3.2: using
point-by-point multiplication, with the result normalised across the entire (M ,St) plane,
to create our posterior p(M,St|Y1:t)) (I). Our notation in this diagram assumes (E) is
not in log-space; we do not include the converting of (E) and (H) to a common space

for diagram complexity sake.
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false but common assumption), and get the observation model

p(Yt|M,St) =
∏
Y pt

p(Y p
t |M,St). (3.4)

This simply states that the likelihood of the entire observation is the product of the

likelihoods for each pixel. Because an object with state St = x only makes predictions

about the pixel at location x (that is Y x
t ), this becomes

p(Yt|M,St) = K.
p(Y x

t |M,St)

p(Y x
t |Bgx)

. (3.5)

Here Bgp is the event that pixel p was drawn from the background distribution, and

K =
∏
Y pt

p(Y p
t |Bgp). (3.6)

This constant K is independent of M and St, and hence disappears during the nor-

malisation. Thus it can be ignored. Dropping K and putting in the likelihoods, we

get

p(Yt|M,St) =
1

σobs
√

2π
e

−1

2(σobs)2
((µ−Y xt )2−(Y xt )2)

. (3.7)

Here, the likelihood of observing the entire observation has been reduced to a function

of only the relevant pixel (Y x
t ). This decomposition (which is equally valid in stan-

dard tracking problems) illuminates the peculiarity in the trend of only considering the

bounding box (or in our case, the pixel) as Yt. In figure 1.3, we presented the difference

between a holistic Bayesian tracker and the current Bayesian approaches. It is more

principled to include all pixels in Yt, and is mathematically equivalent to using a likeli-

hood ratio for only pixels in the bounding box. Even if a LLR is not desired, setting a

uniform (and hence irrelevant after normalisation) background model will lead to using

only the bounding box as Yt. Hence we can switch our thinking to the more principled

approach (fitting the whole task into a Bayesian inference engine) and benefit from it

without having to change our practice. Thus the use of a bounding box is justified by

our framework.

Putting this together with a motion model p(St = x1|M,St−1 = x2) ∼ N (x1 − x2, 1
2),

and a quantised grid of µ with a step of 0.05, we can run SMAE on our synthetic

problem under the temporary assumption that there is only one target. Each time-step

is a three-step process:

1) diffuse p(St−1,M |Y1:t−1) according to the motion model to get p(St,M |Y1:t−1),
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2) evaluate the likelihood for each point in state space, and

3) normalise across the entire (M ,St) space.

For step 2, each location x has a PDF for µ and an observation Y x
t . We can show the

update (that is, the combining of prior and likelihood) for each considered state St as

multiplication with an update function. Figure 3.4 shows this update function (in µ)

as a function of Y x
t . Here the Y x

t axis represents the input, and the slice defined by

setting Y x
t constant is the update function to use for a given Y x

t . The update function

(which is a likelihood ratio) is shown on a log scale, as the graph is dominated by high

µ, high Y x
t values. As one would expect, the update function for a given observation

peaks at a µ value equal to that observation. However, the value of that peak changes

dramatically. The more difficult it is to explain an observation as background, the more

weight it lends to the models that could explain it. Considering that the normalisation

is done across the entire (M ,St) plane, it is easy for the peaks associated with smaller

µ values to become negligible. Under the assumption that there is exactly one target in

the scene, the contest between hypothesised targets is as much about which observations

the background struggles to explain as it is about which observations fit the foreground

models5. This is as a result of considering the entire observation as Y and is desirable

behaviour: if an adaptive tracker is allowed to pick its own observations, it can pick only

those values that fit its model. This would lead to confirmation bias. The denominator

of the LLR (which was a result of our normalising E out of the likelihood) is what pushes

the tracker towards more pertinent potential targets.

Figure 3.5 shows results for SMAE on the synthetic problem6. The top row shows the

observations given to the estimator, the ground truth locations for all targets in the

data, and the posterior PDF marginalised across µ and x. The data was generated with

three targets, yet the tracker assumes there is only one. One might hope that the PDF

would be split between the three targets, but the tracker’s PDF is focused entirely on

the object with the highest µ. The distribution on the µ can be seen to concentrate

on the correct value for this target as time progresses. Rows two to four show the

prior (row 2), likelihood ratio (row 3), and posterior (row 4) for 5 different instances in

time. Notice that the prior gets more certain of µ as time progresses, but maintains its

breadth in x (in accordance with the motion model). The update (i.e. likelihood ratio)

is dominated by the response at the location of the primary target. The magnitude of

the peak depends greatly on the observed value: this is seen in the value of the peak in

5This is relevant in the next section.
6A note on colour palettes: we use different colour maps for different common plots to help differ-

entiate their meaning. LLRs shown as a function of the observation pixel and model value will use the
Autumn (red to yellow) color map, distributions over the (M ,St) space for a particular time will use
Hot (black through red to white), and images where time is an axis will use Parula (Blue through green
to orange).
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Figure 3.4: Model update function for synthetic problem. For a given observation
Y xt , the distribution on µ at x will be multiplied in a point-by-point fashion with the

intersection of the plane defined by Y xt and the above surface.

row 3 changing by six orders of magnitude, depending on its location in µ. Secondary

peaks in the update can be seen at the location of the secondary target in frames 1 and

43, due to the combination of low observation values for the primary target and high

values on the secondary target. Unfortunately, these are some of the very few frames in

which the secondary target is not negligible, and the posterior focuses on the primary

target due to division by a tiny p(Y x
t |Bgx). The posterior follows the primary target

well, and we can see the uncertainty in M decrease.

We observe that the system effectively tracks and models the single most pertinent target

in the scenario. Now we move on to multiple target tracking.

3.3 Adaptive Multiple Target Tracking

Our derivation moves through an initial approach to multiple target tracking(MTT) in

section 3.3.1, a particle-like filter formulation in section 3.3.2, and finally covers compli-

cations due to overlaps in section 3.3.3.
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Figure 3.5: Results for the synthetic problem as STT. The top row shows observations
given to the estimator, the ground truth locations for all targets in the data, and the
posterior PDF marginalised across µ and x. Rows two to four show the prior (row 2),

likelihood ratio (row 3), and posterior (row 4) for 5 different instances in time.

3.3.1 Initial Approach

The PDF in the above analysis held the posterior distribution across the (M ,St) plane

under the assumption that there was exactly one target in the scene. While one might

hope that multiple targets in the scene would lead to multiple modes in the distribution,

the results for the synthetic problem show that the denominator in the LLR can lead to

the most pertinent7 target’s response drowning out any others. This is made worse when

targets interact or pass close to each other, which may lead to coalescence (where two

tracks tracking two different targets merge, and follow the favoured of the two tracks).

To handle the situation correctly we need to note that our current (M ,St) plane is

no longer appropriate as the domain for the PDF. Stone et al. [15] present a similar

example to ours (except without the model parameter µ), in which they model two

targets moving in a one-dimensional space. Because they knew the number of objects,

they could maintain the joint PDF across them. It would be possible to model the joint

PDF for two objects in our scenario, creating a 4D PDF across the variables M ′, S′t ,M ′′,

and S′′t . Displaying a 4D PDF is non-trivial, so we adapt our definition of p(M,St). We

no longer consider it as the state of a specific object, but rather let it represent the

probability that there is an object with model M at state St. Thus our PDF for a

7The target most difficult to explain as background.
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Figure 3.6: Results for the synthetic problem assuming that exactly two targets
are visible. The top row shows observations given to the estimator, the ground truth
locations for all targets in the data, and the p(M,St) as defined in the text, marginalised
across µ and x. Rows two to four show the prior (row 2), likelihood ratio (row 3), and
posterior (row 4) for 5 different instances in time (the 4-dimensional PDF has been

collapsed into a 2D representation as described in the text).

point on the (M , St) plane at time t can be seen as the sum of the PDFs for the joint

two-target distribution with target 1 at the point, marginalised across all possibilities

for target 2, and the mirror scenario (which will have an identical value). That is,

p(M,St) =

∫
p(M,St,M

′′, S′′t )dM ′′dS′′t +

∫
p(M ′, S′t,M, St)dM

′dS′t. (3.8)

These results are shown in figure 3.6. Rather than attempt to display the 4D joint PDF

across two target (M , St) space, we display the p(M,St) as defined above.

The plots are the similar to figure 3.5. Many of the same patterns can be seen in these

graphs: the posterior localises the position St well, except now it manages to follow two

targets. The M components start off unknown, but localise as more observations are

taken into account. Any targets beyond the assumed number are ignored. The update’s

magnitude varies dramatically, based on the denominator of the likelihood ratio. The

main difference is that the update can now have multiple modes.

The shortfall of this approach is twofold: maintaining a joint PDF becomes exponentially

more complex as more targets are considered, and this still assumes a set, known number

of targets in view. A Bayesian approach to MTT with an unknown number of targets

would be to consider the domain of Xt as the union of all 2N-dimensioned subspaces
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describing the joints across N targets. This, however, is not feasible. We will follow a

less expensive approach with our newly defined p(M,St|Y1:t). Rather than answering

the question ‘How likely is a target with model M at St?’ under the assumption that

only one target is present, we ask this question without that assumption. The Bayesian

inference is similar. Our prediction will still take the previous step’s posterior, and feed

it through a motion model to get a prior. Our likelihood is still easily defined by what

model M predicts as observations8; it is just the new normalisation that needs to be

addressed.

3.3.2 The Use of Particle-like Filters

Managing this will be easier if we hold the distribution in a discretised form. As our

solution for the non-synthetic problems will use particle-like filters, it is natural to switch

to one now.

The formulation will not be a traditional particle filter, in which a dense set of samples

approximate a non-parametric PDF. Unfortunately, the dimensionality of M in our final

application will rule out dense sampling, and so we will use a hybridised system to store

our PDF. Our particles X̂t will be discrete in St, but maintain a distribution in M as

shown in figure 3.7 (this is possible as each update is multiplication with a Gaussian).

In this way, dimensions associated with St are modelled using a particle-like filter, but

the problems associated with dimensionality are avoided by handling M parametrically.

Our filter will also have dramatically fewer particles than traditional particle filters,

but this will be discussed below. The name ‘particle-like’ filter is distracting, hence we

will refer to our formulation simply as a particle filter in the text. However, we draw

attention to the fact that our filter is not a traditional particle filter lest the differences

distract the reader.

It will be necessary to define relations between the different particles, to determine

which can and cannot co-exist. To do this, we group particles in clusters Ct
9 such

that particles in a cluster must co-exist, and we keep a record of which pairs of clusters

cannot co-exist. If we now define the set of visible targets at time t as At, we can see

our posterior (now defined on particles X̂ rather than on (M ,St)) as marginalised across

all allowed sets of particles Ajt :

p(X̂t|Y1:t) =
∑
Ajt

p(X̂t|Ajt , Y1:t)p(A
j
t |Y1:t). (3.9)

8We address the intricacies involved in overlapping templates in section 3.3.3.
9As per the third option in MHT mentioned in section 2.1
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Figure 3.7: The illustration of MTT for a particular frame of the synthetic problem
using a particle filter. The left (A) shows the summary of the particles in question. The
right (B) shows an illustration of these particles. The lower (C) shows the compatibility
matrix: Particles 1 and 3 are incompatible because they claim the same history (the
particle in the prior cannot go to both, so they must compete against one another).
Particles 1 and 2 are marked as incompatible because they overlap; this case is explored
more thoroughly in the text, and in figure 3.10 which explores the need for clusters.

For now, each particle is its own cluster.

Thus the posterior on a particle is the sum of its posteriors given each of the possible

visible sets Ajt , scaled by the posterior on each set. Rearranging the second factor and

noticing that the first factor simply tests if the particle X̂t is in Ajt gives us

p(X̂t|Y1:t) =
∑
Ajt

bool(X̂t ∈ Ajt )
p(Yt|At)p(Ajt |Y1:t−1)

p(Yt|Y1:t−1)
. (3.10)

Here the denominator is the numerator integrated across Ajt ; the system is normalised

across all the valid subsets.

Because the pixels are independent, we can split our likelihood:

p(Yt|Ajt ) =
∏
Y pi

p(Y p
i |A

j
t ). (3.11)
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Particles that deal with the same pixels will either be incompatible (and hence will not

co-exist in a valid At) or be in the same cluster, thus the pixels in the likelihood can be

separated by cluster. Our clusters will not interfere with each other (we join interacting

clusters into one new cluster), hence we can split our priors as well:

p(X̂t|Y1:t) =
∑
Ajt

bool(X̂t ∈ Ajt )

∏
Cmy ∈A

j
t

(( ∏
Y pi ∈Cmt

p(Y pi |C
m
t )

p(Y pi |Bgp)

)
p(Cmt |Y1:t−1)

)
p(Yt|Y1:t−1)

. (3.12)

Here again we have ignored the constant K =
∏
Y pi

p(Y p
i |Bgp), which will disappear in the

normalisation. We split the equation semantically to become

p(X̂t|Y1:t) =

∑
Ajt

bool(X̂t ∈ Ajt )
∏

Cmt ∈A
j
t

p(Cjt )

p(Yt|Y1:t−1)
, (3.13)

with

p(Cmt ) =

 ∏
ypi ∈Cmt

p(Y p
i |Cmt )

p(Y p
i |Bgp)

 .p(Cmt |Y1:t−1). (3.14)

We use p(Cmt ) as shorthand to represent the parts of the equation that relate to a cluster,

rather than with a more accurate but obfuscating variable name. In equation 3.14, each

cluster receives a score that is its contribution to any posterior in which it is used.

This contribution is the product of its prior, and the LLR on each pixel for which it

makes a prediction. In equation 3.13 we iterate over the valid subsets of clusters. For

each subset, we add the product of the cluster’s contribution into an accumulator for

each of the particles used. Once all the subsets have been considered, we normalise the

accumulators to get the posteriors for each particle. The normalisation constant can be

written as

p(Yt|Y1:t−1) =
∑
Ajt

p(Yt|Ajt , Y1:t−1)p(Ajt |Y1:t−1). (3.15)

We have already split these terms across clusters in equation 3.12, making

p(Yt|Y1:t−1) =
∑
Ajt

∏
Cmt ∈A

j
t

p(Cmt ). (3.16)

.

Thus our normalisation constant can be calculated while iterating through subsets by

adding to a normalisation accumulator for each subset Ajt . This process is illustrated in

figure 3.8.



Chapter 3. Derivation 45

Figure 3.8: Multiple-target particle filter algorithm. Each cluster’s contribution
(p(Cmt )) is calculated as the product of its prior (the product of all its constituent
particles’ priors) and its likelihood (the product of likelihoods for all the pixels it ad-
dresses). The viable subset of clusters Ajt is iterated over, and each is assigned a
contribution equal to the product of all the clusters it includes. The final posterior for
particle Xi

t is the sum of contributions for the Ajt that contain Xi
t , normalised by the

sum of all Ajt contributions.

3.3.3 Inference During Collisions

For clusters that are single particles, or for pixels in a cluster that only one particle

addresses, the above process is simple. However, we need to define what happens to

the likelihood p(Y p
t |Cmt ) if multiple particles in a cluster address it. To handle this we

name those particles in Cmt that are completing over a specific pixel X̂k (k ∈ N). For

each particle, we define the likelihood that its observation model would be expressed in

the absence of all other particles as αk (for now this is always 1, but we will address

observation models in which it is not). Now for multiple particles trying to express their

observation models, we give each particle a success probability (βk) proportional to its

αk, and the background a probability (β0) proportional to
∏

(1− αk):

βk ∝ αk, k ∈ N0, (3.17)

with

α0 =
∏

(1− αk), k ∈ N, (3.18)

and ∑
βk = 1, k ∈ N0. (3.19)
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Defining Dk to be the event that the actual observation originated from X̂k, we get

p(Y p
t |Cmt ) =

∑
p(Y p

t |Dk, C
m
t )p(Dk|Cmt ). (3.20)

Here the only relevant part of Cmt , once Dk is known, is Mk. Thus

p(Y p
t |Cmt ) =

∑
p(Y p

t |Dk,Mk)p(Dk|Cmt ). (3.21)

Given that this is inside an inference, we obtain

p(Cmt |Y
p
t ) ∝

∑
p(Y p

t |Dk,Mk)p(Dk|Cmt )p(Cmt ). (3.22)

We are going to be maintaining the distribution on each Mk in its own particle. Hence,

we make the approximation that the Mk are independent from each other; this allows

us to maintain atomic particles without the construction of complex joint models across

the particles within a cluster. With this approximation, we can manage each Mk in Cmt

separately (that is, marginalising across all Mk′ ; k
′ 6= k):

p(Mk|Y p
i ) ∝ p(Y p

t |Dk,Mk)βkp(Mk) +
∑
k′ 6=k

∫
p(Y p

t |Dk′ ,Mk′)βk′p(Mk′)dMk′p(Mk).

(3.23)

Equation 3.23 has two parts. The first term is the prior on Mk multiplied by the

likelihood, scaled by βk. This (without the βk) is the distribution on Mk we would

have had as a posterior, had only X̂k been at position p. The other term is the sum

of the mass in the equivalent first terms for all the other k-values, which is constant

in Mk, multiplied by the prior on Mk. The end effect is that each Mk becomes a

weighted sum of its distribution, updated by the observation (that is, the leading term

of equation 3.23) and its prior (the summation in equation 3.23). The weightings are

determined by which particle’s model best fits the observation. The closer a particle X̂k

is to being the dominant explanation of an observation, the more weight the updated

distribution gets. If another particle X̂k′ meets the observation better, then the weight

for Mk’s calculation goes to the prior. We make one last approximation, and that is to

fit a single Gaussian to this sum of Gaussian distributions. Usually this is an inaccurate

approximation to make. In our case, however, if the means are far apart it implies that

Mk does not fit the observation well, and thus the dominant weight is likely to be in the

prior (the second term of 3.23). The further apart the two Gaussians we are grouping

are (the condition for an inferior single Gaussian approximation), the more the updated

distribution will become negligible (i.e. the more the sum will already be of the form of

a single Gaussian). This last paragraph is difficult to follow in the general case, and so
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we illustrate the process for a single pixel in a cluster with two models overlapping in

figure 3.9.

With this, we can look at the overlapping particles (1 and 2) from figure 3.7 in more

detail. If target 1 and target 2 both compete for St = x, we could (as in the figure)

consider the events incompatible. Alternatively, we could consider the possibility that

both objects are in fact at x, using the above derivation to update each model. To this

end, we construct a new cluster that is a union of the two single particle clusters with the

appropriate prior, and update it accordingly. The three clusters ({P1},{P3},{P ′1,P ′3},)
are now all incompatible. The first considers the possibility that target 1 is at x, but

target 2 is not (and vice versa for the second possibility), and the third considers the

case that both are present. This is illustrated in figure 3.10.

With this established, we can summarise the inference process as shown in figure 3.11.

It is worth taking a moment to reflect on the slightly different process. In the standard

BRE, the normalisation makes each particle compete with every other particle across

the entire space. By changing our formulation to particles only competing against their

relevant particles, we lose the fact that our PDF integrates to 1. At face value this feels

as though we are losing some of the power of the normalisation. In reality, the opposite

is true. The PDF integrating to 1 is a result of the exactly-1-target-present assumption.

With our new formulation the PDF is unconstrained; each value is the likelihood that

an object is at St with model M . If the background explains the observations well, this

PDF will integrate to a small value. If there are multiple targets, it will integrate to

more than 1. While it would be interesting to investigate this further on the synthetic

problem for different numbers of targets with varying M values, we press on towards

our core task.

3.4 Persistent Multiple Target Tracking

In the above formulation, the modelling aspect of SMAE is only applied to individual

targets. The framework can be applied to much larger aspects of the adaptive tracking

task. The variable M can hold information about the false positive rate, the cam-

era movement model, the perspective model or any other imperfectly known property

that affects the whole tracking task and which must be considered a unknown constant

throughout the tracking task.

In our application of SMAE in the next chapter, we separate targets into objects of

interest and clutter (this is addressed in detail in section 3.5.3). This comes down

to including a term p(I|M,Y ): the probability that an object is of interest and not
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Figure 3.9: Model inference for overlapping particles. All surfaces shown are joint
PDFs across the two particles’ M -variables (their S-variables are the same, due to
the overlap). We use the Cool color map (cyan to purple) to differentiate this from
other joint surfaces previously shown, especially X the joint across a particle’s (M,St)
variables. The prior on the joint M space is shown in (A). This is constructed from
independent Gaussian distributions for µ1 and µ2. The likelihoods (i.e. observation
models) given that the observation originated from X̂1 and X̂2 are shown in (B) and (C)
respectively. By taking the point-by-point product of these (with the appropriate β
values), we can get the two terms in the numerator of equation 3.23. To get the
normalising factor, we take the sum of the masses of the distributions in these two
terms. Once we have divided by this normalisation constant, we get (D) and (E), the
posteriors attached to D1 and D2 respectively, and their sum (F). We then approximate
this posterior, with µ1 and µ2 being independent Gaussian variables, to get (G). On
account of this final approximation, we can do this entire process without constructing
the joint PDF. This process projected onto M1 and M2 is shown in (H) and (I). Key
features to note are as follows: (B) and (C) only affect their relevant variable. The
peak of (D) has moved in µ1 and the Gaussian is narrower along µ1’s dimension, but
the plot is unchanged in µ2; equivalently for (E). The relative scales of (D) and (E)
are due to how far the observation was from the priors on µ1 and µ2 respectively. This
leads to a posterior (F), that is a sum of Gaussians. We accept the inaccuracy of a
single Gaussian approximation (G), as (F) will become dominated by a single Gaussian

for disparate M1 and M2 variables.
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Figure 3.10: The illustration of cluster generation during particle overlap. Particle
1 and 2 represent particles 1 and 2 from figure 3.7; they are maintained to cover the
event that only one target is at location x. A new cluster containing particle 3 and 4
(clones of particles 1 and 2 respectively) is generated to cover the event that both are
present. In this example, the observed pixel value lies between the peaks of the two
particles’ distributions. This means that if only one particle is present then it needs
to explain the pixel, and is updated more than the combined cluster, where each pixel
may or may not have been responsible. In the combined case, target 1 (i.e. particle 3)
is a much better fit, so it gets updated the most. The cluster’s likelihood is calculated

as a unit (hence only one value for the mass).

clutter, given the observations. Because our persistent tracker is gathering information

constantly, we can include observations before initialisation. Thus at initialisation, our

track’s model has a prior that is a function of all previous observations and tracks.

Even though this is still a distribution on M for a specific particle, all models prior to

initialisation do not have specific observations (i.e. pixels selected from Yt by St, to

be explained by M). Thus a single pre-initialisation M0 can be maintained, and each

initialised track starts off with the current prior M0.

This forms the difference between an adaptive tracker and a persistent tracker. An adap-

tive tracker exists only as long as its track is maintained, and all information gained in

that track is discarded at the end. A persistent tracker’s focus is on long-term perfor-

mance, and so each track is part of the larger task. Much like an adaptive tracker uses

each frame to keep its tracker optimal for the subsequent frames, a persistent tracker
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Figure 3.11: A single iteration of the particle-based SMAE tracking algorithm. For
each frame that is received, (A) a set of hypothesised particles is created, using the
pixels that are most salient (B) and the previous frame’s output (C). The algorithm then
updates the clusters, calculates their LLR, and creates new clusters as necessary (D).
The algorithm culls those particles whose LLR are insignificant compared to those they
are competing against (E). This means that when particles overlap, and clusters are
created to handle the various possibilities, insignificant ones are disregarded. Finally,
the algorithm uses equation 3.12 to calculate the posterior for each particle (F), and

keeps the best ones for the next frame (G).

uses each track to ensure that the tracker is optimal for subsequent tracks.

3.5 Implementing the Framework for VOT

We have established the basic ideas underpinning our framework with a synthetic prob-

lem, to make the derivation more transparent. Now we transfer these ideas to a more

standard template-based adaptive tracker. There are three things we need to build into

the framework before we can use it on our maritime surveillance problem: exploring sev-

eral observation models that may be appropriate for template based VOT; establishing

a principled way to incorporate multi-pixel models that occur at multiple scales; and

including the differentiation between objects of interest and clutter.

3.5.1 Different Observation Models

We consider three different sets of observation models10: a Gaussian distribution, a

uniform distribution with an alpha mask, and a Gaussian distribution with an alpha

10We run them as separate test cases, but they could be run in parallel in a combined M -space.
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mask.

We will establish our approximations for the 1-pixel synthetic problem mentioned above,

before extending them to a more appropriate template system in section 3.5.2.

The straight Gaussian approach assumes an observation that is distributed around a

mean µ with a standard deviation σobs. The parameter being estimated is µ, with σobs

set at a constant value. This is the model used in the synthetic problem above. While

it is possible to infer both µ and σ, we found no success with this in our maritime

surveillance problem. The space required to present the resulting model’s derivation

would be unjustified for a negative result. We tested different σobs values, with many

variations in the template layout, but found that they all suffered from a tendency to

blur out the detail of a target (see section 5.1.3).

We present the next two models out of the order in which we tested them, for simplicity

in derivation.

The observation model we finally chose is a uniform distribution with an alpha mask.

The likelihood p(Y x
t |M) is parameterised by a probability α that the object will assert

itself. If the model asserts itself, all pixel observation values are equally likely11; if it

does not, the background model is used for the pixel observations. Thus the likelihood

is

p(Y x
t |M) = α+ (1− α)p(Y x

t |Bgx), (3.24)

with p(Y x
t |Bgx) ∼ N (0, σ2

obs). Figure 3.12 shows the update function using this likeli-

hood. Because the function’s scale changes radically for different values of Y x
t , and the

inference engine normalises the distribution across M , the update function shown is also

normalised across M for clarity. For a given input Y x
t at location x, each M is updated

by multiplication with the update function at (Y x
t , M). The key observation is that the

update function transitions quickly from update = 1− α to update = α.

Now we need to find a prior, such that multiplication with the update does not change

its form as a posterior (which will of course be the prior for the next step). If we assume

all previous update steps were dominated by either the foreground observation model

(i.e. they were sufficiently far from 0), or that they were dominated by the background

observation (i.e. they were sufficiently close to zero), then our prior will be of the form

p(M) ∝ αnPos(1− α)nNeg, (3.25)

where nPos is the number of historical samples dominated by the foreground model,

and nNeg is the number dominated by the background. This will have a maximum

11Pixel values are scaled to range from 0 to 1, making the PDF equal to 1.
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Figure 3.12: Update function for a uniform observation model with an alpha mask
(normalised across α). For an observed pixel Y xt , the distribution on α will be multiplied
by the function defined by the plane for Y xt . The observation standard deviation σobs

is set to 0.2 for this image.

at α = nPos
nPos+nNeg . We will consider the three main cases upon a new pixel Y x

t being

observed. Firstly, the foreground model could dominate and the update function can

be approximated by p(Y x
t |M) = α. This would add another case to nPos, putting the

new maximum at nPos+1
nPos+nNeg+1 . Secondly, the background model could dominate and

the update function could be approximated12 by p(Y x
t |M) = 1 − α. This would add a

case to nNeg, putting the new maximum at nPos
nPos+nNeg+1 . Finally, if neither dominates,

the function could be approximated as p(Y x
t |M) = 1. This would not update the prior

at all, so the new maximum would still be at nPos
nPos+nNeg .

It would be convenient for us if this last case put the maximum at nPos+0.5
nPos+nNeg+1 , because

then we could define

(nPosnew,nNegnew) = (nPos,nNeg) + (p(Y x
t |Fgp), p(Y x

t |Bgp))
1

p(Y x
t |Fgp) + p(Y x

t |Bgp)
.

(3.26)

This would transition smoothly between our three cases. The difference between the

accurate approximation nPos
nPos+nNeg and our desired approximation nPos+0.5

nPos+nNeg+1 is em-

phasised when nPos + nNeg is not large (i.e. when few observations have been made).

In this case, our approximation pushes the mode of α’s distribution towards 0.5, and

requires more evidence in the future to push the mode to either limit. In this way, in-

conclusive evidence acts as evidence against both limits, especially when little historical

information is available. This is not a problematic error to have: in cases where historical

information is lacking and the current evidence is inconclusive, the system does not com-

mit to either extreme and requires more evidence to commit in the future13. With this,

12These update functions are normalised across M (that is α), so leaving out constant multiples does
not affect the result.

13This is exactly the sort of ad hoc reasoning that Jaynes [2] rails against, and which we are trying
to avoid. However, as discussed in section 1.1, while our goal is to work as close to the principled side
of the spectrum as possible, we will be forced to take steps toward the practical side in order to have
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Figure 3.13: Update function for a Gaussian observation with an alpha mask. The
standard deviation on observations (σobs) is set to 0.2 for this image. For low values of
Y xt , the graph slopes up from the µ-z plane when µ is near Y xt and downwards when µ
is far from Y xt . For larger values of Y xt , the value at the µ-z plane decreases. This can
be interpreted as follows. If Y xt is near where µ is believed to be, a foreground pixel has
probably been observed; higher values of α are more likely, and the µ should be closer
to Y xt . If Y xt is far from where µ is believed to be, a background pixel has probably
been observed (as long as background pixels are still feasible) and lower values of α are
more likely. If background pixels are not feasible, then µ should be updated heavily

towards the observed Y xt .

we can now summarise our distribution p(M |Y1:t) with the ordered pair (nPost,nNegt),

where

(nPost+1,nNegt+1) =

(
nPos +

1

1 + p(Yt+1|Bg)
,nNeg +

p(Yt+1|Bg)

1 + p(Yt+1|Bg)

)
, (3.27)

and the mode of α at any time t can be found at nPost
nPost+nNegt

.

This is the observation model with which we had the most success, but in the process

of finding it we first tried an observation model that combined the first two described

observation models, namely a Gaussian observation model with an alpha mask:

p(pi|M) = αp(Y x
t |M) + (1− α)p(Y x

t |Bg), (3.28)

with p(Y x
t |M) ∼ N (µ, σobs) and p(Y x

t |Bg) ∼ N (0, σobs). Here both µ and α are inferred.

This means that our update function has an output in the two-dimensional space (µ, α),

so we cannot show the observed pixel on the same axes. Instead, figure 3.13 shows some

update functions for sample pixel values.

If we combine the last two approaches, we can represent µ in a Gaussian distribution,

and α as an ordered pair (nPos,nNeg) as though the two variables were separable. At

each update we take local approximations of µ and α, and combine the result into the

tractable solutions. In this case, we believe the gain is worth the cost, as the error is most apparent in
the cases where little evidence has been gathered, and the direction of that error is favourable.
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best approximation of the aforementioned form. This will cause problems if the model

drifts, as implicit in the prior for any step is the local approximations of all former

steps. In practice we found this to be a significant problem, but we found no other

feasible representations for this PDF. We will not go into the derivation of this in detail,

as ultimately we found the model ineffective, but the final result was to combine the

two approximations. We calculate the Gaussian approximation of µ’s update (for the

foreground case) and prior (for the background case), using their scale for updating

(nPos,nNeg), and update µ in a way similar to equation 3.23. The algorithm we derived

is:

• nPosFg = nPosprior + 1

• nNegFg = nNegprior

• σFg =
(
σ−2
prior + σ−obs2

)− 1
2

• µ̄Fg = σ2
Fg

(
σ−2
priorµ̄prior + (σ−2

obs.pix
)

• SFg = nPos+1
nPos+1+nNege

−0.5

(
(
µ̄prior
σprior

)2+( pix
σobs

)2−(
µ̄Fg
σFg

)2

)
massprior

• nPosBg = nPosprior

• nNegBg = nNegprior + 1

• σBg = σprior

• µ̄Bg = µ̄prior

• SBg = nPos
nPos+1+nNege

−0.5( pix
σobs

)2

massprior

• (nPosposterior,nNegposterior) = (nPosprior +
SFg

SFg+SBg
,nNegprior +

SBg
SFg+SBg

)

• (µ̄posterior, σposterior) =
(
SFgµ̄Fg+SBgµ̄Bg

SFg+SBg
,
SFgσFg+SBgσFg+(µ̄Fg− ¯µposterior)

2+(µ̄Bg−µ̄posterior)2

SFg+SBg

)
• massposterior = SFg + SBg.

There is very little value in including these rules with such a brief explanation, however

their negative results do not justify further space. We include this observation model,

as it is an obvious choice in the light of the other two options, and the negative results

are informative, It can be derived from the description above.
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3.5.2 Getting Templates to Work

There are two things we need to incorporate to make the current framework applicable

to template-based VOT: incorporating multiple views, and managing a multi-pixel view

that can occur at multiple scales.

Incorporating multiple views involves managing multiple templates per particle. The ob-

servation model is then split between the views. While it would be possible to handle the

inference as an approximation of the sum of distributions for each of the templates being

activated, this would lead to a nasty combinatorial problem when multiple templates

overlap, each with multiple views. As this is in the innermost loop of our algorithm, we

choose simply to use the view which provides the biggest contribution (and is therefore

the best fit). In this way, we only update the most relevant view for each particle.

Switching from pixels to templates is a slightly more involved problem. For the Gaussian

observation models, each view in the observation model of M contains the parameters

~µ, a n2-element vector containing the means for the n by n grid of pixels. Let Y be

the observation in the r by c window cropped by St, which we write as a rc element

vector ~y. In order to address the discrepancy of scale between M and Y , we consider a

super-resolution image of the scene ~u at resolution nr by nc. The lower-resolution pixels

can be expressed as averages of the super-resolution pixels associated with them. We

write this linear transformation as ~y = W~u and ~̂y = V ~u, where ~̂y is the image rescaled

to M ’s scale, and both V and W are wide matrices14. Neither V nor W is invertible, but

as we are trying to make the best inference possible we proceed with the pseudo-inverse.

The end result will make sense in terms of a general linear transformation taking ~y to ~̂y.

For V and W describing averaging of sub-pixels, we get V # = rcV T and W# = n2W T .

With this we can make a projection for ~µ into Y ’s space as ~̂µ = WV #~µ. Here ~̂µ is the

expected mean of the Gaussian observation distribution at the locations of the elements

of ~y.

At this point there is a choice to be made. We have decided to use a set standard

deviation for σobs
15. Should we set σobs to be constant on the scale of M or of Y ? At

the end of this section we make an argument for the latter, thus we continue with this

choice. We are considering

p(M |Y ) =
p(Y |M)p(M)

p(Y )
. (3.29)

14In other words, they have more columns than rows.
15Remember that this is the σ for the difference between a given pixel observation and its underlying

value, not the standard deviation of our certainty on that underlying value.
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Our observation model can be written as the multivariate normal distribution measuring

the distance from each observed pixel to its respective predicted ~̂µ:

p(Y |M) =
1√

2π|Σ|rc
e−0.5((~y−~̂µ)TΣ−1(~y−~̂µ)). (3.30)

Because we have all pixels independent and with the same standard deviation, Σ will

be of the form σ2
obsI. Along with our prediction for ~̂µ, we get

p(~y|M) =
1√

2πσ2rc
obs

rc e
−0.5

(
(~y−WV #~µ)

T
(σ−2
obsI)(~y−WV #~µ)

)
. (3.31)

Assuming pseudo-inverses give the best possible inverses for our inference,

p(~y|M) =
1√

2π
rc
σ2
obs

e−0.5((VW#~y−~µ)
T

(V #)TWT (σ−2
obsI)WV #(VW#~y−~µ). (3.32)

However, considering that W T = W#

n2 and (V #)T = rcV , and that multiplication with

constants and the identity matrix is commutative,

p(~y|M) =
1√

2π
rc
σ2
obs

e
−0.5

(
(VW#~y−~µ)

T
(σ−2
obsI)

rc
n2 (VW#~y−~µ)

)
. (3.33)

This finally yields

p(~y|M) =
1√

2π
rc
σ2
obs

e
−0.5

(
(VW#~y−~µ)

T
((

σobs.
n√
r.c

)−2
I

)
(VW#~y−~µ)

)
. (3.34)

This is a Gaussian in ~µ with independent standard deviations of σobs
n√
rc

. The normal-

isation constant does not matter, as it is constant for a given ~y and will be normalised

out in the inference. We call the projection VW#~y of the observations into M ’s scale

~̂y. If we set our prior on M to be a Gaussian (with mean ~̄µprior and variance Σprior), it

will make the posterior at each step a Gaussian. Looking again at the inference

p(M |Y ) =
p(Y |M)p(M)

p(Y )
, (3.35)

and using the standard result for multiplying normal distributions, this becomes a Gaus-

sian distribution with mean

~̄µposterior = Σposterior

(
(Σ−1

prior)~̄µprior + (σ2
obs

n2

rc
)−1I~̂y

)
(3.36)



Chapter 3. Derivation 57

and variance

Σposterior = (Σ−1
prior + (σ2

obs

n2

rc
)−1I)−1. (3.37)

The end result of the above derivation is that the model inference can be done with a

rescaled version of the observation patch, scaling σobs by n2

rc .

A different method is needed for the observation models that use alpha masks. The full

observation model is of the form

p(Y |M) =
∏

Y resolution

(αpredp(y|M) + (1− αpred)p(y|Bg)) (3.38)

for some αpred predicted from our model. For our inference we want it to be of the form

p(Y |M) = f

( ∏
M resolution

αp(yrescaled|M) + (1− α)p(yrescaled|Bg)

)
(3.39)

for some function f and rescaled versions of the input image. If we consider underlying

continuous surfaces αcont and ycont, and the function

g(pix) = αcont(pix)p(ycont(pix)|M) + (1− αcont(pix))p(ycont(pix)|Bg), (3.40)

we get the following two approximations for the geometric mean of g:

GeometricMean ≈ rc

√ ∏
Y resolution

(αpredp(y|M) + (1− αpred)p(y|Bg)) (3.41)

and

GeometricMean ≈ n2

√ ∏
M resolution

(αp(yrescaled|M) + (1− α)p(yrescaled|Bg)). (3.42)

Putting these together, we get

p(Y |M) ≈
∏

M resolution

(α+ (1− α)p(ypred|Bg))
rc
n2 . (3.43)

Given that integral values of rc
n2 amount to repeated updates, it makes sense to let the

weight added to nPos or nNeg be scaled by rc
n2 . This also has an intuitive interpretation:

given nObs observation pixels to be spread over nModel model pixels, each one receives
nObs

nModel amount of information. That information is spread between foreground (nPos)
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and background (nNeg) according to the observation models, and the final approximation

of α is nPos
nPos+nNeg .

For the observation model that combines an alpha mask with a Gaussian observation

distribution, we use a combination of the above approximations. The final result is to

resize the observation Y to n-by-n pixels, using the modified σeffective = σobs
n√
rc

for the

Gaussian observation (which is then combined with the prior according to the relative

performance of the foreground and background models), scaling the additions to nPos

and nNeg by rc
n2 .

The last topic to address is the discussion about the scale for σobs. In the two Gaussian

models above, we chose σobs to be constant at the observation scale rather than at the

model scale. We will now justify that decision.

We showed in our discussion of Gaussian observation models that a pixel observation

standard deviation at Y ’s scale of σ will correspond to one in at M ’s scale of σ n√
rc

. For

want of a concrete example, let us consider a case in which there are four times as many

pixels in the observation as there are in the model. A pixel standard deviation of 0.1

at M ’s scale would correspond to a pixel standard deviation of 0.2 at Y ’s scale. This

makes sense. We have 4 ~y pixels per ~µ pixel and they are added together; when we add

random variables, we get a regression to the mean.

We can argue this both ways. Assuming firstly that discrepancy from the mean during

the observation is a function of the target’s surface due to changes such as lighting and

angle, it would make sense to use a scale that is constant for a target, not changing as

the object moves closer to the horizon. Thus more target surface being aggregated into

each observation pixel would lead to a regression to the mean, and hence a smaller σobs.

This would suggest a constant observation sigma on M ’s scale.

On the other hand, assuming that the discrepancy from the mean during the observation

is a function of the photographic process, it would make sense that every pixel deviates

from its true value due to a normally distributed error function. This suggests a constant

observation sigma on Y ’s scale.

Ultimately, we chose to set the standard deviation on the observations constant on Y ’s

scale as we believe that our ‘unit’ of information should be in pixels. When a particular

observation of a target has relatively few pixels, the underlying inference on M will use

a broader Gaussian, updating the model less. As we expect, distant views of an target

will update our knowledge less than closer views.
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3.5.3 Separating Interesting Objects and Clutter

The last addition we make to the framework is to differentiate between objects of interest

and clutter. While it would be possible to classify those objects that are not of interest

as background, and expect the observation model to reject them, we believe it is more

useful to acknowledge clutter as trackable targets and then train our tracker to favour

targets that are more likely to be of interest.

In the next chapters we apply SMAE to the problem of maritime surveillance. The sea

is a noisy background, and many of the artefacts that make up the background (static

rocks, wake, waves, birds) have more in common with the targets we will track (they

are patches of localised salience relative to surroundings that survive over a number

of frames) than the general background (which tends to be easily rejected by a simple

salience map). Thus, it is easier to separate the background from targets, and then

separate targets of interest from clutter, than it is to separate targets of interest from

both clutter and background (this is much like Teutsch and Krug̈er [41], who use two

classifiers).

To accommodate this into our framework, we include the variable I to represent the

event that the target in question is an object of interest:

p(I,M, St|Y1:t) = p(I|M,St, Y1:t)p(M,St|Y1:t). (3.44)

Here the probability that an object is of interest given that it exists p(I|M,St, Y1:t) is

only a function of our knowledge of M at time t16. This makes

p(I,M, St|Y1:t) = p(I|M,Y1:t)p(M,St|Y1:t). (3.45)

Here the second term is the posterior we have been using until this point. Thus we can

track our particles as described above, and use an interest model in M that is updated

in a principled manner over all observations to separate clutter from targets of interest.

We mentioned in section 3.4 that we can include in M all the information we have learned

in previous tracks prior to initialisation. We change the subscript on Y to start at −∞ to

show that we are learning from previous tracks to improve our understanding of which

M are more likely to represent targets of interest. Thus we move from an adaptive

tracker (focusing on a single track) to a persistent tracker (focusing on improving over

16I.e. we are dropping St in the next equation. This is because the “interest” in a given particle is
based on it’s appearance not its location
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consecutive tracks):

p(I,M, St|Y−∞:t) = p(I|M,Y−∞:t)p(M,St|Y−∞:t), (3.46)

where p(I|M,Y−∞:t) uses all the information available to the tracker over its deployment

lifetime to model the probability that a particular model is a target of interest.

3.5.4 Conclusion

In this chapter we used a simple synthetic problem to guide us in our derivation of

a Bayesian framework that both estimates state and model parameters (SMAE). We

moved from single target to multiple targets, incorporated the persistent tracking task

in the framework, and finally extended the framework to be usable on VOT tasks.

With the derivation complete, we move to a challenging task on which to apply SMAE.



Chapter 4

Maritime Surveillance Data Set

and Salience Filter Design

Over the next two chapters we apply SMAE to a concrete problem: maritime surveil-

lance. Our goal here is to show that SMAE creates tractable competitive solutions. The

core contributions in our work are in the previous chapter. However, to present just a

derivation and the philosophical discussion in chapter 7 would give the impression that

nothing useful has been produced. For this reason, we present an application of SMAE

with tangible results, to verify our contribution.

We split this application across two chapters, as the ground we must cover before reach-

ing the adaptive and persistent tracking is not directly dependent on our framework. We

start this chapter in section 4.1, with a discussion of the task at hand, and a definition

of the problem. We discuss the data set we use to test our framework in section 4.2.

It would be possible to include the salience filter into the SMAE formulation, learning

the relevant parameters while completing the rest of the task. While this would be

preferable, the tracking task is already complex and our purpose is only to demonstrate

an application of SMAE. For this reason we implement our salience filter as a pre-filter,

presenting its output to the SMAE tracker as Yt. We present our work on the salience

filter in section 4.3 and address the rest of the tracking task in chapter 5.

4.1 Problem Definition

Moreira et al. [21] define maritime surveillance as ‘the effective recognition of all mar-

itime activities that impact the security, the economy or the environment’. Harbours and
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cage aquaculture sites need information about vessels in the immediate and surround-

ing areas to protect from accidental and malicious harm. Traditional CCTV systems

rely on human operators not becoming weary or distracted, making automated ves-

sel detection desirable. Several active systems exist (ARGOS [10], MAAW [22], and

DeMarine-DEKO [23], yet it is still an ongoing research task.

It is worth noting that we are not choosing a difficult visual problem that radar could

easily solve. While radar works well on large metal vessels, in maritime surveillance we

cannot ignore small inflatable or wooden vessels. These are often easier to detect in the

visual spectrum. Krüger and Orlov [50] use the infra-red spectrum to detect vessels.

Our approach would synergise well with this use of IR, as our framework could just as

easily work on an infra-red feed as on a visible spectrum feed, and Bayesian frameworks

lend themselves towards data fusion.

What makes maritime surveillance a good application for our SMAE framework is the

noise that fills the background. While humans have developed rich priors that help

us detect anomalies on bodies of water in a video sequence, it is difficult to isolate all

the visual cues that we use to rule out waves as potential objects. The wave noise

creates a perfect opportunity for model learning to improve rejection of false positives,

simultaneous to the tracking task.

Because the waves form the basis of the challenge, the choice of data heavily influences

the difficulty of the tracking problem. We note that many systems are tested on se-

quences with flat waters that are largely homogeneous in the visual field, and that the

boat size is often an appreciable fraction of the frame. We show the strength of our

approach by testing it on more challenging data. We draw further attention to this in

section 4.2.

We also draw attention to the difference in mindset between designing an adaptive

tracker and designing a persistent tracker. In designing an adaptive tracker, our focus

is on creating a system that completes the tracking task. That is, once it has been

initialised on a single target, it must not drift. For a persistent tracker, we want a

system that solves the long-term problem. It must auto-initialise, be able to track

multiple targets, and improve its performance over time. When focusing on adaptive

tracking, the learning task is the appearance of the current object. In persistent tracking,

we focus on learning the appropriate priors to take into each track.

In light of maritime surveillance being both a useful and a difficult visual tracking task,

we select it as a good sample application of SMAE. This forms the two goals that

guide our design decisions: firstly, to make an effective persistent tracker for maritime
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surveillance; secondly, in doing so, to test whether SMAE is viable on challenging real-

world problems. With these two goals in mind, we make some constraints on our input.

We constrain ourselves to sequences with no camera movement. This enables us to

have annotated horizon lines, and is a realistic constraint for surveillance. It would be

possible to include camera motion as a variable inside M , however our scope is large

enough without including this. Secondly, we focus on tracking boats against the ocean,

rather than against the ocean, sky and distant shore. This is justified for surveillance,

as we are most concerned about small vessels that radar would miss, and placing the

camera high enough is always an option and usually a good idea. In light of this choice,

we will only need to build salience filters for the ocean. This is a detailed process,

and could be completed for the sky and for static background. However, the ocean is

the more challenging background, and will serve as a proof of functionality without us

devoting more time and space repeating very similar processes.

Finally, we present our task in a concise manner: given an extended video sequence of a

maritime scene from a static camera, detect and track objects that are not ocean, and

improve tracking performance over time.

4.2 Data Set

In this section we address the data sequences on which our persistent tracker will be

operating. We start by addressing some of the problems related to choosing a data set,

then we present the data set we will use, and finally we discuss our choice of data and

how it will be used.

4.2.1 Difficulties in Choosing a Data Set

The choice of data for the data set has a far-reaching effect. All algorithms will have

strengths and weaknesses, and the relative frequency between different events in the

data can skew the results. This is exacerbated by the fact that it is impossible to say

what an unbiased result would be. We are trying to solve a general problem, presenting

a solution that should work for any foreign object on any maritime scene. Unfortunately,

to rank performances on this general problem, we must decide on the severity of different

faults that occur in different instantiations of the general problem. To do this we must

define the different priors with which to consider both fault conditions and problem

instantiations. Our decision is implicit in our choice of data set. Is dealing with glare

off the water important? Is tracking smaller boats more important than tracking larger



Chapter 4. Data Set and Salience Filter 64

boats? With what regularity does inclement weather occur? The events that occur more

often in our data will receive higher weight in our performance evaluation.

We can use our application as a guiding principle. We are designing a surveillance sys-

tem, so our tracker should be sensitive toward (and thus our data set be loaded with)

events that should be reported by a surveillance system. The most important situations

to correctly identify are the most difficult and rare ones, such as covert malicious activ-

ities. This implies that our data set should have a high density of difficult situations.

However, this would favour trackers that have a strong prior towards edge cases.

To see the danger in this line of thinking, consider a system tracking an egg in a magi-

cian’s hand. As the sequence proceeds the magician passes the egg to his other hand,

switching it with a decoy and palming the original. The more complex a tracker is,

and the more prior information it has, the more problems it will have as the sequence

progresses. Perhaps the tracker has enough of a prior that it recognises an object being

passed from hand to hand, and continues to track the decoy. Perhaps the tracker recog-

nises the momentary disappearance of the egg behind the hand as a potential occlusion,

and maintains a possibility that the egg remains occluded, tracking the hand. Perhaps

the tracker recognises the magician’s attire to be indicative of an entity that causes edge

cases. Perhaps the magician knows the audience will be suspicious and so opens with

many concealing actions, forcing the tracker’s PDF to be spread thinly over conflicting

hypotheses before the real trick happens. What would we consider the best tracker

behaviour in this case?

Focusing on the edge cases sets up a tracker to be tricked by more edge cases. In setting

up a persistent tracker, we may want to enable it to learn to ignore common background

behaviour. However, this makes it vulnerable to someone surreptitiously ‘training’ it to

ignore behaviour that will be used maliciously in the future.

This is all to say that choosing data for training and testing a system is a non-trivial

activity, and reporting the performance of a tracker on any data without a clear explana-

tion of the data is dangerous although it is common in maritime surveillance literature1.

We consider the following events relevant for a maritime surveillance data set:

• A variety of boat sizes,

• Boats which cross paths,

• Birds passing through the scene,

1This is regrettable, but understandable due to space limitations in publications, and to IP consid-
erations with some data sets.
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• Boats in static positions,

• Items which are not of interest in the water (e.g. lighthouses, reefs, etc.),

• Different lighting conditions including glare, non-uniform lighting across the ocean,

and changes due to cloud cover,

• Target out-of-plane rotations, and

• Different ocean conditions.

We will make one more observation before describing the data set we selected. It is

accepted that a system should not be tested with the same data on which it was trained.

This is especially relevant in our context, in which the priors attached to these different

events in the wild are unknown, yet implicit in the data. However, as with any system,

ours was developed through iterations. The system will thus have been unintentionally

optimised towards the data, despite our best efforts. This is not unique to us, and is

implicit in any publication, however it is worth noting that often the rules we set in

place to get meaningful results in machine learning are impossible to follow fully.

4.2.2 Description of Data Set

Our data set was generated at a number of South African ports by the CSIR’s Op-

tronic Sensor Systems group as part of the PRISM project, and is available from

http://prism.csir.co.za/.

One of the assumptions we make in our tracker is a static camera (justified above).

Because of this we segmented the original data, which contained some camera movement,

into 22 different sequences where the camera is static for each sequence. A sample

frame from each sequence is shown in figure 4.1. Table 4.2 presents a summary of the

challenges in each data sequence. For each sequence a group is shown, to indicate which

videos were segmented from the same sequence in the original data set. Each sequence

has been annotated with the horizon line, a pixel mask of the ocean, and has had all

salient objects manually labelled with a bounding-box and annotated as {boat, bird,

stationary object, rocks, other}. The bounding-boxes are generous; we are testing self-

initialising trackers, and different trackers include different borders around the object.

In the maritime context knowing that there is a foreign object, and where it is, is more

relevant than having a tight bounding-box.
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(A) sequence 001 (B) sequence 002 (C) sequence 003

(D) sequence 004 (E) sequence 005 (F) sequence 006

(G) sequence 007 (H) sequence 008 (I) sequence 009

(J) sequence 010 (K) sequence 011 (L) sequence 012

(M) sequence 013 (N) sequence 014 (O) sequence 015

(P) sequence 016 (Q) sequence 017 (R) sequence 018

(S) sequence 019 (T) sequence 020 (U) sequence 021

(V) sequence 022

Figure 4.1: Sample frames from each sequence in the data set. Red rectangles mark
boats; blue rectangles mark stationary objects; green rectangles mark birds; yellow
rectangles mark rocks and white water splashing on them; and magenta rectangles

mark other objects that are difficult to distinguish (unlikely for a tracker to track).
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Sequence Group #Targets #Frames Boat Size Waves Ocean lighting Occlusions Clutter

1 1 3 784 Small Average Non-uniform No Bird
2 1 2 977 Small Average Non-uniform No None
3 2 2 120 Small Average Uniform No Flock of small birds
4 2 3 441 Small Average Uniform No Bird, Flock of small birds
5 2 3 379 Small Average Uniform No Bird, Flock of small birds
6 3 2 642 Small Low Contrast Non-uniform No None
7 3 2 484 Small Low Contrast Non-uniform Yes None
8 3 2 584 Small Low Contrast Non-uniform No None
9 4 3 833 Both Average Non-uniform Yes None
10 5 2 142 Small High contrast Glare Yes Static Boat
11 5 2 304 Small High contrast Glare No Static Boat
12 5 1 216 Small High contrast Glare No None
13 5 2 196 Small Average Glare No Bird
14 6 4 490 Both Average Uniform Yes Bird
15 6 4 509 Both Average Uniform No Bird
16 7 3 435 Small Average Uniform Yes None
17 8 3 1798 Both Average Uniform No Buoy
18 9 3 1544 Small Average Non-uniform Yes None
19 10 7 1855 Small Average Non-uniform Yes Rocks, Buoy, Lighthouse
20 11 10 1547 Small Low Contrast Uniform Yes Rocks, Buoy, Lighthouse, Bird
21 12 8 1038 Small Low Contrast Non-uniform No Rocks, Buoy, Lighthouse, Bird
22 13 3 555 Small Average Non-uniform No Buoy

Table 4.2: Summary of data sequences.
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4.2.3 Comments on Data

Our ultimate goal is to design a persistent tracker. To this end, it would have been

preferable had our data been in the form of a few very long sequences, rather than

many shorter sequences. However, the difficulties involved with imperfect data are not

uncommon.

We wish to simulate persistent tracking. This means giving the tracker the opportunity

to learn and improve on a time scale larger than that of an adaptive tracker. There is

a fine balancing act between giving the tracker enough information to learn the appro-

priate models, and testing on the training data. We have data sequences from the same

location. On one hand, these present similar information. Should they be considered

too similar, thus equivalent to training and testing on the same data? On the other

hand, this is exactly the sort of deployment we have in mind throughout our design: a

tracker in a fixed location seeing only a particular scene. We are aware of how unreliable

results achieved through testing on training data are, and so err on the side of caution.

Sequences that were cropped from the same original video are not used to train the per-

sistent tracker for each other. This simulates having watched similar situations without

having direct information on a given sequence.

Another problem is the initialisation of the salience filter. Many salience filters need

a baseline history. In a persistent tracker, this baseline is always available from the

previous tracking. In our case we have many short sequences. In order to address this,

whenever initialising salience filters we use a selection of frames spread over the sequence

in question. While this does break the ‘testing on training data’ rule, initialisation is

usually to train background subtraction. Any artefacts caused by future foreground

objects on the initialisation have equivalent artefacts caused by past foreground objects.

We will discuss initialisation for the salience filters in detail for each filter; ultimately the

difference between priming a salience filter with average future information and average

past information was not identified as relevant for our sequences.

We note that our sequences favour small boats (i.e. boats which affect relatively few

pixels), noticeable wave clutter, and low contrast between the boats and the water

(comparing figure 4.1 to figure 2.3 shows our data as significantly harsher than many

data sets). This means that common features that focus on local detail (such as SIFT)

are unlikely to work on our data set. We believe this is appropriate in the context

of surveillance; a smaller boat is more likely to be missed by other security measures

(human operators, radar, etc.). We include several sequences with larger boats, as the

assumption that most of the frame is ocean can lead to spurious salience results if false,
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and we believe the data set should reflect this. Indeed, we find that our most promising

salience filter has difficulties with detecting large targets.

Our data set has many important features that did not fit into table 4.2, including target

out-of-plane rotation (sequences 7, 8 & 18), boats occluding each other (sequences 7,

9 & 10), static salient objects (sequences 10, 11 & 19-22), targets moving out from or

in behind clutter (sequences 19 & 20) and ships that break the horizon (sequences 9 &

17). There are many edge cases that can occur that are not present, but we believe the

above sequences represent sufficient information to develop an appropriate prior. As we

will see this data set is challenging enough that naive approaches will not work.

4.3 Salience Filter

In this section we cover the salience filters we develop for maritime surveillance. We

start in section 4.3.1, covering some initial topics that will be relevant to our filters, and

highlighting some of the important patterns in the literature. In section 4.3.2 we cover

the different filters to be tested. We describe our testing procedure in section 4.3.3, and

the results in section 4.3.4.

4.3.1 Overview

Before we can start tracking, we need to be able to remove visual noise from the back-

ground. To do this we create a salience filter. Intuitively we want our salience filter

to mark any pixels that are likely to be targets and reject pixels that are background.

Unfortunately, this is problematic. Should a boat that has stayed in one place long

enough be considered background, and how long is long enough? Should white water

splashing over rocks be considered salient? Is the white water around a boat part of the

boat to be tracked?

This last question is particularly interesting. As humans, with a lifetime of multi-sensory

inputs building rich priors, we have a strong idea what a ‘thing’ is. We know boats to

be solid continuous objects, and wake to be a different state of water caused by nearby

boats. To an intelligent tracker with only video inputs, boats are segments of contiguous

pixels that obey an observation model different to undisturbed water. Wakes can be

similarly defined and tend to co-occur with boats. If all one has is video, then the wake

is part of the boat in the same way extendible ladders are a part of fire-engines. On a

more pragmatic note, wake is strong evidence towards a boat being nearby. Consider a

classifier trained to identify images of hammers. Even though a hand is not part of the
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hammer, a hand gripping the shaft is supporting evidence for the hypothesis ‘hammer’.

While the hand is not physically part of the hammer, the concept ‘is held by hand’ is

relevant to the conclusion ‘object is a hammer’. Similarly, white water may not be part

of the physical boat, but it should be part of what a classifier can use to identify boats.

To take this line of thought further, one can ask whether the non-salient water around

a boat is part of the boat. Certainly for a classifier, knowing that a patch of salience is

fully enclosed by water, and is not part of a larger object, is relevant.

Ideally, we would want our final persistent tracker to be able to explain all the data,

assigning each pixel to one of the classes: Boats, Background, Birds, Waves, Miscella-

neous Objects, etc. Because our cameras are static, we can use a pixel mask to identify

ocean regions, and focus on marking pixels in that region that are not reacting like the

larger body of water.

We construct our salience filter as a probability distribution, where the frame produced

represents p(pixel is foreground|pixel value). We are only concerned with the results over

the water, however some algorithms would also work against the skyline, or landscape

behind the body of water. This stage will act as a pre-filter, with its output being the

Yt used by the rest of the system. Confining this stage to a pre-filter is not necessary.

Parameters of the salience filter could be held in M and be included into the SMAE

system. We decide not to follow this course of action, as the M we develop in chapter

5 is already large and sufficient performance was attained using our salience filters as

pre-filters.

Our literature review covers the salience filters other papers have used in more detail,

but we will look at the larger structure in them before moving on to our salience filters.

Salience filters tend to construct the background model either by time for each pixel [10,

22, 26, 31–34], or by location for each frame [23, 25, 27, 35–41, 43, 44]. Those that create

their model by time keep track of the history for each pixel. They solve some of the

spatial problems with the ocean, such as different lighting, water colour, wave texture,

or large boats contaminating the model. They look for outliers in time for a specific

location. This, however, comes with weaknesses: changes in conditions will make the

entire ocean look salient, and objects that stay in a location for long enough will start

to be considered background2. On the other hand, those salience filters that construct

their models by frame solve the problems of time, but have the aforementioned problems

of space. These problems are exaggerated in most of the filters that work by frame, as

many of them use a static model for each pixel in the frame; thus any frame with a

water intensity distribution that is dependent on location in the frame is likely to have

problems.

2It is debatable whether this is desirable behaviour or not; we believe it is not.
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There are three notable exceptions to this. Firstly, Bloisi and Iocchi’s [10] static model

is a Gaussian mixture model3. By modelling many modes, this algorithm will not be

led astray by glare such as in sequences 10-12. However, it would have problems on a

sequence such as sequence 1, where the boat intensity in one location is the same as the

ocean’s in another. Secondly, Teusch and Krüger [41] construct their model by pixel row.

This will protect against backgrounds that change as they disappear into the horizon, as

seen in sequence 17. Lastly, Wei et al. [40] fit a plane to the background using iteratively

re-weighted least squares (IRLS), accurately modelling oceans such as in sequence 18,

which fades from bright to dark as a function of angle to the sun. We draw attention

to this last approach as it forms the basis of our strongest salience filter. By fitting a

plane to the image intensity, the salience filter manages to model the large-scale changes

in the ocean, without being distracted by small local effects. This unfortunately would

not work for instances such as sequence 2, in which the background gets darker in both

directions from the center of the frame. However, the idea of fitting a coarse function

to the ocean for a given frame will be very useful.

Another observation from the literature is that relatively few measures of ‘outlier-ness’

are used repeatedly by many of the papers. Noteworthy among these are Gaussian

distributions/approximations [10, 22, 32, 39], edge detection algorithms [25, 27, 38], and

FFT techniques [42, 43]. These are the approaches we will test. Also worth noting in

this context is the work of Bechar et al. [44]. Their salience filter is a combination of

several different salience functions:

Final Salience ∝ 1− (Scale-factor)
∏

(Salience filter), (4.1)

where each of the salience filters produces a value close to 0 to indicate salience. This

is effectively using a noisy ‘OR’ to combine different salience measures and is an ad hoc

approach. A more appropriate data fusion formula is

Final Salience =
1

1 +
∏( 1

Salience filter − 1
) . (4.2)

I have not included the derivation here for conciseness sake; it follows from assuming

the sub-filters are independent, and performing inference on them as observations.

The last point we will make before moving on to describe the test salience filters, is an

innate problem with background subtraction for adaptive trackers. If a certain part of

the target has intensity i1, and the tracker starts tracking it in front of a background

with intensity i2, then the model will learn the intensity i1 − i2. If the target moves in

3Their salience filter is based on pixel history not by frame, but for argument’s sake let us consider
a GMM used per frame.
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front of a section of background with intensity i3, the model is now off by i3 − i2. This

will not be a problem for us, because the ocean is largely the same colour.

4.3.2 Selected Salience Filters

In this section, we describe the various salience filters we will test against our data set.

The background models will be more accurate with foreground pixels removed. With a

tracker operating on the salience filters’ results a better estimation of foreground pixels

can be achieved, ensuring that the salience filter is neither contaminated by foreground

pixels nor discredits background pixels that should be part of the model. With this in

mind, we test each algorithm as described (labelled ‘XX-1’), and then test it again with

the ground-truth guiding which pixels to ignore during the update (labelled ‘XX-2’) to

get an upper-bound on the salience filter’s performance with a tracker’s assistance.

Filters 1 to 4 are implementations of the most common approaches in the literature.

Filter 5 is a novel contribution. The principled fusion of different salient filters (using

the sensor fusion equation 4.2) should not be novel, but could not be found in our survey

of the current maritime literature. We discuss the works these filters are based on in

section 2.2.2. We do not address minimal spatial resolution of these filters as the trackers

we will build on top of them require a reasonable resolution.

Salience Filter 1

Salience filter 1 stores a Gaussian history for each pixel by time using its own standard

deviation. We use Welford’s [51] technique for recursively calculating the mean and

standard deviation of each pixel’s history. We then consider each pixel’s salience to be

1−p(y|history). We consider two cases: salience filter 1a uses each pixel’s own standard

deviation to determine if it is an outlier, while salience filter 1b uses the same standard

deviation for all pixels to determine if it is an outlier.

Salience Filter 2

Salience filter 2 calculates the mean and standard deviation for the pixels in the ocean

mask for the considered frame and then, similar to filter 1, takes each pixel’s salience

to be 1 − p(y|frame). Isn order to counteract the effect of targets contaminating the

sample, we re-weight the data set and repeat the procedure. We consider two cases:

salience filter 2a uses each frame’s own standard deviation to determine the outliers,

and salience filter 2b uses the same standard deviation for all frames.
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Salience Filter 3

Salience filter 3 uses the magnitude of the Sobel edge detection algorithm as the salience

image.

Salience Filter 4

For salience filter 4 we follow the lead of Sanderson et al. [42]. We divide the image

into 32-by-32 pixel sub-windows, calculating the FFT for each. We discard all the DC

components, subtract the mean FFT from that of each patch, and inverse FFT the

resulting distribution. The resulting image is used as the salience image.

Salience Filter 5

Salience filter 5 is one of our original contributions. It uses a small neural network

to try learn the image intensity from pixel co-ordinates. We use a single layer of 12

sigmoid neurons. For input values, we use the set {xa × yb} for a+ b ≤ 3. Because the

network is so small, it is unable to learn finer details such as targets4, and creates a good

background image. This models the large scale structure of the background (including

elements such as glare), while neglecting the smaller details (which tend to be targets).

We initialise the network on a sampling of frames from the sequence (which we feel is a

fair representation of what the tracker would have had at time t, had it been a persistent

tracker), and on presentation of a new frame we let the network update one iteration. In

this way, the network can accommodate gradual changes without overreacting to sudden

changes. Although we ran this update on every frame, the model does not change often

and it could easily be updated less often by another process.

Composite Salience Filters

We also combined the salience results of the above filters5 using the sensor fusion equa-

tion 4.2 to test composite filters. We present these results after the initial 5 filters,

labelling each composite filter with a binary string identifier to show which filters were

used. Each bit i in the filter name indicates whether filter i was included. For example,

‘Comp-10110’ uses filters 1, 3 and 4.

4The choice of sigmoid rather than Gaussian neurons also contributed to this effect.
5We selected 1b and 2b over 1a and 2a due to their better performance, to limit the combinations.
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4.3.3 Description of Preliminary Tests

The ideal salience filter would output 1 on any pixel in the ocean mask that is not of the

ocean, and 0 for any pixel that is. We allow our salience filters to ‘hedge their bets’ by

assigning fractional answers. An obvious choice for describing a tracker’s performance

would be precision, recall and F-score. Unfortunately, our labelled data is in the form of

bounding-boxes, hence a fair amount of what is labelled in the ground-truth as salient

is in fact ocean. This means that the ideal filter would have a limited maximum recall,

that could be improved upon only by false positives in the bounding-box. For some

targets a large proportion of the bounding-box is ocean, and this distorts the F-score.

We settle on using only the precision (i.e. what percentage of the salience allocated

falls inside the ground-truth bounding-boxes), knowing that it may favour trackers with

a low recall. Because of the ability to ‘game’ the performance measure, checking the

sample frames will be especially relevant.

This choice has an added benefit. The reader will have noticed that the salience filters all

lack scaling variables, which would be especially relevant to interpreting ‘soft’ salience

answers. If we are simply measuring the fraction of the awarded salience that falls inside

the bounding-boxes then scaling factors fall away, leaving us with one fewer independent

variable over which to optimise.

Our measure for performance on a sequence is therefore

score(Salience Filter, Sequence) =

∑
frames

Salience inside targets∑
frames

All salience
. (4.3)

In order to get a score for a filter across the sequences, we need to decide whether to

weight the sequences according to their frame count or not. We feel that the sequences

represent different conditions, and so their score represents the performance in different

use cases. Weighting a particular case heavily just because we have more frames of it is

undesirable. Thus we allocate to a filter the score

score(Salience Filter) = average(score(Salience Filter,Sequence)). (4.4)

We find that on the data this measure does not match our intuitive response for ranking

the different filters. The results using a harmonic mean match our intuitions better than

with the arithmetic mean. We will discuss this in our presentation of our results.
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We run each salience filter on the entire data set twice to evaluate both its naive per-

formance6 and its upper-bound performance7.

4.3.4 Results of Preliminary Tests

Figures 4.3 and 4.4 show sample frames for the salience filters for the naive case and

the upper-bound respectively. Each row shows one of the filters, and each column its

response for a particular sequence. Noteworthy features in these images are as follows:

the target in sequence 14 has a salient patch behind it for Filter 1a-1 and 1b-1, where a

slow-moving boat has contaminated the background model, leading to ocean registering

as salient; filters 1a-2 and 1b-2’s rectangles of solid white (salience), caused by an edge

case involving regions that are salient for the entire sequence (static objects); filters 2a-1

and 2b-1’s large swathes of false positive due to non-uniform ocean lighting; filter 3-1’s

large quantities of noise, and only catching the borders of salient objects; and filter 5-1’s

failure to catch the large ship (if a boat is large enough, it can be worth the neural

network dedicating its limited resources to modelling the boat). This is corrected in

filter 5-2, suggesting that feedback from the tracker will improve filter 5’s performance

on targets. These images largely match the rankings shown in figure 4.5(B) (to be

discussed below). Sample frames for more sequences are available in appendix A, and

at http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/.

6That is, without the tracker providing feedback to assist in generating the background model.
7Providing feedback from the ground-truth to keep the background model accurate.

http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/
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s01 s06 s09 s14 s19

s01: 1a-1 s06: 1a-1 s09: 1a-1 s14: 1a-1 s19: 1a-1

s01: 1b-1 s06: 1b-1 s09: 1b-1 s14: 1b-1 s19: 1b-1

s01: 2a-1 s06: 2a-1 s09: 2a-1 s14: 2a-1 s19: 2a-1

s01: 2b-1 s06: 2b-1 s09: 2b-1 s14: 2b-1 s19: 2b-1

s01: 3 -1 s06: 3 -1 s09: 3 -1 s14: 3 -1 s19: 3 -1

s01: 4 -1 s06: 4 -1 s09: 4 -1 s14: 4 -1 s19: 4 -1

s01: 5 -1 s06: 5 -1 s09: 5 -1 s14: 5 -1 s19: 5 -1

Figure 4.3: Sample salience results for naive filters.
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s01: 1a-2 s06: 1a-2 s09: 1a-2 s14: 1a-2 s19: 1a-2

s01: 1b-2 s06: 1b-2 s09: 1b-2 s14: 1b-2 s19: 1b-2

s01: 2a-2 s06: 2a-2 s09: 2a-2 s14: 2a-2 s19: 2a-2

s01: 2b-2 s06: 2b-2 s09: 2b-2 s14: 2b-2 s19: 2b-2

s01: 3 -2 s06: 3 -2 s09: 3 -2 s14: 3 -2 s19: 3 -2

s01: 4 -2 s06: 4 -2 s09: 4 -2 s14: 4 -2 s19: 4 -2

s01: 5-2 s06: 5-2 s09: 5-2 s14: 5-2 s19: 5-2

Figure 4.4: Sample salience results for upper-bound filters.
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(A) (B)

Figure 4.5: Salience filter performance: (A) shows the distribution of relative ranks
each filter achieved in number of sequences. (B) shows the average precision for each

salience filter across all sequences.

Figure 4.5(A) shows the distribution on relative ranks between the salience filters. For

each sequence, the salience filters are ranked according to their average precision, and the

number of sequences in each rank are totalled. While it is clear that filter 5 dominates on

most sequences, the relative performances do fluctuate. Figure 4.5(B) shows the average

performance of each of these filters. Here we can see that filter 5 is the most successful.

As mentioned in section 4.3.3, these results should be seen in the light of figures 4.3 and

4.4, which confirm that filter 5 is not ‘gaming’ the performance measure.

Figure 4.6 shows the performance change between naive implementation of each of the

initial filters, and the upper-bound implementation. Most of the classifiers are close to

their upper-bound, except for filter 1 which achieves drastic improvement. These are

largely due to the edge case that occurs when a patch has been labelled as foreground

for an entire sequence, as mentioned regarding figure 4.4. This gives an unrealistic boost

to the precision. Note that even with this behaviour, the upper-bound performance is

not much better than that of filter 5.

Figure 4.8 shows the performance for all the composite filters, and figure 4.7 shows

sample frames for some composite filters (each row shows progressively stronger filters

according to their average). From the average performance it seems as though adding

more filters into a composite generally improves it. However, looking at the sample

frames tells a different story. For the first few rows the composite filters are better than

their component filters, but by the last two rows the filters are taking advantage of the

precision measure: committing to very few pixels that are certain, missing many salient

pixels, but still getting a high precision score. Indeed, the best composite Comp-011111

hardly gives any response on sequence 1, and leaves out the entire sail in sequence 9.

In light of this, we present figure 4.9, which uses the harmonic mean rather than the

arithmetic mean to combine the sequence scores. The harmonic mean is closer to the
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Figure 4.6: Naive and upper-bound performance for each salience filter.

minimum of a set than the arithmetic mean, and so punishes filters that get all their

‘mass’ in a few sequences and rewards those that score consistently. This does not solve

the problem of filters not committing to pixels inside a sequence, but does punish those

like Comp-01111 that write off entire sequences. Now our rankings compare to what we

see in the sample images. It is interesting to note that even though filters 1-4 (shown in

Comp-10000, Comp-01000, Comp-00100 and Comp-00010) change ordering relative to

each other, they still perform worse than filter 58.

8We refrain from showing figure 4.5(B) again with the arithmetic mean replaced by the harmonic
mean, as its results are embedded in figure 4.9.
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s01 s06 s09 s14 s19

s01: Comp-11000 s06: Comp-11000 s09: Comp-11000 s14: Comp-11000 s19: Comp-11000

s01: Comp-00011 s06: Comp-00011 s09: Comp-00011 s14: Comp-00011 s19: Comp-00011

s01: Comp-00110 s06: Comp-00110 s09: Comp-00110 s14: Comp-00110 s19: Comp-00110

s01: Comp-11110 s06: Comp-11110 s09: Comp-11110 s14: Comp-11110 s19: Comp-11110

s01: Comp-10101 s06: Comp-10101 s09: Comp-10101 s14: Comp-10101 s19: Comp-10101

s01: Comp-11111 s06: Comp-11111 s09: Comp-11111 s14: Comp-11111 s19: Comp-11111

s01: Comp-01111 s06: Comp-01111 s09: Comp-01111 s14: Comp-01111 s19: Comp-01111

Figure 4.7: Sample salience results for composite filters.
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Figure 4.8: The average precision for each composite filter.

We remind the reader that the salience filter is not our major contribution, but rather

a pre-filter that we address to facilitate the application of our framework to maritime

surveillance. The contributions in this chapter are listed to in section 1.6, but the main

contributions of our work are in the subsequent chapters. Giving precisions without

recall does not produce convincing results. We deemed the work involved in accurately

labelling enough data to get representative recall values unwarranted, given that this

section is a merely a stepping stone on the path to the application of SMAE in chapter

5. We found that while incorporating multiple salience filters generally lead to better

results, it was not universal.

In light of these results, we proceed with filter 5 (our best performing single filter), which

achieved high precision and produced reasonable sample images. It may have struggled

on large targets, but the sample image for sequence 14 shows a significant improvement

between naive and upper-bound cases on large targets for filter 5. We believe that using

the tracker output to label which data is used for the neural network training should

show improvements for the filtering of large objects.
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Figure 4.9: The harmonic mean precision for each composite filter.



Chapter 5

Maritime Surveillance with

SMAE

This chapter continues our application in maritime surveillance. In the previous chapter,

we described our data set and presented the salience filter that acts as a pre-filter for

our framework. In this chapter we apply SMAE to the task of maritime surveillance.

In section 5.1 we develop an adaptive tracker; that is, an application of SMAE that will

handle single adaptive target tracks, holding both target state and target model in a joint

distribution. In section 5.2 we extend this to a persistent tracker; i.e. one that improves

its tracking performance over time, learning from past tracks. We see our tracker as a

nascent intelligent agent, thus our goal is not to create an optimised working system,

but rather to create the conditions that lead to accurate Bayesian learning. Finally, we

discuss the extension of this framework to more common features. It is worth mentioning

that this chapter is intimately linked with chapter 3, as it is implementing the multiple

target VOT tracker derived therein.

5.1 Adaptive Tracker

In this section we describe the adaptive tracker to be used in our MTT. The goal of

the adaptive tracker is to track a target for as long as possible once initialised from

the salience filter. Our priority in designing the adaptive tracker is in creating a good

foundation for the persistent tracker, rather than in creating a strong tracker. We attach

more importance to how easily the tracker is bootstrapped than to the strength of its

initial performance. This section proceeds as follows: section 5.1.1 covers the adaptive

trackers we test and how they relate to our derivation, section 5.1.2 describes the tests

done on these trackers, and section 5.1.3 presents the results of these tests.

83
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5.1.1 Base Adaptive Trackers

While it would be preferable to test our systems against other existing algorithms,

we found none for which the assumptions were close enough to ours to lead to a fair

comparison. Those systems in the existing literature that had similar use cases (self-

initiated trackers with static cameras mounted high above the plane of water) use large

amounts of prior information to build strong vessel classifiers [10, 16, 43]1. The focus

of our system is on bootstrapping those priors from the little available information,

and so testing against these systems would bias the tests against our system. On the

other hand, testing against standard VOT tracking algorithms would face the opposite

problem: our system has been designed with the noise of ocean backgrounds in mind,

and so would have an advantage. We decided that the effort required in adapting any

current solution to be a fair baseline comparison is not justified, and so we consider our

tests on the adaptive tracker’s results as a baseline against which we can compare our

persistent tracking results in section 5.2. We now this is not ideal, however running

comparisons based “unfair” test conditions would not produce meaningful results.

Our adaptive tracker is a monolithic Bayesian system that takes the output of the

salience filter as its observations Yt, and makes inferences on the posterior probability of

a target of interest being at locations in the joint (M , St) space. The difference between

this and the standard Bayesian adaptive tracker is illustrated in figure 1.3. To do this,

it employs an adapted particle filter, where each particle represents a discrete value of

all variables in St, but holds a complete representation of the PDF for the hyper-plane

that stretches across all the variables in M . Figure 5.1 illustrates this for the VOT case,

in comparison to the simple 1-dimensional case shown in figure 3.7, highlighting the

variables stored in a single particle. We will not go over the basics of particle filters due

to space reasons, and refer the reader back to chapter 3 for justification of our particle

filter framework.

In section 3.3.3 we discussed that when particles overlap we need to handle the inference

for the various cases separately. We do this to ensure that every hypothesis our tracker

considers is required to explain all the evidence in a frame; practically, this means

updating the information in M correctly according to the different allocations. Our

solution in chapter 3 was to group particles into clusters. Particles in a cluster must co-

occur, and each cluster maintains a list of clusters with which it cannot occur. Whenever

two proposed clusters (C1 and C2) overlap, they are replaced by three clusters: the

1This may seem like a small set of viable papers in comparison to the wealth of contributions men-
tioned in chapter 2. It excludes those which are classification papers [18, 22, 41, 45, 52], those that
are for different surveillance modes [23–25, 27–29, 39, 46, 47, 49, 50], those that are not adaptive track-
ers [32, 33, 40], and those with little or no quantitative testing [1, 26, 30, 31, 34–38, 42, 44], which we
interpret as exploratory papers. Those listed in the text are the best fitting examples from the literature,
yet even they are not fair comparisons.
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Figure 5.1: The adapted particle filter as applied to the synthetic problem and the
tracking task. The first row shows an example of the PDF to be tracked, summarising
the model and state components. For the synthetic problem, the model is defined by
a single variable µ, the center of the observation model, and the state is defined by
the single variable x. For the tracking task, the model is joint across a number of
views (we used 2), where each view contains a grid of distributions (we used a square
of side 20 pixels) each representing the mean of a Gaussian observation model for that
location, and a width and height for the view. The state is a vector containing x, y,
and view index. The second row shows our adapted particle filter, where each particle
is discrete in all the state variables, but holds a distribution across the model variables.
The final row shows a single particle; the synthetic problem’s particles can be stored as
the state variable and parameters of the Gaussian distribution on µ, i.e. (x, µ̄, σµ). For
the tracking task, we need to store the state and the parameters of all the distributions

across the observation grid and size parameters, i.e. (x, y, v,
(
¯̂µ, σ̂µ, w̄, σw, h̄, σh

)nV iews
).
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union which covers the case that both are present, and updates each M according to

the allocations from equation 3.23; and one for each cluster covering the case that the

other is not present, where the present cluster’s M is updated having the full weight

of pixel allocations. We refer the reader back to figure 3.10 to visualise the process of

generating the new clusters.

At each time instant, we include two new clusters centred on the largest (normalised for

perspective) patches of salience, with the set of clusters predicted from the previous time

instant. We consider the LLR for each cluster (using equation 3.14 with equation 3.23

handling pixel overlaps) taken without considering the other clusters to be indicative

of the local fit of the cluster. We perform a gradient descent on the positions of the

particles so as to maximise this LLR. This gradient descent will position the particles

such that they have a maximal LLR, but will also update the M for each particle to hold

the correctly inferred information for that configuration. This takes into account pixel

overlaps using equation 3.23 to perform the optimal approximation for inference on the

different particles’ M values for different pixel allocations. During this gradient descent,

cluster formations will change as particles overlap and separate, joining and splitting

clusters respectively. Once this gradient descent with cluster updating is finished, we

calculate the posterior on each particle, marginalised over the valid subsets of particles

(as dictated by the cluster properties).

The information stored in M is large, and the inference is a relatively heavy operation;

this leads to an impractical overhead when the number of particles is not small. We

found that the gradient descent made using fewer particles effective. This means that

considering all valid subsets of particles, which would be infeasible with a more standard

number of particles, is now feasible. Figure 5.2 walks through the application of this

algorithm to a sample frame (note the similarity to figure 3.11).

We test three adaptive MTTs using the different observation models described in sec-

tion 3.5.1: a Gaussian distribution centred at ~µ with a standard deviation σobs of 0.2,

where ~µ is a parameter being inferred; an alpha mask in which the pixel value has an α

chance of being drawn from a uniform distribution, otherwise is drawn from the back-

ground model, with ~α as the parameter being inferred; and a combination, where the

pixel has a α chance of being drawn from a Gaussian centred at µ and both ~α and ~µ are

inferred.

For each of these cases, a grid of parametrised distributions is stored (as described

in section 3.5.1), with the cropped portion of each observation transformed into the

particular grid’s scale using the techniques developed in section 3.5.2. Because the

observation model is in the form of a LLR, using just the cropped patch is consistent

with considering the entire frame as the observation Y .
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Figure 5.2: A single iteration of the tracking algorithm. For each frame that is
received (A), a set of hypothesised particles is created using the large regions of salience
(with perspective taken into account) (B) and the previous frame’s output (C). These
particles are then fitted using a gradient descent optimising the LLR (D), creating new
clusters as necessary. In this example, the blue and cyan particles overlap, and so
the algorithm creates a cluster for the combination of particles in addition to the two
original clusters (indicated with asterisks). The algorithm then culls those particles
whose LLR is insignificant compared to those with which they compete (E). In this
case, that is the clusters involved with the blue and cyan particles; the combination
cluster has a much larger LLR, and the two individual clusters are rejected. Finally, the
algorithm uses equation 3.12 to calculate the posterior for each particle (F), and keeps
the best ones for the next frame (G). For all the frames, only the bounding-boxes are
shown. Each particle has a distribution in M (not shown), as illustrated in figure 5.1.

We draw attention again to the fact that this is a MTT. The adapted particle filter

described in section 3.3.2 models the different particles as hypothesised single targets,

and keeps track of which particles are considered compatible and which are considered

incompatible. In this way, the set of particles encapsulates the joint multi-target PDF.

The purpose of these tests is two-fold: firstly, to establish which observation model to

take further with our tests, and secondly, to establish a baseline against which to test

our persistent tracker’s improvements.

5.1.2 Description of Tests

As described in section 4.2, our data set consists of 22 maritime sequences taken from a

static camera containing many different types of salient objects. For each sequence, we
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run each of our base multi-target trackers, and record the following for the detections in

each frame: the bounding-boxes, the distribution on M , and the posterior weight.

Deciding on a performance measure is difficult for any MTT. While it is easy to define

what the ideal output would be, the many possible failure modes make it challenging to

design a scoring system that does not reward the performance of some undesirable edge

case. We let our use case guide us in our decisions regarding the metric.

There are two common measures used for describing how well a single target tracker

matches its underlying target. The first is the ratio of the intersections of the bounding-

boxes to the union of the bounding-boxes2, and the second is the difference between the

two bounding-boxes’ centroids. In our case we do not want to be too prescriptive on the

bounding-box. Our interests are in the presence of boats, their approximate location,

and inferring accurate appearance models. To this end, we set a threshold on the overlap

between tracker and ground-truth of 0.15, above which we consider it a hit. Figure 5.3

shows an example of overlaps to justify a threshold this low.

Figure 5.3: Two bounding-boxes that we would consider valid that have an overlap
score of 0.15.

Regarding the scoring of the assignments, we take our lead from Smith et al. [19].

Their nine metrics are discussed in the literature review; we ignore the CD rate as its

information is carried better in the MO and MT rates. The FIT, FIO, TP, and OP

measures all address the issues around tracks switching targets. They are predicated on

the assumption that each target should be tracked by one track and each track should

track one target. We discussed the issues involved with this in section 2.1 with figure 2.1.

We will use the SW measure defined at the end of this section as a measure of how often

the best track following a target switches.

2Equivalently, Dice’s coefficient.
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Calculating the MO, MT and SW measures becomes intricate when considering different

thresholds for our posterior probability. In our context, they all relate to a failure to

keep the right particles. On account of this, we calculate them with a threshold of zero:

any particle that is part of the tracker’s output contributes to these measures. We also

consider the tracker’s precision (P) and recall (R) for different thresholds θ and combine

them into the F-score (F) for a tracker. Thus our metrics for a given tracker on a given

sequence are3:

• MO(sequence) = 1
nFrames

∑
frames

∑
trackers on target

(number of targets best described by tracker−1)

max(number of visible targets,1)

• MT(sequence) = 1
nFrames

∑
frames

∑
tracked targets

(number of tracks assigned to target−1)

max(number of visible targets,1)

• SW(sequence) = 1
nTargets

∑
targets

(number of trackers assigned to target−1)
number of visible frames

• P(sequence, θ) =

∑
frames

(number of track responses on target with posterior>θ)

number of tracks with posterior>θ

• R(sequence, θ) =

∑
frames

(number of targets tracked with posterior>θ)

number of targets

• F(sequence, θ) =
(

P(tracker, sequence, θ)−1+R(tracker, sequence, θ)−1

2

)−1

We also need to define an aggregation on these scores in order to get a representative

value for a tracker across all sequences. We follow our decision from section 4.3.3 to use

the harmonic mean. The harmonic mean favours distributions that are more consistent

over those with a large spread. We make this decision as the quantitative results it

produces are closer to the qualitative results we will present alongside. In appendix B,

we present the results using both the harmonic mean and the arithmetic mean, that the

reader may be satisfied with this unusual choice.

We also show a selection of learned observation models for each tracker, to give a qual-

itative appreciation of whether the appearance model is converging correctly or not.

5.1.3 Results of Tests

Figure 5.4 shows the quantitative results for the three adaptive trackers. The top graph

shows the PR ‘curve’ for trackers (as the thresholding will be a result of p(I|M,Y−∞:t),

the PR curves are constrained to a single point) as an aggregated value across all se-

quences. These points may seem to represent poor performance. We point out that

3Where MO, MT, and SW stand for multiple object, multiple tracks, and switches respectively.
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the harmonic mean produces lower values than the arithmetic, and that our labelling

includes objects that are unlikely to be detected (to leave space for improving trackers).

The lower left bar graph shows the average MO, MT and SW errors for each tracker,

and the lower right graph shows the number of sequences each tracker ranked in each

position (as judged by the best F-Score). The only measure in which the tracker with

the alpha-mask was not the best was for the MT error. We are not overly concerned

about the MT errors; they are mostly caused by trackers locking onto different parts of

large vessels. As our primary concern is smaller vessels, this is not a relevant issue.

Figure 5.4: The top shows PR points for the three adaptive trackers. Learning to
reject tracks, and hence move along a PR curve, comes with training that will be
integral to our persistent trackers. The lower left shows MT, MO, and SW scores for
the different trackers. The lower right shows the number of sequences each tracker
ranked in each position (as judged by F-score). For the MT, MO, and SW errors we
show the arithmetic mean instead of the harmonic, as the harmonic mean of any set

with a zero element is zero, and hence would be meaningless for these metrics.

We also include samples of the templates used by the trackers for different targets in

figures 5.5, 5.6, 5.7, and 5.8. For each target, we show the cropped target at several

frames in the salience filter and in each tracker. For the tracker images, we insert

the templates into the top right of the image. The bounding-box in each frame is the

colour of the cluster with which it is associated, and any pixels the tracker decided

originated from a target are coloured with its colour (along with the particle number



Chapter 5. Maritime Surveillance 91

for that target). In the insert, the two views’ templates are shown (µ for the Gaussian

observation, and α for the other two observation models). The templates are shaded the

colour of the cluster to which they belong, and the visible template is bordered in the

target’s colour.

The cluster colour changes from frame to frame, hence the bounding-box’s colour is

unimportant. However, a change in the pixel colours indicates a change in the underlying

target identity, and is hence a SW error. The tracker with a Gaussian observation

distribution has a noticeable blur in all its templates, which exists to a lesser extent

in the tracker with both an alpha mask and a Gaussian distribution. The tracker with

only an alpha mask learns templates with much sharper boundaries. The problems

associated with the larger objects stem from the salience filter accommodating them

into the background model, as can be seen in the top row in figure 5.8. A boat that has

been included into the background will generate smaller salient regions on its peripheries.

For the small target in sequence 9, the alpha-masked tracker tracks until the object is

obscured following frame 200, then reinitialises. The entire video set for each tracker is

available at http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/.

http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/


C
h

a
p

ter
5
.

M
a
ritim

e
S

u
rveilla

n
ce

92

(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Gaussian (F) Frame 100, Gaussian (G) Frame 200, Gaussian (H) Frame 400, Gaussian

(I) Frame 5, Alpha-mask (J) Frame 100, Alpha-mask (K) Frame 200, Alpha-mask (L) Frame 400, Alpha-mask

(M) Frame 5, Both (N) Frame 100, Both (O) Frame 200, Both (P) Frame 400, Both

Figure 5.5: Sample templates for a medium-sized target in sequence 6 for trackers with different observation models with no persistence.
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(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Gaussian (F) Frame 100, Gaussian (G) Frame 200, Gaussian (H) Frame 400, Gaussian

(I) Frame 5, Alpha-mask (J) Frame 100, Alpha-mask (K) Frame 200, Alpha-mask (L) Frame 400, Alpha-mask

(M) Frame 5, Both (N) Frame 100, Both (O) Frame 200, Both (P) Frame 400, Both

Figure 5.6: Sample templates for a small target in sequence 9 for trackers with different observation models with no persistence.
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(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Gaussian (F) Frame 100, Gaussian (G) Frame 200, Gaussian (H) Frame 400, Gaussian

(I) Frame 5, Alpha-mask (J) Frame 100, Alpha-mask (K) Frame 200, Alpha-mask (L) Frame 400, Alpha-mask

(M) Frame 5, Both (N) Frame 100, Both (O) Frame 200, Both (P) Frame 400, Both

Figure 5.7: Sample templates for a large target in sequence 14 for trackers with different observation models with no persistence.
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(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Gaussian (F) Frame 100, Gaussian (G) Frame 200, Gaussian (H) Frame 400, Gaussian

(I) Frame 5, Alpha-mask (J) Frame 100, Alpha-mask (K) Frame 200, Alpha-mask (L) Frame 400, Alpha-mask

(M) Frame 5, Both (N) Frame 100, Both (O) Frame 200, Both (P) Frame 400, Both

Figure 5.8: Sample templates for a static object in sequence 19 for trackers with different observation models with no persistence.
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We reiterate that the adaptive tracker is not meant to produce strong results. Our

intention was to create a baseline tracker on which to implement our persistent learn-

ing. Based on both the quantitative performance results and the qualitative sample

templates, we proceed with the alpha-masked uniform distribution as the observation

model for our persistent tracker.

5.2 Persistent Tracker

Having designed and tested our adaptive trackers, we extend our adaptive tracker to be a

persistent tracker — one designed to run over extended periods of time and progressively

improve its performance. Our goal is to extend the framework around our adaptive

tracker (which only adapts its observation model inside each track) to a tracker which

updates the prior it carries into each track. In section 5.2.1, we show how to extend

the adaptive tracker, and present the machine learning framework. In section 5.2.2, we

cover the tests we run on the persistent tracker and present the results of those tests in

section 5.2.3.

5.2.1 The Tracker

If we take our adaptive tracker and allow it to include information gained from before

the track was initiated, we get a posterior of the form

p(St,M |Y−∞:t). (5.1)

With this, all the information in the observations before our initiation at time t = 0

updates M . This means that our tracker, when initiated, will have a prior that is relevant

to the environment in which it has been deployed. This prior could cover any part of the

model: we could develop a prior on the motion model, learning what motions are possible

in our environment; we could develop a prior on which modality of observation model is

the most effective, switching between the different observation models according to the

environment; we could develop a prior on the joint observation-motion model, learning

the ways that different sorts of objects move. The quantity of training data becomes a

concern for more complex tasks, so we settle on developing a prior for the observation

model. We use our past tracking observations to improve our rejection of false targets

(i.e. wave clutter). By spending fewer particles on clutter, we will have more particles

to follow the objects of interest.
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The likelihood p(Yt|St,M) helps us follow salient objects (i.e. contiguous regions of

space-time that remain salient longer than our background model would suggest likely).

Placing our prior information in this would make our background model more convo-

luted, and as this is run on our innermost loop we want it to be as lightweight as possible.

We choose to store the information in an interest model p(I|M,Y−∞:t), which models

the likelihood that an object is a target, given our past observations. In this way, our

gradient descent still finds the most likely salient object with a lightweight function, and

our interest model is run on the final winner to decide whether it is a target or clutter.

This gives us equation 3.46 from the derivation chapter (repeated below)

p(I,M, St|Y−∞:t) = p(I|M,Y−∞:t)p(M,St|Y−∞:t). (5.2)

Here the second factor is our adaptive tracker, as implemented in section 5.1, and the

first factor describes all the learning that occurs before instantiation of the target in

question.

We are speaking of the M for a specific track. However, until each track is instantiated

and has cropped pixels updating its observation models, all the tracks will have the same

information in M . In this way, we can learn a single Mprior that is used to instantiate

each new track’s M , and when the track is over we can use its results to update Mprior.

To do this, we need each track to be labelled as {Object of interest, Clutter, Neither}4.

Again we consider our use case to guide our decisions. Most of our clutter is in the

form of short-term waves. We could autonomously label any short tracks as waves, and

longer tracks as objects of interest. On the other hand, a surveillance system is likely

to have a human interacting with it at some level. It would be possible to have the

machine present tracks to the human and have them labelled. While the first approach

would be interesting to pursue, it would introduce another independent variable into this

application. As our intent is to prove SMAE’s applicability, we choose to limit our scope.

We use labelled data to mark tracks and make this available to the persistent tracker.

We feel this is justified for maritime surveillance, as it simulates a human operator.

Once we have labelled data, we still need to decide on how to use it in our prior. This

is the quintessential machine learning problem — we have ‘things’ for which we want to

predict a function’s output (in this case, a label). We need to make two decisions: in

what feature space should we represent our ‘things’, and what function approximator

should we use?

4The third category allows us acknowledge that, even though static objects like lighthouses are not
targets, they are probably closer to boats than waves. Trying to discriminate against them may lead to
inferior results. We will leave these out of the training set.
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Our observation model is described by the approximate value for the mode of ~α repre-

senting the grid of pixel alpha values. In our literature review, we discussed many of the

features used to describe image patches in preparation for function approximation. We

chose a selection of these features and others and will test the efficacy of different subsets.

We are looking for macroscopic tendencies with which to differentiate (for example: ‘few

middle values of α’, or ‘model is one big convex mass’), and so avoid feature sets like

Haar or HOG features that are good for describing the fine structure required in frame-

to-frame adaptive tracking. These feature sets also have large numbers of dimensions,

which may lead to over-fitting our limited data.

Our features can be summarised as follows (where ~α is the 20-by-20 grid of modes in

M):

• Quantity and general placement of salience:

f1: Mass of salience =
∑
~α

f2: Effective radius =
√

moment of inertia
mass of salience

• Tendency towards α of 0 or 1:

f3: Mid-values =
∑

(~α(1− ~α))

f4: Extreme values =
∑
e0.5( ~α−0.5

0.2 )
2

• Tendency to contain all salience in a single mass with no holes or other patches:

f5: Normalised local consistency favouring gradual changes =

∑
adjacent pixels

(α1−α2)2

mass of salience

f6: Normalised local consistency favouring sudden changes =

∑
adjacent pixels

|α1−α2|
1
2

mass of salience

f7: Morphologically opened mass =
∑

(~α > 0.5) ◦ ones(5, 5)

f8: Morphologically closed mass =
∑

(~α > 0.5) • ones(5, 5)

• State variables:

f9: Width = perspective-adjusted width of object

f10: Height = perspective-adjusted height of object

f11: Area = perspective-adjusted area of object

f12: X-position = x co-ordinate in frame

f13: Y-position = y co-ordinate in frame

f14: Frames allocated to view = number of updates this view has

f15: Frame index = number of this frame in sequence.
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For each feature we consider the feature value and its change due to the most recent

update (so we have f1-value and f1-velocity). All features are normalised to be within

the same range.

Once we have our labelled data we need to train a classifier. We consider three different

classifiers: a K-nearest neighbours classifier (which we will call our KNN persistent

tracker), Bayesian inference based on Gaussian approximations (which we will call our

Gaussian persistent tracker), and a neural network (which we will call our NN persistent

tracker). While it would be possible to do an in-depth investigation into which of the

many available classifiers would work best (possibly even building that into Mprior), we

intend only to prove the applicability of SMAE, and so decide that further optimisation

is out of scope.

5.2.2 Description of Tests

To test our persistent tracker, we run our adaptive tracker on every sequence, collecting

all the selected features for the models in each tracking output. For each sequence Q, we

train persistent trackers using all the sequences that are not from the same original video

as Q. We train persistent trackers for all three learning algorithms (KNN, Gaussian,

and NN).

We perform a greedy feature selection by testing the trained classifier on the initial

tracking samples for Q. This means that the feature selection may be over-fit, however

with our constrained data set this was the most reasonable compromise.

Our classifiers then predict p(I|M,Y−∞:t) as follows: KNN takes the fraction of the K

(we used K = 10) nearest neighbours that are of interest; the Gaussian approximation

takes the ratio of likelihoods for the interest and clutter distributions; and the neural

network takes its output bounded to the range [0 : 1].

In order to rank our feature sets we consider the number of disordered pairs in the test

data, where a pair is disordered if one is a target of interest, the second is clutter, and the

classifier rates the second as being more likely to be a target of interest. The difference

between the two classifier outputs is counted as a penalty for the classifier. Thus the

total penalty for a classifier is

Penalty =
∑

disordered pairs

|p(I1|M1)− p(I2|M2)|. (5.3)

Finally, we run the new tracker (which we will call the persistent tracker) on sequence Q.

In this way, we simulate information from extended tracking runs with multiple shorter
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tracking runs by performing leave-one-out testing on the sequences. We record the same

metrics for the persistent trackers as for the adaptive trackers.

5.2.3 Results of Tests

The results for feature selection are summarised in Table 5.9. Because the neural network

has a much larger training time, we used a smaller number of starting points for the

greedy feature selection (we started from at least5 20 random initial sets). The sets

chosen are very different, with few features either chosen or ignored in all trackers.

Those universally chosen are f4 (discriminates between middle values of α and extreme

values), f10 (perspective-independent height of the target), f11 (perspective-independent

area of the target), f12 (X-position of the target), and f14 (the number of updates a view

has had). The only feature that was rejected by all the trackers was f13 (Y-position of

the target). Some of these patterns make sense: figures 5.5, 5.6, 5.7, and 5.8 show that a

common failure mode for these types of trackers is blurring, thus f4 which discriminates

between certain salience choices (i.e. α close to 0 or 1), and vague values (i.e. α

near 0.5) would be helpful. It also makes sense that f14 would be useful: the state of a

template is more pertinent if we know how much information has been incorporated into

it. More curious is the favouring of X-value and rejection of Y-value, which we would

have predicted to be opposite. Targets and waves occur at all horizontal positions, yet

clutter seems to have a high occurrence at the lower part of the frame.

It is possible to hypothesise why the feature selection profile is as observed: perhaps the

information held in target height is adequate to rule out clutter near the bottom of the

frame, and so the Y-position adds no new information. However, this is all speculation.

Because we used an ad hoc strategy, it is difficult to tease meaning from results that

are not as we expect. As this is an incidental step on the path to our persistent tracker,

we are satisfied to use its results in the context of our larger Bayesian framework. It

serves as a pertinent illustration of the differences between ad hoc approaches and full

Bayesian frameworks. We choose not to look further for meaning in these features, and

simply use the best features for each of our persistent trackers. Although the penalty

for the Gaussian approximation is much worse than that of the others, we find in the

next tests that its actual performance is comparable.

5Due to machine failures the exact number is uncertain.
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Classifier % of Search Space Searched Feature Mask Penalty

KNN 0.1614 01111 10001 11010 18790.3

Gaussian 0.1628 11010 00011 11010 73773.5744

Neural Network 0.0355 00111 01111 11011 14126.4467

Table 5.9: Optimal feature sets as found by greedy feature selection. Each row
represents one of the machine learning algorithms considered: K-Nearest Neighbour,
Bayesian inference based on a Gaussian approximation, and a neural network trained
to classify. For each algorithm we show the percentage of search space that was covered
in the gradient descent algorithm (as a percent of the 215 possibilities), the optimal

mask found, and the penalty incurred by the optimal mask (as described in 5.2.2).

Figure 5.10 shows the results for the different persistent trackers. We favour the har-

monic mean again, presenting the side-by-side comparison of the harmonic and arith-

metic means in appendix B. The PR curves’ global values may not be impressive6;

however, we can see that PR curves for all three learning algorithms show an improved

overall performance, and that in all but four sequences the adaptive tracker performed

worst. We show the MO, MT and SW errors for completeness, but do not find their

values particularly significant. The MT and SW errors are lower for the adaptive tracker

than for the persistent trackers. The SW errors are caused by a tracker re-establishing

contact with a lost target. We see the persistent trackers’ higher SW rating in light of

their higher recall as a sign that they are re-establishing tracks that the adaptive tracker

ignores. We de-emphasise the MT errors for the same reasons given in section 5.1.3.

These are aggregated results and need to be seen in parallel with specific instances.

In figures 5.11, 5.12, 5.13, and 5.14 we present the same example frames used in fig-

ures 5.5, 5.6, 5.7, and 5.8. We refer to the text in section 5.1.3 for an explanation of the

colours used. The small target in sequence 6 is tracked adequately by all four trackers;

in these sequences the persistent trackers would be able to improve precision by attach-

ing lower interest probabilities p(I|M,Y−∞:t) to the clutter particles. Similar results are

achieved for the small target in sequence 9, except that the KNN-trained tracker lost

track of the target before frame 200, and was unable to re-establish the track after the

occlusion that occurs between frames 200 and 300. The larger object in sequence 14 is

tracked far better by the KNN and NN persistent trackers7. Similarly, the static target

in sequence 19 was tracked better by both the KNN and the NN persistent trackers.

6We note again that our data set is rather challenging (including targets that are very difficult to
track), and that the harmonic mean is lower that the arithmetic mean (in this sense it could be thought
of as a soft minimum operator).

7Frame 100 for the neural network has a rare edge case in the pixel allocation algorithm, where the
algorithm cannot assign the pixel allocations and so leaves them blank. The templates show that the
target was being tracked by two tracks.
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Figure 5.10: The top shows PR curves for the three persistent trackers relative to
the baseline adaptive tracker. The lower left shows MT, MO, and SW scores for the
different trackers. The lower right shows the number of sequences each tracker ranked in
each position (as judged by F-score). The MT, MO, and SW errors use the arithmetic

mean again, as the harmonic mean of any set with a zero element is zero.
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(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Baseline (F) Frame 100, Baseline (G) Frame 200, Baseline (H) Frame 400, Baseline

(I) Frame 5, KNN (J) Frame 100, KNN (K) Frame 200, KNN (L) Frame 400, KNN

(M) Frame 5, Gaussian (N) Frame 100, Gaussian (O) Frame 200, Gaussian (P) Frame 400, Gaussian

(Q) Frame 5, NN (R) Frame 100, NN (S) Frame 200, NN (T) Frame 400, NN

Figure 5.11: Sample templates for a medium-sized target in sequence 6 for persistent trackers with different learning algorithms.



C
h

a
p

ter
5
.

M
a
ritim

e
S

u
rveilla

n
ce

104

(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Baseline (F) Frame 100, Baseline (G) Frame 200, Baseline (H) Frame 400, Baseline

(I) Frame 5, KNN (J) Frame 100, KNN (K) Frame 200, KNN (L) Frame 400, KNN

(M) Frame 5, Gaussian (N) Frame 100, Gaussian (O) Frame 200, Gaussian (P) Frame 400, Gaussian

(Q) Frame 5, NN (R) Frame 100, NN (S) Frame 200, NN (T) Frame 400, NN

Figure 5.12: Sample templates for a small target in sequence 9 for persistent trackers with different learning algorithms.



C
h

a
p

ter
5
.

M
a
ritim

e
S

u
rveilla

n
ce

105

(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Baseline (F) Frame 100, Baseline (G) Frame 200, Baseline (H) Frame 400, Baseline

(I) Frame 5, KNN (J) Frame 100, KNN (K) Frame 200, KNN (L) Frame 400, KNN

(M) Frame 5, Gaussian (N) Frame 100, Gaussian (O) Frame 200, Gaussian (P) Frame 400, Gaussian

(Q) Frame 5, NN (R) Frame 100, NN (S) Frame 200, NN (T) Frame 400, NN

Figure 5.13: Sample templates for a large target in sequence 14 for persistent trackers with different learning algorithms.
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(A) Frame 5 Salience (B) Frame 100 Salience (C) Frame 200 Salience (D) Frame 400 Salience

(E) Frame 5, Baseline (F) Frame 100, Baseline (G) Frame 200, Baseline (H) Frame 400, Baseline

(I) Frame 5, KNN (J) Frame 100, KNN (K) Frame 200, KNN (L) Frame 400, KNN

(M) Frame 5, Gaussian (N) Frame 100, Gaussian (O) Frame 200, Gaussian (P) Frame 400, Gaussian

(Q) Frame 5, NN (R) Frame 100, NN (S) Frame 200, NN (T) Frame 400, NN

Figure 5.14: Sample templates for a static object in sequence 19 for persistent trackers with different learning algorithms.
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We see from both the quantitative and the qualitative results that the persistent tracker

as designed by SMAE performed better than the simple adaptive tracker. While this

improvement may be moderate, the quantity of learning data was limited and the in-

clusion of more data would likely increase the improvement. It is worth noting that

this provides no information about the saturation results towards which the persistent

trackers would tend: it only shows that the model has enabled positive learning for

a persistent tracker. A possible extension of this work would be to test these results

with many extended sequences (rather than simulating a small subset with leave-one-out

testing). Our goal was to test the functionality of SMAE for both adaptive tracking and

persistent tracking. In light of this, we are satisfied that we have achieved our objective.

The joint (M , St) models for template-based tracking are functional, and we are able

to include problem-specific learning (as opposed to target-specific learning) into M for

our persistent trackers. The algorithm is not real time, but is still processable (I had it

running for extended periods of time on a single desktop machine, with improvements to

efficiency and more hardware it could be made to run real time). Because the particle fil-

ter uses a gradient descent, it is difficult to give a “big Oh notation” complexity class for

this algorithm; run time would be proportional to the average gradient descent length,

and the number of particles. We conclude this chapter addressing what we assume will

be a remaining reservation for the reader.

5.3 SMAE for More Standard Features

We have addressed this tracking problem using raw pixel values as our features, rather

than those features that are favoured by current state-of-the-art trackers. We have done

this to keep the application of the SMAE as straightforward as possible, including enough

detail to show how SMAE deals with challenges, but not so much as to make following

the application unnecessarily difficult. Certainly, if we were not using raw-pixel values,

the templates shown in figures 5.5, 5.6, 5.7, 5.8, 5.11, 5.12, 5.13, and 5.14 would be much

harder to visualise in a clear manner.

However, most current trackers do not use template-based, raw-pixel features. Haar

features are common; they are fast to calculate, and very effective in a boosted cascade

classifier. HOG features are also common, catching a summary of the gradient of a

patch and hence its geometry. There are many different binary descriptor features that

are commonly used (SIFT, SURF, ORB, FREAK etc.). These can be used to describe

a local patch, but are also commonly used to describe key-points on a larger target.

Setting aside tracking using key-points and a parts-based model, we discuss the use



Chapter 5. Maritime Surveillance 108

of SMAE with patch features (features that can be seen as a function of the cropped

proposed target).

We showed that incorporating the entire frame into Y is equivalent to using a LLR for

a considered patch. This makes the SMAE framework easy to extend to patch-based

features. One could use these features much as we have used raw pixels. If we considered

a target to have a Gaussian observation distribution for certain Haar features, then we

can infer a posterior on the parameters of that distribution through our observations.

One could model binary descriptors similar to our alpha masks, modelling the probability

that a given bit in the descriptor would be positive. In both of these cases it would be

harder to visualise templates, and the mathematics becomes involved in resolving which

feature is expressed when targets overlap. With these changes it would be possible to

extend our framework to non-rigid-body tracking tasks, such as people tracking. The

key difference between the SMAE approach and the current approach is holding the

observation model in a distribution. Rather than passing training samples to an ad hoc

classifier, one should define an observation model for the features such that it can be

held inside a probabilistic variable.

As mentioned above, we chose to demonstrate SMAE with raw pixel values as features

for the sake of clarity (it is easier to visualise the templates, and the mathematics

remains relatively transparent); however, we see no reason why these methods could not

be applied with other common features.

All the code used for chapters 4 and 5 is available at http://www.dip.ee.uct.ac.za/

~cbradshaw/PhD_data/.

http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/
http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/


Chapter 6

Conclusion

In this chapter we close off the technical side of our work. While there is still content in

the next chapter, it is of a more diversionary nature and so we include it as an epilogue.

In section 6.1 we present our concluding thoughts, and revisit our most pertinent novel

contributions.

6.1 Summary

This document started off by introducing the approach spectrum: a way of thinking

about different problem-solving styles, that ranges from the results-focused practical

side to the model-accuracy-focused principled end of the spectrum. Bayesian techniques

were presented as an example of the principled side of the spectrum. With figure 1.3(B),

we illustrated how current Bayesian trackers are primarily practical approaches that

use a principled Bayesian component. We hypothesised that it is possible to design a

Bayesian adaptive tracker that encompasses the entire adaptive tracking task within a

single inference, in a manner that is still tractable.

Through our investigations of the current adaptive Bayesian trackers in sections 1.3

and 2.1, we found that while there are many effective Bayesian trackers, none encom-

pass the holistic framework we envisioned. The adaptive model components of current

Bayesian trackers may be probabilistic, in the sense that they are expressed as observa-

tion likelihoods, however they are not probabilistic variables themselves. We also found

evidence that most current Bayesian trackers see the observation presented to the infer-

ence engine as limited to the values within a bounding-box, rather than the values in

the entire frame.

109



Chapter 6. Conclusion 110

In designing our holistic Bayesian adaptive tracker in chapter 3, we addressed both of

these concerns. Our tracker includes the observation model (and has the capacity to

include the motion model) inside the probabilistic variables tracked by the inference

engine. Instead of having an ad hoc process updating the likelihood function, the differ-

ent likelihood functions compete against one another inside the Bayesian inference. This

lead to us naming our framework SMAE, for simultaneous modelling and estimation. We

also found that considering the entire frame as the observation is equivalent to using the

LLR for the bounding-box as the observation. This particular observation means that

the behaviour of feeding a bounding-box into the inference engine can arise from both

the holistic Bayesian tracker (figure 1.3(A)) and the current approach (figure 1.3(B))1.

Our framework also addresses multiple-object adaptive tracking, and how to extend the

holistic tracker to a more general task. This leads to our differentiating between an

adaptive tracker (one that is instantiated and tracks a single target across frames, while

learning its appearance) and a persistent tracker (a long-lived task that encompasses

many adaptive tracker tracks, improving through extended deployment). We saw that

just as the framework describes how an adaptive tracker can use each frame to update

its observation model, it also describes how a persistent tracker can use each adaptive

tracker’s results to update the prior it carries into future adaptive tracker instantiations.

The derived framework represents the bulk of our contribution, although an untested

framework is of no use. In order to demonstrate the value of the developed framework

we applied it to the challenging task of maritime surveillance. We did this in chapter 5.

However, in order to do so we also needed to survey the relevant literature (section 2.2)

and cover some non-framework specific topics (chapter 4). Chapter 4 is noteworthy

in that, although it is not the focus of our work2, it still contains novel contributions

(as listed below). The work in chapter 5 shows how SMAE can be applied to real-

world challenges, and how it can be made to accommodate reasonable approximations

to result in a tractable principled framework. Section 5.1.1 highlights the links between

the derivation in chapter 3 and the trackers in chapter 5, describing how the framework

applies to our use case.

Chapter 5’s instantiation of SMAE uses raw pixel values as the input features. Sec-

tion 5.3 addresses why this design decision was made, and how the framework could

1This leads to a typically Bayesian situation: the same evidence (using a bounding-box for the
observations of the inference engine) supports both hypotheses (the approach modelled by figure 1.3(A)
and the approach modelled by figure 1.3(B)). This casts doubt on our claim that current papers do
not model the entire frame as the observation. We acknowledge this, yet we are unable to find further
evidence of the holistic Bayesian framework in current works.

2It is merely covering ground to set up chapter 5, which in turn exists to verify the work in chapter 3.
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be extended to more common tracking features. Investigating the scalability of perfor-

mance with respect to the number of tracked targets would be another interesting path

for future work.

6.2 Contributions

Before moving to the less concrete applications of SMAE in the next chapter, we close

off by listing our contributions in the light of our finished work. Our key contributions

are that we:

• Illustrate the inappropriateness of the BRE to adaptive tracking. Although our

discussion of the time-invariance of the model in the BRE is brief, it is pertinent in

light of the prevalent use of the BRE for adaptive trackers. Without a framework

that acknowledges time variant information’s effect on the model, it is impossible

to approach adaptive tracking in a principled manner.

• Formulate a holistic Bayesian adaptive tracking framework that incorporates model

estimation into the PDF. SMAE, as a framework, addresses the adaptive tracking

task in a principled manner we found missing in the literature. It includes the

model uncertainty inside the Bayesian framework in a manner more consistent

with Bayesian reasoning than the common approach of inserting an ad hoc learning

algorithm into the observation model.

• Draw attention to the difference between an observation model in the form of a

probability distribution on the outputs, and one that is held in a distribution as a

probabilistic variable itself. It is easy to get confused when a distribution is itself

a probabilistic variable. Distinguishing between a probabilistic observation model

(one that gives different probabilities for different possible observations) such as

is common for generative trackers, and a distribution of observation models (in

which the model is uncertain, and exists in a PDF) was an important part of

constructing a principled framework for dealing with this uncertainty.

• Emphasise and prove that considering the whole frame as observation (which is the

most principled way to approach tracking) is equivalent to considering the contrast

between the foreground observation and the background observation models for a

bounding- box. It may seem that we proved that trackers can continue doing what

they are already doing, however this would miss the importance in the difference

between labelling the bounding-box as Y , and labelling the entire frame as Y . It is

obvious that the entire frame should be considered Y ; the machine observes every
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pixel. Most classifiers want features from the bounding-box only, so it is convenient

to consider only the bounding-box as Y . That we can do what is convenient in

a principled manner is important. Also, considering the values of the observation

Y changing depending on what hypothesis is being considered is an abuse of the

HMM structure.

• Develop a MTT particle filter that handles the multiple hypothesis in a novel

manner and avoids the holding of joint solutions. By normalising across possible

subsets of particles, we maintain the structure of a single PDF over the (M,St)

space, without experiencing the domination by one target or the coalescence asso-

ciated with using a single PDF.

• Create a salience filter for maritime surveillance that is an improvement on the

current state of the art. Our use of a limited neural network trained to predict

pixel value from pixel co-ordinates combines the benefits of salience filters that

look for salience by time, and those that look for salience by frame. The results

are an improvement on the current standards which, while sufficient for calm seas,

are not adequate for the conditions common in our data set.

• Highlight an appropriate measure of data fusion for maritime salience filters. While

the use of a Bayesian data fusion for multiple probabilistic salience filters is not

an inspired step, it is lacking in the literature. Thus we point it out in the hope

that it will find more use.

• Develop a persistent maritime tracker that improves at wave rejection in a prin-

cipled manner. While the primary focus of this work is the mathematical frame-

work, our persistent tracker (that is, one that improves over time learning from

each tracking run for subsequent tracks) does provide a contribution to its field: a

principled manner for learning to reject waves from the tracker’s responses.



Chapter 7

Epilogue

While developing the theory required for this work, we discovered several ‘softer’ appli-

cations of SMAE and faced a difficult choice: we could either leave out these insights,

which have played a large part in our development of SMAE, or attempt to shoe-horn

them into a technical topic. As this is a Doctorate of Philosophy, we feel that is is not

out of place to explore the philosophic aspects of our work, and so present these ‘meta’

applications of SMAE in an epilogue separate to the main body of work. They show

the broader applicability of the technical framework, and in turn are grounded in the

preceding concrete application.

We start by applying SMAE to interpersonal interactions in section 7.1, and explore

an implication of this in section 7.2. We apply SMAE to social rituals in general in

section 7.3, and close off in section 7.4 by looking at this document in light of this

discussion.

7.1 Introduction to Interpersonal SMAE

It is neither a novel nor an inspired step to suggest that Bayesian inference should be

useful in understanding the way people communicate. It is a truism that people seldom

say what they mean1, that we as listeners use all the evidence from the statement, choice

of words, tone, body language, topics avoided, etc. to infer the intended underlying

message is a given. This is the straightforward application of Bayesian methods: X is

the message the sender is trying to send, Y is all the evidence they present, thus infer

p(X|Y )2.

1A insightful discussion of this is found in chapter 11 of Robert McKee’s book on screenwriting [53].
2This implies that the listener needs an adequate set of hypotheses X̂ such that at least one is

sufficiently close to the underlying X, but more on that later.
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Many non-transactional interactions go beyond simply passing a message between two

parties. When we relate to people, it is not that we perfectly understand the person, and

are uncertain of the message. The idea is laughable. No, we are trying to simultaneously

model the person (motives, trustworthiness, unconscious tells, communication strategies,

relationships with common third-parties, etc.) while we are processing and responding

to the message being sent. This is exactly the (M ,St) separation we have been dealing

with in the previous chapters. The distribution is a joint PDF across ‘the possible person

I could be talking to’3 and ‘the possible message he or she could be sending’.

Under different considered person-models M , different messages S become more likely.

Our response as listeners is often more dependent on M than it is on S. Consider a

person asking you to do a favour for them in a socially appropriate way (e.g. talking

parallel to the issue, implying a need, and then leaving a space for you to offer help).

If your model of them (M) is that of a friendly colleague who struggles to ask for help,

you are likely to help them. On the other hand, if your model is that of a manipulating

laggard, you will decline (possibly in a socially acceptable way by changing the subject

without noticing the implicit request).

The listener is often more focused on localising this distribution in M than in S. This

is especially true of social interactions; we appear to spend more energy deciding who a

person is, and managing who they believe we are, than we do on the actual information

being sent back and forth. This is a complex 2-player game, and the messages S often

contain content about M , making the system more convoluted. When one party sends

a message ‘I value X,’ the other party may (correctly or not) infer, ‘It is a problem if

you do not value X’, ‘I am offended by Y’, or ‘I trust you enough for self-revelation’. All

of these unintentional messages have implications on which M are supported and which

are rejected.

There is an innate problem in this setup. The space of messages (S) on its own is

of larger dimensionality than the space of evidences Y (many hypothesised messages

can be constructed for the same evidence). When you include the dimensions asso-

ciated with M , you get an extremely ill-defined inference problem. Any evidence Y

supports infinitely many (M ,S) hypotheses, with an equally infinite range in responses.

As demonstrated in the ‘favour request’ example above, the result of the inference leads

to diverging interactions. In situations like this, the prior is what must differentiate the

hypotheses. So it is the prior distribution on hypotheses that predict the same Y that

will determine which dominate, and which are perpetually hidden.

3That is: Who is the person really? What are their goals? What attributes do they have? What do
I know about them?
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Thus an intrinsic problem with communication is that the sender is confined to support-

ing a member of the set of prior hypotheses the receiver is considering. If we trivialise a

diner commenting on a meal to a host: the set of evidences Y are {Diner: ‘it was good’,

Diner: ‘it was not good’}. The host’s hypothesis set is {It was bad and the diner told

me so; It was bad but the diner lied because he did not want to hurt my feelings; It

was good but the diner lied because he wanted to hurt my feelings; It was good and the

diner told me so}. Consider the case where the host’s priors on this set are {0.4, 0.4,

0.1, 0.1}. The latter two hypotheses will be rejected because any evidence that would

support them also provides support for another hypothesis with a larger prior. In such

a case, it is impossible for the diner to select evidence from Y that will compliment the

host. He is confined to communicating the messages in S that are in the host’s accessi-

ble hypothesis set: {It was bad and the diner told me so; It was bad but the diner lied

because he did not want to hurt my feelings}. One might suggest the diner keep quiet.

However, 0 is a number; saying nothing is a possible evidence set. We have increased

Y ’s cardinality to 3, but the underlying problem persists.

This effect occurs in a straight Bayesian application without M , but is even more dev-

astating with the added dimensionality that M provides. If the above host’s hypotheses

included elements dealing with the diner’s M , it may include aspects like: his value

for the host, his stress levels from his day, his possible tendency to use compliments to

manipulate, etc. Because there are only two possible Y ’s this extensive hypothesis set

will be cut down to two: one for a positive comment, one for a negative. The diner

cannot reinforce a hypothesis outside this set.

The receiver is justified in appealing to Newton’s flaming laser sword (NFLS) [54], which

we will paraphrase as, “it is not worth debating the relative worth of hypotheses that

predict the same observations4.” Indeed, from a Bayesian standpoint this is self-evident.

If p(Y |X1) = p(Y |X2),∀Y , then what observation could support one over the other in

inference? This does leave the sender at the mercy of the receiver’s prior.

We desire a short-hand for this constraint on the sender (where he can only provide

support for a limited subset of the (M ,S) space due to the many-to-one, hypothesis-

to-evidence, message-to-communications relationship). We will call it the inaccessible

message problem (IMP).

As mentioned above, the IMP is applicable if only inferring S, but is even more extensive

when M is included. This is not surprising when considering how convoluted a space M

is. A listener may have a prior indicating links between certain pronunciation, choice of

4Similar to how Von Neumann (or Dirac/Eckart/Schrödinger, depending on how you read the histo-
ries) silenced the debate over Heisenberg’s matrix mechanics and Schrödinger wave equation by proving
that they are equivalent on every observation [55].
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clothes, or distance between eyes, and desirable or undesirable attributes. These priors,

will occur in different M locations for different people and may cut in either direction.

This makes non-transactional interactions a mathematical minefield for any optimising

intelligent agent; and yet people manage.

7.2 Rational Disagreement Based on the Same Evidence

We follow a brief tangent related to the IMP, before returning to our discussion on

SMAE for interpersonal interactions.

There are many conspiracy theories that are seen as irrational (climate change denialists,

flat Earth-ers, anti-vaxxers, etc.). I do not want to descend into politics or conspiracy

theories, but instead draw attention to section 5.3 of Jaynes’ book [2], “Converging

and diverging views”. He shows the same statement heard by two rational entities can

diverge their opinions, based on the evidence not being ‘X’, but ‘A says X’. This is in

line with our emphasis on modelling the joint PDF across both the message S, and the

model of the person M . Our point here is not for or against any specific cause, we

merely note and draw attention to the fact that IMP also acts on populations. When we

take the same evidence (which is almost always second-hand, so of the form ‘A says X’)

that we believe is conclusive because of our priors, and consider it in light of a doubter’s

priors, we may find them acting rationally. After all, NFLS suggests it is meaningless

to discuss the difference between the hypotheses ‘it is good to drink water’ and ‘there

is a sufficiently resourced, sufficiently informed interest group that wants me to believe

water is good to drink’. Appealing to the likes of Occam’s razor is no proof; we have

said that a Bayesian approach is the only way a rational entity can assign values to

uncertain statements5. If Bayesian reasoning says the observation has equal likelihood

from both hypotheses, and this pattern holds across Y−∞:t, then it comes down to the

prior. At this point, there are no observations left to support or deny any hypotheses,

or to justify Occam’s razor itself, which we may accept only after Bayesian inference

accepts it.

This is a maddening tangent to descend into: if one tries hard enough, one can construct

a set of priors in the (M ,S) space that makes anyone’s behaviour seem rational. By

NFLS, we may consider them as that rational entity. If this is so, why should one

strive to act rationally oneself? Having seen the madness at the end of this tunnel, we

retreat and follow another path of thought, as even the above discussion may unhinge

the author’s grasp on reality.

5Conditions are given by Jaynes [2].
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One might ask where the original priors used by an individual come from. The same

way our tracker updated the starting model for each future track based on the results

of a current track, we update the priors we will use on interactions with future acquain-

tances based on our current acquaintances. But there must be a prior used for the first

interaction. We believe that this is one of the reasons that we as a species have an obses-

sion with stories. Even though one may never have personally experienced a gunfight,

a collapsing building, terminal diagnoses, or political intrigue, one has priors associated

with the different events that could occur in these situations. These priors can only have

originated from stories one has heard of such events (e.g. movies, fairy-tales, parables,

etc.). These stories are not optimised over accuracy of probabilities6, and should cast

serious doubt on one’s priors. Yet we move on with them anyway.

One might hope that selective pressures would equip us with priors that are useful.

Stories definitely fit the model of memes that can spread and mutate and respond to

selective pressures. Unfortunately, the selective pressure is not towards survival of an

individual, but dominance of the species. Consider the prior ‘when I take risks, I survive

against the odds’. This is clearly a dangerous prior for an individual to have. Yet it

would help a species spread, defend its vulnerable young, cross dangerous oceans, and

compete in tight ecological niches. Risk-taking is dangerous for an individual, but a

few survivors can repopulate a species on the other side of danger. Thus the prior is

advantageous for a species (hence should be selected for), yet negative for an individual

(as this thinking will lead towards danger). A proper analysis would need to be far more

involved, yet in light of this we find the proliferation of stories about success against the

odds deeply concerning.

7.3 SMAE for Social Rituals

We back off from these possibly disturbing thoughts, and pick up where we left off with

interpersonal SMAE. There are many human rituals that revolve around people trying

to get an accurate model of one other, while possibly influencing the other’s model of

themselves. We will focus on that of ‘the interview’.

Before we discuss ‘the interview’ we need to touch on the Turing test. Most current

presentations of the Turing test have a human invigilator asking questions to the entity

being tested. If the human believes the entity is a human, then the entity passes the

test. The test as it is originally presented is slightly different. In his original paper [56],

Turing presents two versions of the same three-person game. The game is as follows:

an invigilator (C) gets to ask questions to two contestants (A and B). C is trying to

6How many royal flushes are seen in movies?
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determine which contestant is B, and both contestants are trying to be selected as B7.

This three-player game describes an interview. The invigilator C is interacting with an

unknown candidate, trying to determine whether he is of the desired class (B), or if he is

of the undesired class (A), pretending to be B. The invigilator prompts for discriminating

evidence, and the candidate tries to give evidence that leads the invigilator to conclude

positively. This applies to obvious interviews like job applications or funding proposals,

but also to less formal interviews, like meeting new social groups, or dates.

It is in C and B’s interest to develop a language through which they can identify one

another, which A does not know. Yet for any instantiation of ‘the interview’, there is a

wealth of advice in self-help books/blogs or equivalent media on how to ‘look the part’.

There is a subtle yet perceivable change in the tone of advice from ‘show the interviewer

you fit the spot’ (i.e. if you are B, let it show through) to ‘get that dream job’ (i.e.

whether you are A or B, convince C that you are B). In this information arms race

(between {C; B} and A), the inferences being done are generally on M , not S.

Of course, this analysis is equally applicable to the interview we are currently conducting.

7.4 SMAE for this Document

You, the reader, are currently inspecting all the evidence the author has produced to

decide whether he is worthy of a PhD8. While the purpose of a PhD is nominally to

make a significant contribution to the state of the art, the reality is that every field is

so large, with many universities producing PhD graduates in each of them, that it is

impossible for an examiner to know for certain whether a contribution is in fact novel.

It would appear the job of the examiner has changed from verifying that the work is a

substantial, worthwhile, novel contribution in the field, to verifying that the author is of

a standard that contributes substantial, worthwhile, novel work. If we think in the (M

,S) plane, the work that has been completed and presented is S. Previously, the goal

of the marker would be to verify that this work is of PhD quality. Unfortunately, the

novelty clause in the description, when combined with sheer quantity of PhDs, means

7While the second version of this game (in which B is human and A is a machine) is similar to current
presentations, the paper starts off suggesting that if the invigilator does no better with {A,B}={Machine,
Man} than with {A,B}={Man, Woman}, the machine would have passed. This is a subtly different test
that draws attention to the test not being of intelligence, but of deception. If a machine can successfully
deceive us, we are no longer qualified to judge its intelligence.

8I assume here that the reader is an examiner. While I hope that this document’s content will be
of worth to further readers, if we are all honest the primary purpose of this document is to prove I am
worthy of the title Doctor of Philosophy. If its primary goal were contributions to the field, I would
segment this work into several digestible minimum-publishable-units and submit them to journals. If
my assumption is wrong, and a casual reader has made it this far into the philosophising chapter of a
technical work, I offer my deepest apologies and genuinely surprised gratitude.
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that no marker can verify this while still conducting their own research. Thus the marker

ends up marking the researcher (that is, M), not the research. I suspect that this is a

distasteful sentiment to the reader. Certainly, if I were a marker, I would want to mark

the work, not the candidate (it is a far better-posed task); however, this is the academic

climate in which we find ourselves.

Unfortunately, the IMP applies here too. There will be correlations in the reader’s prior

that will change from reader to reader, and these will dramatically influence whether

they read this as the work of class A or class B: perhaps an informal tone is linked to sub-

par rigour in the reader’s experience, making the author’s discussional style distasteful;

perhaps long compound sentences and a tendency to draw from an extended word-set

has co-occurred with authors hiding a lack of content behind flourishes of language. No

tone is safe, and for a set of markers, almost any tone will have negative indications to at

least one. Thus any prospective author needs to have enough evidence throughout the

document to prove he or she is in fact of PhD quality, even given a marker in negative

sentiment override.

To make matters worse, a strong indicator against class B is a document that is too

long. Filling a document with as much evidence of competence as possible is counter-

productive. Indeed, what is left out is just as informative as what is put in. Spending

limited space explaining fundamentals is acceptable for a Masters thesis. However,

in a PhD it displays a disconnection between the author and the field9. A surplus of

unexplained sample images shows an author inserting diagrams for the sake of diagrams,

rather than valuing each page as the proxy for reader interest that it is. Leaving sample

images out looks like a lack of rigour — we complained about exactly this regarding

maritime literature — and explaining the relevance of each image leads to marker fatigue.

Thus the pitch at which the work is presented is one of the most important features of

a dissertation. If there is too much detail, the author displays his ignorance for all to

see; if there is too little, a lack of rigour and substance becomes his downfall.

This problem of pitching is exacerbated by the novelty criterion for a PhD. The author

needs to state why the presented work is a substantial ground-breaking contribution

that is lacking from the current work. Yet he needs to do so in a way that neither

belittles nor offends his readers, the very people whose work he is at some level calling

deficient. This seems an intractable problem, yet there are countless existence-proofs

that solutions exist.

This interview is made harder in that I cannot read you as I type. I hope that you

have seen the novel contributions in chapters 3 and 4, the technical strength of SMAE

9This was particularly challenging for our work where the contribution is close to tools that are
common in our field yet are not used to their full strength.
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in chapter 5, my competence as a researcher in chapter 1, 2 and 6, and the power of

SMAE to unearth the boggy mire that is human interaction in this chapter. I finish

off on a lighter note as I know how painful long documents can be, and hope that this

finishing chapter has been an interesting diversion after the involved mathematics and

technical details of chapters 3 through 5. I have in this closing paragraph broken the rule

against the singular first person, but it is in order that my closing sentiment can be more

personal. A field such as ours can only exist because there are giants on whose shoulders

newcomers can stand, and because those giants choose to undertake the tedious tasks of

supervision and marking theses. I offer my heart-felt gratitude to you, the marker, for

the effort you have gone through to get a fair assessment of my work, and of me as an

academic.



Appendix A

Salience Results

This appendix contains a larger subset of images created by the salience filters. More

are available at http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/.

(A) Sequence 001 (B) Sequence 002 (C) Sequence 003 (D) Sequence 004

(E) Sequence 005 (F) Sequence 006 (G) Sequence 007 (H) Sequence 008

(I) Sequence 009 (J) Sequence 010 (K) Sequence 011 (L) Sequence 012

(M) Sequence 013 (N) Sequence 014 (O) Sequence 015 (P) Sequence 016

(Q) Sequence 017 (R) Sequence 018 (S) Sequence 019 (T) Sequence 020

(U) Sequence 021 (V) Sequence 022

Figure 1.1: Sample images for the input sequences.

121

http://www.dip.ee.uct.ac.za/~cbradshaw/PhD_data/


Appendix A. Salience Results 122

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.2: Sample salience results for 1a-1.

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.3: Sample salience results for 1a-2.
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(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.4: Sample salience results for 1b-1

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.5: Sample salience results for 1b-2.
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(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.6: Sample salience results for 2a-1.

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.7: Sample salience results for 2a-2.
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(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.8: Sample salience results for 2b-1.

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.9: Sample salience results for 2b-2.
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(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.10: Sample salience results for 3-1.

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.11: Sample salience results for 3-2.
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(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.12: Sample salience results for 4-1.

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.13: Sample salience results for 4-2.
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(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.14: Sample salience results for 5-1.

(A) Seq 001 (B) Seq 002 (C) Seq 003 (D) Seq 004 (E) Seq 005

(F) Seq 006 (G) Seq 007 (H) Seq 008 (I) Seq 009 (J) Seq 010

(K) Seq 011 (L) Seq 012 (M) Seq 013 (N) Seq 014 (O) Seq 015

(P) Seq 016 (Q) Seq 017 (R) Seq 018 (S) Seq 019 (T) Seq 020

(U) Seq 021 (V) Seq 022

Figure 1.15: Sample salience results for 5-2.



Appendix B

Arithmetic and Harmonic Mean

Results

This appendix contains a comparison of the results from chapter 5 as calculated with

the geometric and harmonic means. Under the arithmetic mean the improvements are

not as pronounced, however we feel the switch to the harmonic is justified due to its

results being closer to our intuitive response to the qualitative results. Additionally the

harmonic mean favours consistent results over results with a large spread.
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Figure 2.1: Adaptive tracker results as calculated with the harmonic mean.

Figure 2.2: Adaptive tracker results as calculated with the arithmetic mean.
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Figure 2.3: Persistent tracker results as calculated with the harmonic mean.

Figure 2.4: Persistent tracker results as calculated with the arithmetic mean.
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