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Abstract

This work outlines the development of a face recall system. A face recall system is a system
that is used to translate a mental image of a face to a visual image that can be shown to

others. Face recall systems are used primarily in law enforcement related tasks.

A literature survey on existing face recall systems shows that there exists much room for
improvement to the presently available systems. The face recall system developed in this
thesis addresses most of the shortcomings of the existing face recall systems that were noted

in the survey.

This novel system builds up its face likeness images as a linear combination of eigenfaces. It
is demonstrated that a linear combination of eigenfaces can be used to adequately reconstruct
new face images, with the coefficients of the linear combination determining what the face
image looks like. This system constructs a face image by searching for the coefficients that
will result in a good likeness to the desired face. This search for the correct coefficients is done
using an evolutionary optimisation algorithm called PBIL, with the person trying to generate

the likeness face image performing the evaluation of the cost function.

The results obtained from experiments performed using this system show that in its present
state it is not a viable system, but if these are interpreted as being preliminary feasibility

studies the results are promising.
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Chapter 1

Introduction

This chapter explains what a face recall system is and where it is used. It also gives a brief

motivation for this thesis. The chapter ends with an outline of the rest of the thesis.

1.1 Face recall systems

A face recall system is a system that is used to translate a mental image of a face to a visual
image that can be shown to others. The most prevalent use of face recall systems is to aid a
witness of a crime to generate a visual face image from the mental images that they have of

the perpetrator(s).

The reason for having to have a medium or system to produce a visual facial likeness is that
most people are not capable of producing (drawing) a facial image that would accurately

reflect their memory of the face [18].

It is shown in Chapter 2 that existing face recall systems do not perform their required task as
well as would be desired. The face recognition system developed in this thesis is an attempt

at providing a system that does.

1.2 Outline of thesis

This thesis presents the development of a face recall system that uses an optimisation algo-
rithm called PBIL to search through the coefficients of a linear combination of eigenfaces. The
search is to arrive at a likeness to a desired face. The underlying theory is presented, then
the implementation of the face recall system is given and finally the results of experiments to

assess it are presented. What follows is breakdown of each chapter.



CHAPTER 1. INTRODUCTION 2

The Evolution of Face Recall Systems

Chapter 2 describes and analyses existing face recall systems. From this analysis it is seen

that there is scope for improvement on the existing systems.
Eigenfaces for face image formation

Chapter 3 presents the topic of eigenfaces. It describes what they are, how to calculate them
and how they can be linearly combined to reconstruct face images and to generate new ones.
The eigenfaces are the principal component axes of a set of standardised face images, which
can be used to reduce the dimensions of the space in which face images are represented. The
reduced space is called face space. Issues relating to the use of eigenfaces are explained, this

includes different distance measurements in face space.
Optimisation

Chapter 4 explains the theory of optimisation and how it can be used to search through
the coefficients of the eigenfaces to help a witness find an image that is a likeness to the
perpetrator. Different optimisation algorithms are considered for the task and it is decided
that Probability Based Incremental Learning (PBIL) is the optimisation algorithm to be used.
PBIL is then described.

Creating and Analysing the Face Space

Chapter 5 explains the need to standardise face images, before applying principal component
analysis on them to generate the eigenfaces. It then presents how the face images used in this
project are standardised. Investigations are done into the ability of the eigenfaces to generate
new face images, which is found to be promising. The face space defined by the eigenfaces
is then analysed. This is done by traversing the space and generating faces corresponding to
points along the path traversed. Finally the distribution of faces in the space is looked at and

the assumption that this approximates a Gaussian distribution is made.
The Developed Face Recall System

Chapter 6 starts with an explanation of why the face recall system was implemented in
MATLAB. It is then shown how the PBIL optimisation algorithm can be modified to take
advantage of the fact that the distribution of faces in face space is Gaussian. This is followed
by the system implementation. The results of initial computer simulations with the face
recall system are presented. In these simulations instead of a human interacting with the
system to find a face, the computer automates this interaction. These were done to make the
initial feasibility assessments of the system and to fine tune the free parameters of the PBIL
algorithm used. The initial feasibility assessments prove to be surprisingly good. The chapter

ends with an explanation of how to use the face recall system.
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Experiments

Chapter 7 presents the results of experiments run with the system. In these experiments
the participants try and construct face likeness images to faces that they are shown. Two
different experiments are presented in this chapter. In the first the face to be reconstructed
is viewable during the whole construction process. In the second the face to be reconstructed
is only shown for a brief period before the reconstruction. All the constructed face images
are judged, on their similarity to the face that they are supposed to be likenesses of, by sets

of judges.
Comparison of the Developed Face Recall System with Existing Systems

Chapter 8 compares the developed face recall system with the existing face recall systems
presented in Chapter 2. It shows that the developed face recall system addresses many of the
shortcomings of the existing systems.

Conclusion

Chapter 9 summarises and highlights the important findings and results of the thesis.



Chapter 2

Analysis of Existing of Face Recall

Systems

This chapter gives a description and analysis of existing face recall systems. This is done by

presenting the existing face recall systems and then performing a critical analysis of them.

It shows how face recall systems have evolved, with newer systems trying to provide solutions
to the shortcomings of previous systems. Also highlighted is that, according to the literature,

there is presently no face recall system that works as well as would be desired.

2.1 Existing face recall systems

The existing face recall systems have categorised and presented in the following categories:
sketch artists, non computerised facial composite systems, computerised facial composite sys-
tems and computerised facial generation systems. A facial composite system is a system that
makes up a face by joining together existing facial features, like eyes, noses, mouths etc.
A facial generation system is considered to be any system that does not use existing facial

features. These face recall systems are presented in chronological order.

2.1.1 Sketch artists

The first widely used method to generate visual images of crime perpetrators was by having
a police sketch artist draw the face, while the witness to the crime describes him/her. The
primary limitation with this method is the witness’s ability to describe the target face and
the artist’s ability to accurately sketch the features verbally described by the witness [17].
Figure 2.1 shows examples of sketches produced by sketch artists.
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Figure 2.1: Examples of a good and a poor sketch produced by sketch artists (Laughery and
Fowler [18]).

2.1.2 Non computerised facial composite systems

The best known face recall systems, Identi-kit and Photofit, fall into this category. Both were

and are widely used in the law-enforcement field [18, 9].

(b) High simi- (c) Low similar-
larity composite ity composite

(a) Photograph

Figure 2.2: Examples of a good and a poor Identi-kit composite produced by trained operators
(Laughery and Fowler [18]).

e With an Identi-kit system the composite face image is created by superimposing trans-
parencies of line drawings of different facial features [6, 15, 11]. The features used in the
composite vary with different implementations of the Identi-kit. The number of mouths,
noses etc. from which to choose from also vary. Kovera et al. [17] describe one made
up of 130 hairlines, 102 eyes, 37 noses, 40 mouths and 52 chins, accessories that can

be added include hats, glasses, beards, scars and age lines. Figure 2.2 shows Identi-kit
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reconstructions of a face. A trained technician is used to construct the composite face
by interacting with the witness to select appropriate features and then superimpose
them. The technician can then use a marking pen to make additional modifications or
add detail [18].

e Photofit is similar to Identi-kit, the main difference being that the transparencies contain
gray-scale photographic images [6, 15]. Kovera et al. [17] describe a Photofit kit con-
taining 195 hairlines/ears, 99 eyes/eyebrows, 89 noses, 105 mouths and 74 chins/cheeks.

It also contains accessories such as hats, glasses and beards.

2.1.3 Computerised facial composite systems

Many computerised facial composite systems have been developed in the past decade. By
being implemented on computer they can be made more user friendly, give users greater
control over the resultant image, and be more interactive by providing quicker feedback than
the non-computerised methods. Computer-based systems generally have larger sets of features

to work with and therefore have greater expressive power in generating face images.

Choice based systems

(a) Photograph (b) Composite

Figure 2.3: A sample result generated with the WHATSISFACE system (Gillenson and Chan-
drasekaran [11]).

Though computerised composite systems are more technically advanced than Photofit and
Identi-kit, the fundamental concept underlying them is the same: construction of a facial

composite by choosing from sets of features.
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The following are implementations of computerised facial composite systems:

e WHATSISFACE, the first computerised facial compositor, was developed in 1975 by
Gillenson and Chandrasekaran [11]. The system is capable of generating an extremely
good likeness when a photograph is available to the user. An example of such a likeness
can be seen in Figure 2.3. But when a face from memory was constructed the “result
was relatively poor” [11]. This and the inordinate cost of the system at the time ruled

it out for use in criminological applications.

e Facette from Softwehr is used by German law enforcement agencies [20]. It generates
photo-style portraits. Chosen facial features can be positioned and scaled. Drawing
tools are provided to touch up facial images [20]. Figure 2.4 shows the user interface

and an facial image generated by the system.

e Mac-a-Mug Pro also allows the positioning of facial features. The available facial fea-
tures are 184 hairlines, 117 eyes/eyebrows, 13 ears, 65 noses, 80 mouths, 45 chins, 34
eyeglasses, 36 mustaches, 23 sideburns, 18 beards, 7 head-wears and 20 different types

of facial lines. The system has editing tools such as erasers, pencils and brushes [17].

e Compusketch from Visitex Corporation is a software package with which a trained

operator can assemble a facial likeness in 45-60 minutes [15].

o
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Figure 2.4: User interface of and composite produced by the Facette system.
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Figure 2.5: Example output face image from Johnston’s system (Caldwell and Johnston [5]).

Johnston’s recognition based system

The one exception to the method of building up a face image by choosing the features and
then putting them on the composite face image being constructed is a system developed by
Johnston and Caldwell [15, 5].

Johnston’s system works as follows [5]:

1. 20 faces (the population) are generated by randomly selecting a forehead, a set of eyes,
a nose, a mouth and a chin from the available sets of hand drawn facial features. These
features are then randomly positioned, within predefined allowable ranges, to generate
each of the 20 faces.

2. The 20 faces are shown sequentially to the witness and for each face the witness must

rate the similarity of the displayed face image to the perpetrator’s face image in memory.

3. Once all the faces have been rated, the ratings are fed into a genetic algorithm which
will accordingly generate another population of 20 faces by choosing features and their
associated positions. This population should look more like the highest rated faces in

the previous population.

4. Return to step 2 until one of the faces in the population is considered to be a good

enough likeness to the perpetrator.

Figure 2.5 shows an image generated by Johnston’s system.
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2.1.4 A computerised facial generation system

The facial composite systems described above all build up their face images through grouping
together facial features chosen from available sets of features. Thus the number of features
to choose from is limited by the sizes of the provided sets. Brunelli and Mich propose a face
generation system, called Spotlt, where each facial feature in the generated face is created,
instead of being chosen [4]. Now each facial feature can be one of a virtually unlimited set
of features. Spotlt also searches through a mug-shot database and continuously returns the

closest matches in the database to the built up face.

This is achieved by providing a GUI, shown in Figure 2.6, that seems to have a set of 15
scroll bars associated with each of 5 facial features. By adjusting the scroll bars in one of
the sets, the associated facial feature is changed real time on the displayed image. This
is implemented by creating each feature as a linear combination of eigenfeatures, or basis
surfaces, that are associated with each facial feature (see Chapter 3, specifically Section 3.3.1,
for an explanation of building facial features from eigenfeatures). Each scroll bar is associated
with an eigensurface, and by adjusting the scroll bar the coefficient for that eigensurface is
changed. This results in a change in the look of that facial feature. There are also scroll bars

associated with the positioning of the mouth and nose.

]
it
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Figure 2.6: User interface of the Spotlt system. The face image on the left is the built-up
face and the face images to the right of it are the closest matches in the mug-shot database
(Brunelli and Mitch [4]).

Brunelli and Mich state that not all the functionality they describe has been implemented [4].
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2.2 Critique of existing face recall systems
Three main factors contribute to the poor performance of most face recall systems. They are:

1. The limited expressive capabilities of the system to generate a good enough likeness.
This is often due to the limited number of facial components available in the system
[18, 4].

2. The need to have a skilled operator acting as an intermediary between the witness and
the system. The witness must verbalise the mental image to the operator, who in turn
translates the description into an image. This transfer of information is very susceptible
to corruption and is where much of the difficulty in generating a likeness lies [17, 18, 33].
Communication difficulties could also be as a result of the witness’s poor grasp of the
language used by the operator. The introduction of a potential bias by the operator is

also a problem, due to the use of the systems in legal and law enforcement areas [15].

3. The selection of facial features out of context of the facial image. Research notes that
we perceive features of a face interdependently and not independently [28]. Specifically,
it has been found that judging resemblance from features seen in isolation may be a
serious source of distortion in composite systems [7]. A more holistic approach to face

recall would potentially provide better results [18, 7].

Sections 2.2.1 to 2.2.4 discuss the shortcomings of the face recall systems previously described
with respect to the above three main problems and others. These sections show how each

new system tries to address the described shortcomings of its predecessors.

2.2.1 Sketch artists

There exist a limited number of people who can perform the job of a sketch artist and they are
relatively expensive to employ. There exists a wide range in sketch artist’s abilities to draw
facial likenesses [18], this is a function of the artist’s sketching abilities and his/her ability to

communicate with the witness.

There is also the difficulty the witnesses have in recalling and verbally describing the perpe-
trator’s face [17].

Laughery and Fowler note that sketches drawn by sketch artists are “considerably short of
perfect” [18].
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2.2.2 Non computerised facial composite systems

e Research has shown that Identi-kit composites generally bear little similarity to the

faces they are meant to represent [17, 18].

e Experiments performed with the Photofit system also suggest that witnesses are unable

to produce recognisable composites with the Photofit system [17, 9].

The failure of the above two systems can be attributed to the selection of features in isolation,

the limited expressive capabilities of the system and the need to work through an intermediary.

2.2.3 Computerised facial composite systems
Choice-based systems

Kovera et al.’s [17] experiments raise questions about the effectiveness of composite systems
as tools to promote the recognition of suspects in criminal contexts. Even though the ex-
periments were performed using Mac-a-Mug Pro, they feel confident enough to extend their
findings to choice-based composite systems in general. Wogalter et al. [33] found that us-
ing Mac-a-Mug Pro more useful composites could be generated than with non-computerised

systems.

The improvements achieved with computerised facial composite system can be attributed to
the fact that two of the three main problems are partially removed. The expressive capability
of the systems are improved by providing more features to chose from and the ability to
position them. With a well developed GUI the communication through the operator can be

reduced or removed altogether.

Johnston’s recognition-based system

Johnston’s face recall system is different to the above-mentioned systems in that it is a
face recognition system as opposed to a face generation system. This takes advantage of
mankind’s excellent facial recognition ability. The nature of the system removes the need for
the selection of out of context facial features. The system is also fully automated and simple

to use, therefore there is no need to have an operator.

Potential drawbacks of the system are its limited expressive capabilities due to the limited
number of features that it can draw from to generate the facial composites and the fact that
the features are line drawings. There is also no natural ordering of the features in each set,
which makes the search space difficult for the genetic algorithm to traverse. This is explained
in Section 5.3.2.
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2.2.4 The computerised facial generation system

Brunelli and Mich’s Spotlt system [4] seems to have solved the three main problems in face
recall systems. The expressive capability of a correctly implemented and used system should
be close to perfect. As there is a good GUI there is no need to have a skilled operator acting

as an intermediary. The creation of facial features is in context of the facial image.

Due to the fundamentally different nature of the system, an issue exists that is critical to
this system that was not put forward with the three main problems. For a person to position
the scroll bars to generate an appropriate likeness seems to be a potentially impossible task.
There are probably more than 75 of these scroll bars that have to be positioned to generate
the face image. The user also does not know what the effect of changing one of the scroll bars

associated with a facial feature will have on that particular facial feature.

Brunelli and Mich [4] do not discuss any trial runs that they have put their system through.
Thus it is difficult to assess the effectiveness of their system in aiding people to generate an

image of a facial likeness from memory.



Chapter 3

Eigenfaces for Face Image

Formation

This chapter explains what eigenfaces are, how to obtain them from a set of face images and
how they can be used to generate face images. The eigenfaces are the principal component
axes of a set of standardised face images, which can be used to reduce the dimensions of
the space in which face images are represented. The reduced space is called face space.
The chapter includes explanations of the issues involved with using the eigenfaces. These
include distance measurements in face space and how well they can construct face images in
general. The chapter ends by relating face image construction using eigenfaces and human

face recognition.

The chapter discusses eigenfaces without showing many results of using them. This is because
the results are very susceptible to the set of face images used in the eigenface generation. By
leaving this out the chapter is kept general and not specific to the set used. The next chapter

shows the results obtained with the face images used in this project.

3.1 Introduction to eigenfaces

Eigenfaces were first used by Kirby and Sirovich [16, 29] in their work on face representation
and compression. They were then popularised by Pentland et al. [22, 32] who used it for face

recognition.

Eigenfaces are a set of face-like images that can be linearly combined to obtain face images. If

E; ... E, are the n eigenfaces used and Av is the average face associated with the eigenfaces,

13
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then face images can be generated as follows:

face image = Av + c1Ey + coFEy + -+ + ¢ By, (3.1)

with the coefficients c; ... ¢, determining what face image looks like.

Figure 3.1: The average face Av followed by the first 8 eigenfaces E1, Fo, ... , Es.

Figure 3.1 shows the average face and the first 8 eigenfaces that have been used in this project.
Figure 3.2 shows the results of using 46 eigenfaces to reproduce a new face. As can be seen
the reconstruction looks very similar to the original. The reconstructed face image Figure
3.2(b) can be recognised as belonging to the person in the original face image Figure 3.2(a).

This reproduction demonstrates the feasibility of using eigenfaces to reconstruct face images.

3.2 Principal component analysis

Principal component analysis [14] is the technique used to obtain the eigenfaces. Princi-
pal component analysis is closely related to the Karhunen-Loeve expansion or the Hotelling
transform. The name factor analysis is also sometimes used to describe principal component

analysis, but is ambiguous since it also describes other statistical techniques.

Principal component analysis is used as a technique to reduce the dimensionality of a set
of data points, while still being able to account for as much of their variance as possible.
It defines a new set of orthogonal axes to describe a set of data points, the points can be
projected onto this new set of axes via a linear transform. The first principal component
axis is oriented so that the points will have the largest possible variance along it. The nth
principal component axis is oriented so that the points will also have as large a variance as
possible along it, subject to the constraint that it must also be orthogonal to the principal

component axes 1,... ,n — 1.

In Figure 3.3 a two dimensional dataset and its associated principal component axes are shown.
If it is decided that the first principal component axis describes enough of the positional
information of the data points then it is possible using only one number (cp,, the coefficient

along P)), instead of the original two numbers (cx,, cx,) to represent the data point a with
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(a) The orig- (b) The
inal face im- reconstructed
age face image

Figure 3.2: Reconstruction of a face image using a linear combination of 46 eigenfaces and
the average face. The face in Figure 2(a) was not in the set of faces used to generate the
eigenfaces.

X1

Figure 3.3: Principal component analysis. The x’s represent data points initially described
in term of the axes X; and Xs. P; and P, are the orthogonal principal component axes. P
and Py are unit vectors in the direction of their respective principal component axes P; and
P,. Av is the mean of the data points. a is a data point that can be represented by using
only the first principal component axis in position b.
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an associated error in the position b. This is shown in (3.2):

b= AV+CP1P1. (32)

Notice that (3.1) is of the same form as (3.2). The average face and the first eigenface shown
in Figure 3.1 correspond to Av and P; respectively. This shows that the eigenfaces are in

fact the principal component axes.

3.2.1 Formal definition of the principal components

Let I'1,I'9,... ,I'as be a set of M vectors, each of size N. If ¥ is the mean of I'1, 'y, ... , [y, let
D1, Py,... ,Ppr beI'1,[9,... , 'y with ¥ subtracted out from each. These vectors represent
points in RY. By applying principal components analysis on the vectors ®;,®,... ,®s
we will obtain a set of N’ < N orthonormal vectors u;, ug, ... ,u’y, each of size N. The N’
principal component axes have their origin at ¥ and are parallel to the vectors uy, ug, ... ,uly.
Each vector u; also defines the projection from the original space onto u;’s associated principal

component axis.
The principal component axes are sequentially chosen as follows.

The vector u; defining the first principal component axis is chosen such that the variance v,

of the data points projected onto it is a maximum. Written out, this is the case if

1
n=17 D (ul®y)? (3:3)
n=1
is a maximum, subject to the condition that
uju; =1. (3.4)

The the vector defining the kth principal component axis, ug, is chosen so that the variance
v of the data points projected onto the axis is a maximum subject to it being orthogonal
to the already defined vectors wui,...ug_1. (If ug is orthogonal to uj,...ug_; then the
principal component axis associated with it will be orthogonal to the principal component

axes associated with uy,...u,_;.) Written out, this is the case if
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is a maximum, subject to the condition that

1 ifl=k

ulu; = _ I=1...k (3.6)
0 otherwise

In the above equation ulTu,c = 1 forces normality so that u; can be used to project the

data onto the new principal component axis, while ulTuk = 0 ensures that the kth principal

component axis is orthogonal to the previous £ — 1 principal component axes.

3.2.2 Principal component analysis with digital images
Image space

A digital image can be considered as a point in so called image space Ri¢ightxwidth —where
height and width are the height and width of the image in pixels. Each pixel can be considered
to be an orthogonal axis in this space and the pixel value a variable along that axis. Figure

3.4 is a representation of this.

w X ™ X w X w X

0 0|1 0|0 0|0

Yo 0 Yo %0 1% 0 Yo [F1

w X y z

Figure 3.4: Representation of each image pixel as an orthogonal axis: w, x, y, z are unit
vectors along their associated axes w, z, ¥, 2.

By specifying distances along each of the orthogonal axes above any 2 X 2 image can be

generated. This is demonstrated with Figure 3.5 being the result of say, 5w + 6x +y + 2z.

The image space described by the unit vectors in the pixel positions (w,x,y,z) can also
be described using other sets of orthonormal vectors. An example of another such set of

orthonormal vectors is shown in Figure 3.6.

The image in Figure 3.5 can also be reconstructed using the new set of orthogonal axis shown
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Figure 3.5: The image corresponding to bw + 6x +y + 2z.

12| 12 2|-12 12| -12 12| 12
V2| 12 12| U2 12| 12 12| 12
Up up U Uy

Figure 3.6: A new set of orthogonal axes u1, us, us, ug described by the unit vectors u;, ug,
us3, uy along them.

in Figure 3.6 as follows

2u; — dusg + uz + 6uy (37)

Like Figure 3.6 each eigensurface in Figure 3.1 is a unit vector, which together describe a
linear space. A difference exists in that the vectors uj, us, us, us describe the whole original
space, while the eigensurfaces span only a subspace. This is illustrated by the fact that any
2 x 2 image can be generated using the axes shown in Figure 3.6, while not all images can
be generated with the eigensurfaces. The eigensurfaces do not have enough dimensions to
span the whole image space. If axis u4 was removed Figure 3.6 the comparison between the

previous example and the eigensurfaces would be more appropriate.

Converting images to vectors

Images are two dimensional matrices yet the mathematics used in section 3.2.1 uses vectors
representing points in space. This is easily accommodated by reading out the pixel values
of the images in the order top to bottom, left to right and putting these sequentially into
a vector of size N = height X width. height and width being the height and width of the
image. Reading out the pixel values of the image in Figure 3.5 would result in the following

vector.
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N O = Ot

To revert the results of the mathematical manipulation on the vectors back to image format,
the vector is read back into a 2D matrix so that the vector positions are returned to the pixel

positions from which they came.

3.3 Principal component analysis on face images

Frontal face images are homogeneous with respect to the features they contain, the position
and the look of the features. Therefore if they are standardised! for scale and position within
the image, they will not be uniformly distributed in image space. Instead they are grouped
together in a region of the image space in a manner similar to that shown in Figure 3.3,
except the space will have a higher dimensionality. Thus a relatively small number principal
component axes should be able to describe most of the variation in facial images. The more
similar the set of face images being described, the fewer principal component axes are needed
to approximate them acceptably. Sirovich and Kirby [29] were the first to use this, when they

demonstrated the possibility of using eigenfaces for face image compression.

3.3.1 Principal component analysis on face feature images

Images of facial features like the eyes, nose and mouth are also homogeneous and can therefore
also be succinctly approximated by the linear combination of the average feature and a small
set of eigenfeatures. The result of applying principal component analysis on images of right
eyes is shown in Figure 3.7. The figure shows the average right eye followed by the first seven

right eigeneyes.

Brunelli and Mich build up their composite face (see Section 2.1.4) by positioning together
facial features. The facial features that they use are the hair, eyes, nose, mouth and chin.
Each of these facial features is made up of a linear combination of eigenfeatures and the

average feature.

!See Section 5.1.2 for a description of how and why the images are standardised.
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Figure 3.7: The average right eye followed by the first seven right eigeneyes. The sequence
goes form left to right, top to bottom.

3.4 Computing the eigenfaces

This section shows how the principal component axes are computed by calculating the eigen-
vectors of the covariance matrix of the set of face images (subsection 3.4.1). The covariance
matrix of images is shown to be generally too large to be solved for its eigenvectors. It is then
set forth how by solving for the eigenvectors of a smaller matrix, the desired eigenvectors of
the covariance matrix can be arrived at (subsection 3.4.2). The final subsection (subsection
3.4.3) explains why the eigenvectors of the covariance matrix give the principal component

axes.

The descriptions in subsections 3.4.1 and 3.4.2 are similar to those presented by Sirovich
and Kirby [29] and Turk and Pentland [32], but have been included in this thesis to make it

self-contained.

3.4.1 Calculating the eigenvectors of the covariance matrix

Let I1(z,y), Ix(x,9y),... ,Ipu(z,y) be a set of M height-by-width standardised? face images
that will be used to generate the eigenfaces. Form a set of vectors I'y,I's, ... ,'3s by reading
out the pixel values of each image I;(z,y) into its corresponding column vector I'; as described
in section 3.2.2. This will result in each image now being stored in a vector of size N =
height X width, where N is the number of pixels in the image. This vector represents a point

in N dimensional image space, T'; € RY.

From I'1, Ty, ... ,'ps calculate the average face image ¥ as follows:
| M
U= nz_:l | (3.9)

2See Section 5.1.2 for a description of how and why the images are standardised.
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Because it seems reasonable to assume that an efficient procedure for recognising and storing
face images concentrates on departures from the mean or average face image [29], we will

work with these deviations. Sirovich and Kirby [29] called these deviations from the mean

caricatures. The caricatures @1, ®o,... , P, are calculated as follows:
®; =TI, - 0. (3.10)
From the caricatures ®1, ®s,... , P calculate the covariance matrix
1M
C = MZ@,@Z. (3.11)
n=1

If the matrix A is defined to be the N-by-M dimensional matrix [®; ®3 @3 ... Pjy], then

the covariance matrix can also be calculated as follows

C= %AAT. (3.12)

Let uy,us,... ,uy be the normalised eigenvectors of the covariance matrix C and 7vy1,7v9,... , YN
their corresponding eigenvalues. The ordering of the eigenvectors uy, us,... ,uy is such that
their associated eigenvalues 71,%2,... ,yn are in order from largest to smallest (u; is the
eigenvector with the largest eigenvalue y; and uy is the eigenvector with the smallest eigen-
value yy). The quantities uy,us,... ,uy and 71,%2,... ,yn described here are then the same
ui,ug,...,uy and y1,y2,... ,ynv used in (3.3) — (3.6). Thus the eigenvectors uy, ug, ... ,uy
are parallel to the principal component axes and can be used to project onto them. This is
why the term eigenfaces is used — the eigenfaces are the eigenvectors of the covariance matrix

of the set of face images.

Removing the scaling factor of ﬁ from (3.12) will not change the eigenvectors of the covariance
matrix. It will only result in a scaling of the eigenvalues. Since it is the eigenvectors that are

of interest, to reduce calculation and for simplification we will use

C' = AAT (3.13)
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For u; to be an eigenvector of the modified covariance matrix C’, the following must be true

for each u; and its associated eigenvalue ~;

AATw; = Al (3.14)

The matrix A is of dimension N-by-M. Therefore the dimension of AA” is N-by-N. It
is computationally unfeasible to solve for the eigenvectors and eigenvalues of such a large

matrix; the height and width of typical images results in a matrix that is far too large.

The images in this thesis on which principal component analysis was performed were N =
51 x 76. Thus the matrix to be solved for the eigenvalues would have been of the size
3876 x 3876 = 15023376. If each pixel is stored as a double precision floating point® data type
of size 8 bytes this would take up 114MB of memory to store the matrix. Apart from the
storage considerations this massive matrix would still have to be solved for its eigenvectors

and eigenvalues.

3.4.2 Reducing the dimensionality of the eigenvector problem

Consider the eigenvectors vi, va, ... , vy of AT A and their associated eigenvalues 1, pa, . .. , un-

The following is true of each v; and u;:

AT Av; = pyv;. (3.15)

If we pre-multiply both sides by A, we have

AAT Av; = piAv; (3.16)

and by comparing this to (3.14) we can see that if we set

AV’Z' = u; (317)

3The pixels are stored as double precision floating points because fractional precision is wanted in the
eigenvalues, single precision floating point would be sufficient but the platform used (MATLAB) does not
support them.
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then

i = Y- (3.18)

So Avi,Avs,...,Avy are the eigenvectors of C' = AAT, with py,pe,... , N, being their
associated eigenvalues. This means that another way to obtain the eigenvectors of the modified
covariance matrix C' = AA” is to calculate the eigenvectors for A” A and then multiply them
with A as shown in (3.17).

The matrix A is of dimension N-by-M. Therefore AT A is of dimension M-by-M. In practice
the number of images M is much smaller than the number of pixels N in each image I;(z,y),
in other words M < (height x width). This changes the calculation of the eigenvectors into

a computationally feasible problem.

Equation (3.17) can also be written as
M
u; = Z'Uijq)j (3.19)
j=1

where v;; is the jth element of the intermediate eigenvalue v;. This shows that each eigen-

vector u; is actually a linear combination of the caricatures @1, ®o,... ,Py,.

3.4.3 Why the eigenvectors of the covariance matrix give the principal
component axes

This subsection shows that the eigenvectors of the covariance matrix can be used to linearly
project the images onto a new set of axes, along which they are uncorrelated. It is shown that
because the images are uncorrelated along these axes they must be the principal component

axes.

Describing the covariance matrix

The covariance matrix C in (3.12) is a N-by-N matrix with its individual elements defined

as

1 M
i =37 D BkiDyy (3.20)
k=1
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where c¢;; is the (4, j)th component of the matrix C' and ®;; and ®;; are the ith and jth

elements of the caricature vector ®@y.

The relation in (3.20) would normally be of the form c;j = = Y00 (®gi — @;)(Pgj — ;)
where ®; is the mean of the ith elements across the caricatures Dy, Ps,...Py. However

Dy, Py, ... Py have a mean of zero, so the expression is simplified.

The diagonal elements ¢;; of C are the variances of the ith elements of &1, ®s,... ®;,, while
cij is the covariance of the ith element with the jth element of the caricatures. The covariance
cij is directly related to the correlation coefficient 7;; which is a measure of the correlation
between the two elements [10, page 467]

Py = —9 (3.21)

This shows that when the covariance ¢;; = 0, the correlation coefficient r;; = 0.
Describing the correlation coefficient

The correlation coefficient is an inverse measure of the deviation of a set of points from the

least squares best-fit line through them. The correlation coefficient r,, is defined as
Tay = | =2 (3.22)

where y is the y value of a point, ¢ is the average y value of the set of points, and ¢ is the
predicted y value of the point according to the least squares best-fit line through the points
(the summation being across all the points in the set). The relationship between y, g, § is

shown in Figure 3.8.

<
[ )

Figure 3.8: Diagram showing the relationship between y, 4, 9.
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Figure 3.8 shows that
=—9=0-9+F-n- (3.23)

-9 =>G-9*+> y-9* (3.24)

> (y—1)? is called the residual sum of squares and is a measure of the deviation of the points
from the least squares best-fit line. > (7 — 7)? is called the regression sum of squares and it
measures that part of the total variation of the g’s that can be ascribed to the relationship

between the two variables z and y.

Using (3.24), (3.22) can be written out as

_ > —9)?
e \/Z(.@ — 2+ (- 92 (3.25)

() 0<ryy <1 (b) ray =1 (c) ray =0

Figure 3.9: Three different point distributions and their associated correlation coefficient 7,
values. The solid line through the data points is the least squares best fit line.

Figure 3.9 shows three different point distributions and their associated correlation coefficient
values. Figure 3.9(c) shows a point distribution where 7, = 0, which means that z and y
are uncorrelated. This occurs when the scatter of the points is such that the least squares
best-fit line is parallel to the z axis and goes through 4. This happens when the best estimate
of a y value given the associated x value is § because there is no correlation between y and
z. Y (y — 7)? then equals Y (y — §)? so Y.(§ — §)* = 0, which will result in rz, = 0 (from
(3.25)).

The least squares best-fit line is the line along which the variance is the greatest. It can be
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seen from Figure 3.9 that by rotating the z and y axes so that the = axis is parallel to the
least squares best-fit line the correlation coeflicient becomes zero. This is what is effectively
done in principal component analysis: the original axes are rotated so that the correlation of
the data points along every combination of two of the axes is zero. This will result in a set of

axes along which the variances will be the greatest possible.

Rotating the axes to make covariances zero

If we manage to rotate the axes so that the covariances of the caricatures @1, ®o,... ®y; are
zero, then the correlations of the caricatures will also become zero because of the relationship
between the covariances and the correlations shown in (3.21). We then have the principal

component axes.

The eigenvalue problem which has to be solved to obtain the eigenvectors of the modified

covariance matrix C' is

A = UTCU (3.26)
= UTAA"D, (3.27)

where A is the diagonal matrix of the eigenvalues and U is the eigenvector matrix which is

made up of the eigenvectors as [l1, U, ... , Ups].

Consider (UT A)T which can be written out in the following manner:

0TAT = ATpTT (3.28)

= ATU. (3.29)
Using this (3.27) can be rewritten as

A=UTAUTA)T. (3.30)

If the eigenvectors uiy, o, ... , Uy are normalised then UT A is the projection of caricatures
&y, Dy, ... Py onto the axes defined by the eigenvectors. By comparing the form of (3.30)
to (3.13) it can be seen that A is actually the covariance matrix of the projected points. As
the eigenvalue matrix A is a diagonal matrix it means that there are no correlations between
the projected data points. Thus the variances along these axes will be a maximum and this
means that they are the principal component axes. All that is left is to order the eigenvectors
so that their eigenvalues go from largest to smallest and then we have the ordering of the

principal component axes.
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3.5 Face space

In psychological literature on face recognition the term face space has been used to describe a
space with dimensions along which faces vary. A face can be uniquely represented as a point
in that space. However, there is no description of what the axes are that define the space.

Proposals include hair colour and length, face shape and age [13].

In scientific and engineering literature on eigenface based computerised face recognition the
term face space is used to describe the subspace, of the original N = height X width image
space, described by the eigenfaces. A face image corresponds to, or can be approximated
by, a point in this subspace. The use of the term face space in this thesis conforms to this

definition.

Face space is a subspace of image space that captures the statistical properties or modes of
variation of the face images which were used to generate the eigenfaces. Points in face space
will therefore have a disposition to produce face-like images. These face-like images will also
have a higher probability of looking like faces belonging to the same sex, race and age groups

as the face images used in the generation of the eigenfaces.

3.6 Face image reconstruction using eigenfaces

3.6.1 Finding the eigenface coefficients (projecting onto face space)

Let €2 be a face image in vectorised form. It can be projected onto the new set of orthogonal

principal component axes in the following manner:

wp = uj (Q —0) k=1,..., M. (3.31)

M is the number of principal components that are to be used in the face image reconstruction.
This means that M’ is the number of dimensions of the reduced face space in which we will
work (M' < M). The scalars wy,ws, ...wy are the coefficients for the face image € projected
onto the principal component axes. These are therefore the eigenface coefficients for the face
Q.

The vector 2 can be a face image from the set of face images that principal component

analysis was performed on, or it can be a face image from outside that set.
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3.6.2 Building up a face image with eigenfaces (projecting back to image
space)

A reconstruction of Q using only the M’ eigenfaces is done as follows:

O=T+> wyu,. (3.32)

n=1

The vector (2 is a reconstruction of Q. It is just the average face U summed with the eigenfaces
multiplied by their associated coefficients. Furthermore, () is the best approximation that can
be made to 2 with a linear combination of the eigenfaces and the average face. The use of
the words best approzimation is with respect to minimising the root mean square (rms) error

between € and Q (Section 3.7 discusses this error).

What (3.32) effectively does is to project the point in face space back to the original image
space. Once we have the point back in image space we can display it because we know what

the pixel values for each pixel to be displayed are.

3.7 Distance measures between face images

Figure 3.10 shows the decomposition of the original image space into two mutually exclusive
and complementary subspaces: face space F defined by the M’ eigenvectors uj, ug,... ,u,

used and its orthogonal complement F spanning the rest of the original image space.

A -
| image axes AF
\ /

/o llJ

\j

Figure 3.10: Decomposition of the original image space into face space F and its orthogonal
complement F.

Figure 3.11 shows two face images €24 and Qg and their projections onto face space, Q4 and

Q5. It shows how distance measures between the two face images in F and the original image
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Figure 3.11: The projection of face images onto face space and the resulting distance measures.
Q4 and Qp are the face images 24 and Qp projected onto the face space F. DIFS is the
Distance In Face Space between 24 and g, while DFFS is the Distance From Face Space of
Q4 and Qp.

space relate to each other. All distances shown in Figure 3.11 are calculated as Euclidean

distances.

The Distance In Face Space (DIFS) is simply the Euclidean distance between Q4 and Qp. If

the variables along the face space axes, calculated using (3.31), for Q4 are wq AL, W2, -, WO, M
and those for Qg are WQpl,WOR2,- .- ,WaM then
MI
DIFS(Q4, 2p, U, u1, U, ..., unr) = 4| Y (Wai — Wapi)? (3.33)
i=1

The DIFS is dependent on the average face and the eigenvectors which define the face space
since the projections of 24 and Qp onto face space are calculated using them as shown in
(3.31). It can be seen from Figure 3.11 that by changing the orientation and position of the
axes the DIFS will change even though Q4 and Qp are in the same position relative to the
original image space. DIFS is also particularly sensitive to M’ the number of dimensions of

face space since it accounts for the number of terms in (3.33).

The Distance From Face Space (DFFS) is the distance from a face image 2 to its projection
onto face space Q. If the axes of face space are well chosen it is hoped that the DFFS for
all standardised* face images of the desired population group will be small. It can be seen
from Figure 3.11 that if the DFFS for both the images being compared is zero then the DIFS

between them is the actual distance between them.

“See Section 5.1.2 for the type of standardising and why it is needed.
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DFFS could be calculated as follows:

DFFS(Q,\I/,UMI+1,UMI+2,... ,uN) = (334)

This is the Euclidean distance between Q and Q. However, since only the first M principal
component axes are calculated it is not possible to calculate it in this way. Another way of
calculating DFFS is

DFFS(Q,\I/,ul,UQ,... ,llMI) = (335)

This calculation is done by projection €2 onto face space using (3.31) to obtain wq, wa, ... ,wasy
and then projecting from face space back to the original image space to obtain Q in terms
of the image space. Then the Euclidean distance is calculated along the dimensions of the

image space.

From (3.35) it can be seen that the DFFS is a measure of how well a face image can be

approximated with a set of eigenfaces.

The root mean square (rms) error between a face image and its reconstruction is

rms error(€2,§2) = (3.36)
= (3.37)
The rms error is also a function of ¥ and uq, uo,... ,u,; since () is a function of them, but

to conform to the standard use of the rms error the notation ‘rms error(€, )’ is used.
Comparing (3.37) to (3.35) it can be seen that

~ 1
rms error(Q, ) = Wi DFFS(Q, T, uj,uy,... ,upm) (3.38)
This shows that the rms error is a more stable and interpretable measure since it is not
affected by the image size because of the \/Lﬁ scaling. If N is kept constant then comparisons

of different reconstructions using DFFS are valid.
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3.7.1 Why the distance measures will not necessarily coincide with human
similarity perceptions

The distance measures presented above measure the differences between two images, while
humans are capable of giving a measure of the similarity or difference of the actual faces in
the images. Human rating of similarity between face images will be relatively invariant to
the scale, head position, angle of rotation of the face and facial distortions like smiling in the
image. The distance measures presented above are all sensitive to these types of variations

in the images.

These distance measures are based on measuring the differences between corresponding® pixels
in the images. For them to have meaning with respect to similarity of faces, the corresponding
pixels must be representing the same part of a face. Any of the above variations result in a
shift of part of or all of the face within the image, then the corresponding pixels in the two

images will be representing different parts of a face.

The effects of the above variations can be reduced by warps, but this is at the expense of
more calculation and complexity. Another way to control for these variations is to try and
limit their occurrence. This can be done by controlling the subject while the image is being

taken.

3.8 The reconstruction capabilities of the eigenfaces

Not much was found in the literature on eigenfaces about their reconstruction capabilities.
This is due to the fact that they are generally used for face recognition and not compression

(which is directly related to reconstruction).

Sirovich and Kirby [29] performed principal component analysis on a set of 115 cropped face
images. They found that using 40 eigenfaces they obtained good reconstructions of the images
on which they performed principal component analysis. The rms error in the reconstructions

of the cropped images was about 2%.

For a face recall system we would like to be able to generate facial likenesses of a wide range
of people, not only those whose facial images were used to generate the eigenfaces. Thus
Sirovich and Kirby’s reconstructions are not an indication of the reconstruction capabilities

of the system as it would be used.

The results of tests showing the reconstruction of new face images are presented in Section
5.2.2.

5The words corresponding pizels mean pixels in the same positions.
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3.9 Relating the eigenfaces technique to human face recogni-

tion

There has been speculation that human face recognition is based on methods similar to the

eigenfaces technique:

e The use of eigenfaces in face image construction results in the construction of a face
image in a holistic manner. It is believed that humans perform their face recognition
based on a holistic model of the face. They do not base their recognition on the analysis

of facial features in isolation [28].

e Hancock, Bruce and Burton [12] state that there is considerable evidence that human
representation of faces may be based upon relatively low level image features describing
relative light and dark areas, rather than more abstract descriptions of facial features

like feature separation and protuberances.

e Turk and Pentland [32] state that it appears likely that there must be a face recognition

mechanism in humans that is based on low level, two dimensional image processing.

e There have been psychological experiments performed that relate human recognition
performance on face images with the associated eigenface coefficients [23, 24, 13, 12]. In
general the eigenface coefficients yield good predictions for some aspects of the human

performances.

These seem suggest that there might be some sort of natural relationship between human
face recognition and the eigenface technique for face image reconstruction. This could get

exploited by a face recall system that uses eigenfaces to generate its faces.



Chapter 4
Optimisation

This chapter starts with a brief introduction into the field of optimisation. Then the task of
finding the coefficients for the eigenfaces, which will result in a likeness to the perpetrator’s
face, is presented as an optimisation problem. This enables any of a myriad of optimisation
algorithms to be used to find a likeness. These are evaluated and it is decided to use Popu-
lation Based Incremental Learning (PBIL). The chapter ends with a description of the PBIL

algorithm.

4.1 Function maximisation or minimisation

Optimisation is the field that covers methods that try to find the maximum or minimum point
of a function over a specified domain. More specifically, given a function f which depends on
one or more independent variables, optimisation involves finding the values of these variables
where f takes on a maximum or minimum. The domain of f is known as the search space.
The above problem will be discussed in terms of minimising the function f, since the problem

of maximising any function f can be restated as that of minimising —f.

f is known as the cost function or the objective function. The functional relationship between
the variables and the cost function does not necessarily have to be known. If this is the case
then one must ‘evaluate the function’ by experimenting on the real object to be optimised
or on a model of the object. The model can often be implemented on a computer and the

experiments take the form of computer simulations.

The function f to be minimised can have both local and global minima. A local minimum is
a minimum in a finite neighbourhood that does not include the full range of the independent
variables. A global minimum is the the lowest value within the range of the independent

variables. See Figure 4.1 for examples of maxima and minima, both local and global for one

33
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independent variable.

Figure 4.1: Plot showing examples of local and global minima and maxima. The above
function of one independent variable is shown over its domain of interest. D is the global
minimum, with H, B, F being the local minima. A is the global maximum, with C, E, G
being local maxima.

There exists a massive number of different optimisation methods that can be used to try to
find the optimum point of the cost function. Schwefel [27, page 3| states “it is a simple matter
to collect several thousand published articles about optimisation methods”. The nature of
the cost function is a primary factor in determining which of these different optimisation
algorithms to use. The main factors which influence this choice are the form in which the

cost function is expressed and can be evaluated, and the shape of the cost function.

4.2 Structuring the task of recalling a face as an optimisation

problem

Figure 3.2 shows that it is possible to reconstruct good approximations to new face images
(face images not in the set on which the principal component analysis was performed) with
eigenfaces. (More examples are shown in Figure 5.14.) This is done by projecting the new
face image onto the principal component axes to obtain the coefficients for the face image
along these axes. The approximation is then generated by multiplying the eigenfaces with
the coefficients along these axes and summing the products with the average face. This was

shown in (3.32), which written out is

Tz\I’+w1u1 + woug +w3ug + ... +wyprupy, (4.1)
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T being the approximate reconstruction, ¥ the average face, M’ the number of eigenfaces to
use in the reconstruction, uj, us,...,uyy the eigenfaces and wi,ws,... ,wpy the coefficients
to multiply the eigenfaces by.

So it should be possible to reconstruct a face image that looks like that of the perpetrator.
The problem is to find the correct coefficients wq,ws,... ,wpr, since we do not have a face
image to project onto the principal component axes. The search for the correct coefficients
can be viewed as an optimisation problem that could perhaps be solved using an optimisation
algorithm with the witness performing the evaluation of the cost function and feeding the
evaluation back to the algorithm. This could be done by showing face images, corresponding
to points in the search space, on the screen and letting the witness evaluate them in some

sort of manner yet to be defined.

The reason that it possible to use an optimisation strategy to find a likeness to the perpetrator
is that the dimensions of the search space are now M’'. This is manageable. If optimisation
was performed directly on the pixels of the digital image the number of independent variables
would be N = height x width. This means that the search space would be much larger and
include areas which do not result in face-like images. These areas could result in car like
images, house-like images etc., though most of these areas would probably result in images
that do not look like anything at all. Performing the optimisation on a search space like this

would not work.

4.2.1 Constraints imposed due to a human cost function

The cost function in this optimisation problem cannot be expressed in terms of a functional
relationship which can be evaluated by a computer at different points in the search space.
Neither can it be modelled on a computer, which could then evaluate it or perform a simulation
to evaluate it. These cases are the norm in optimisation problems. The cost function in this

problem exists in the human’s brain and he/she must perform the evaluation of it.
Because a human is ‘evaluating his/her own cost function’ there are a number of issues which
must be taken into account when choosing the optimisation technique. These issues will be
used to rule out different optimisation strategies for the task at hand.

1. There is no way to get or approximate the partial derivatives of the cost function.

2. The cost function cannot be evaluated to give a number.

3. The task of evaluating the cost function must be made as easy as possible for the witness.

4. The number of evaluations of the cost function, or faces that the witness is exposed
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to, must be kept to a minimum. This is because the concentration of the witness will

decrease with the number of faces he/she is shown.

5. There will be ‘human error’ associated with the judgement of similarity of the faces.
Different people exposed to the same perpetrator will give different judgements of sim-

ilarity to the same face images.

6. There will be human variability associated with the judgement of similarity of faces.
The same person shown the same face images at different times will not always give the

same judgement of similarity to them. This can be viewed as noise in the cost function.

As stated above it is important to make the process of dealing with the optimisation algorithm
as easy as possible for the witness. What is wanted is to get some form of evaluation of points
in the search space that is easy for the witness to give, as impartial as possible to variability in
the witness evaluations and yet still provides enough information for the optimisation strategy
to try find the optimum or a point close enough to it. The best envisaged way to achieve
this would be to show the witness a set of faces and let him/her select the face that seems to

him /her to be the most similar to the perpetrator’s.

This suggests an evolutionary optimisation algorithm (see Section 4.4.4) that generates a
population of trial solutions which can be shown to the witness. In this case the following

issues must also be considered:

7. It is not ideal to make the witness associate a similarity measure with each face in the
population as Johnston [5, 15] did. This is time-consuming for the human to perform
and is vulnerable to human error and variability. What would be a better approach
would be for the human to choose what he/she perceives as being the best match from
the trial solutions in each generation. This would be less time-consuming and also less

vulnerable to human variability and error.

8. The best match chosen will also not necessarily have its coefficients being the closest, in
terms of Euclidean distance, to the optimal set of coefficients. The optimal set of coef-
ficients being the coeflicients calculated from projecting a face image of the perpetrator

(if there was one available) using (3.31) onto the principal component axes.

9. There will still be a variability associated with the human’s choice of best match. Given
the same set of trial solutions, the user might not always choose the same solution as
being the closest match. But this variability should be less than that associated with

other measures of similarity, like giving ratings of similarity to different face images.
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4.3 Encoding solutions as bit-strings

Many evolutionary methods (see Section 4.4.4) and others like the stochastic hill climber (see
section 4.4.3) encode the trial solutions using binary numbers. This reduction of cardinality
decreases the number of values that each digit can hold to two, which is the smallest number
of values that can be used. This simplifies the manipulation of each bit (binary digit): it can

either be left as is or flipped.

The encoding can be done in the following manner. Let n be the number of binary digits to
be used for each independent variable. Divide up the domain of the independent variable into
2™ equal sized intervals. Associate the start positions of the intervals with increasing binary
numbers using n bits and starting at 0102 ...0,. This is shown in Figure 4.2. By increasing
n the resolution of the binary coded representation of the independent variable is increased.
Fig 4.2 shows that there is no binary digit associated with the maximal value that was used
in the calculation of the divisions. This is not important as long as n is of a sufficient size,
because by increasing n the size of the gap between the last position represented by a binary
number and the maximal value of the domain decreases. If this is still considered to be a

problem a slightly larger maximal number can be used.
Min Max
| | | |
-] | | | | | | ! ! ! =
000 001 010 011 100 101 110 111

Figure 4.2: Using binary numbers to represent the search space. Here n = 3. Min is the start
of the domain and Max is the end.

The conversion of a trial solution to a decimal value is then done as follows

decimal = Min + (bo b1 by ... bn—l) on (Max—Min) (42)
2.0
on

With Min being the start of the domain of the independent variable, Max being the end of
the domain and (by by ba ... b,—1) the binary encoded trial solution.

The trial solutions for each of the independent variables can be concatenated to form a bit-

string

Bo b by «.. bp—1 bobiby .. byy ... bobiby ... by_g (4.3)
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The searching part of the optimisation algorithm then manipulates the bit-string as a whole
without consideration as to which bit is associated with which independent variable. The trial
solutions are separated from the bit-stream before each evaluation in order that (4.2) can be

used to generate a decimal value, which will be used in the evaluation of the cost function.

4.4 Optimisation strategies

This section analyses different optimisation strategies with respect to their suitability for
finding the eigenface parameters to generate a likeness to the perpetrator. It would be im-
possible to investigate all the different optimisation strategies, so what has been attempted is
to categorise them and then comment on the categories’ suitability for the optimisation prob-
lem. Schwefel [27] provides a reasonably comprehensive overview of different optimisation

techniques.

4.4.1 Classical analytical method

If the cost function can be expressed as a functional relationship then the following could be
done: calculate the partial derivatives of the function, set them equal to zero and solve to find
the turning points (where the partial derivatives will be zero). These are necessary conditions
for the existence of a minima. The function can then be evaluated at all these points to find

the point that results in the smallest evaluation. This is then the global minimum.

This method is ruled out because there is no way to express the cost function as a functional

relationship.

4.4.2 Exhaustive search

The following simple search method is guaranteed to find the values of the independent
variables, to within a predefined quantisation error, that will result in the optimum value of

the cost function.

Define a step size according to the acceptable quantisation error in the location of the global
minimum. Divide up the search space into hypercubes of width step size. Evaluate the cost
function at the corners of these hypercubes. The point that evaluates to the lowest value is
considered to be the global minimum. Fig 4.3 shows an exhaustive sampling of the search

space of two independent variables.

This method would require too many evaluations for the human to perform. This is due both

to the large size of the search space and the fact that humans are only able to perform very
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step size

Figure 4.3: The sampling of the search space in an exhaustive search.

few evaluations.

4.4.3 Hill climbing methods

Here the optimisation task is discussed in terms of the finding of maxima, because the analogy
here is of climbing upwards until the top of a mountain is found. The problem with these
methods as a whole is that only one mountain is climbed at a time and and the algorithms

get stuck on local optima.

Methods using gradient

These include two families of algorithms [25, page 293]. The first goes under the name of the
conjugate gradient methods. This family is typified by the Fletcher-Reeves algorithm and the
Polak-Ribiere algorithm. The second family goes under the name quasi-Newton or variable
metric methods. This family is typified by the Davidson-Fletcher-Powell (DFP) algorithm
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

These methods are ruled out because there is no way to obtain the gradient of the cost

function that exists in the witness’s mind.

Methods not using gradient

Downhill simplex method

Nelder and Mead’s downhill simplex method is a slow but often extremely robust method
of finding a minimum [25, page 305] (once again we are talking in terms of minima because
of the algorithm’s name and analogy). A simplex is the geometrical figure consisting, in T
dimensions, of 7'+ 1 points (or vertices) and all their interconnecting line segments. The way
the algorithm works is by moving the vertices of the simplex through the search space trying

to find a minima. The cost function is evaluated at each of the vertices and the vertex that
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evaluated the highest is moved through the opposite face of the simplex to a lower point.

Using the simplex method for this problem would mean that the witness would be shown
faces corresponding to the vertices of the simplex and the witness would have to identify the
face that looked the least like the perpetrator’s face. Identifying a the face that looks the
least similar is not a task that the witness could perform well. This rules out the downhill

simplex search.

Stochastic hill climbing

Stochastic hill climbing is a simple iterative optimisation algorithm that outperforms more

complicated evolutionary optimisation algorithms on certain types of problems [2].

currentPos < randomly generate solution vector
Best < evaluate(CurrentPos)

loop NO_ITERATIONS
testPos < FlipRandomBit (CurrentPos)
if (evaluate(testPos) > Best )
Best < evaluate(testPos)
currentPos < testPos
end if
end loop

Figure 4.4: The basic stochastic hill climbing algorithm.

Fig 4.4 shows the basic stochastic hill climbing algorithm, it works as follows: define a coding
of the solution to the problem in the form of a bit-string as described previously. Randomly
populate the bit-string with 0 and 1, each having equal probability. Call it currentPos and
evaluate it. Flip a bit in a randomly chosen position in currentPos and call this new bit-string
testPos. If testPos evaluates to a better solution than currentPos then let currentPos =
testPos, else let currentPos remain as is. Generate a new testPos vector from currentPos
as before. Repeat until NO_ITERATIONS have passed.

The algorithm can be restarted at a random location many times, with the highest evaluating
solution from all the starts being the final solution. The algorithm would now be called

multiple restart stochastic hill climbing.

An obvious improvement to the basic algorithm shown in Figure 4.4 maintains a list of the
positions of the bits which were flipped without improvement for each currentPos. This is

used to stop the same testPos from being evaluated more than once for each currentPos.
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Another variation is to make currentPos = testPos if testPos == currentPos'. This will
stop the algorithm from getting stuck when it reaches a plateau. Instead it will wander around

the plateau trying to find a higher evaluating position.

The stochastic hill climbing algorithm could be modified so that it would generate a population
of trial solutions and then the witness could choose the best match. This would be done by
generating a face corresponding to the flipping of each bit in currentPos and then updating

currentPos with the face chosen as the best match by the witness.

The problem associated with this would be that the witness would be exposed to too many
faces at a time. If 7 bits are chosen to represent each eigenface coefficient and the faces are
built up using 50 eigenfaces each, this would result in 7 * 50 = 350 bits in currentPos. This
means that the witness would have to be shown 350 face images at a time, to choose the
best match from. This is too many. Also, because of the noise in the evaluation of the cost
function there will not be nice smooth hills to climb and the hill being climbed might be a

local optimum.

4.4.4 Evolutionary methods

Evolutionary optimisation strategies are strategies that imitate the principals of evolution and
natural selection for solving optimisation problems. Evolutionary methods can be grouped
into 3 fields that were developed independently from each other. These fields are evolution
strategies introduced by Rechenberg and developed by Schwefel [27], evolutionary programing
started by Fogel, Owens and Walsh and genetic algorithms invented by Holland. These fields
were all started in the 1960’s [21, page 2].

Evolutionary strategies try and evolve a population of candidate solutions that will evaluate to
the minimum or near minimum of the cost function. The evolution of the population towards

the minimum is done through analogies to natural genetic variation and natural selection.

In the last several years there has been widespread interaction among researchers studying
various evolutionary computation methods and the boundaries between genetic algorithms,
evolution strategies and evolutionary programing have broken down to some extent [21, page
3.

The only evolutionary system that only needs to know which is the highest evaluating trial
solution in the population (as put forward in section 4.2.1) appears to be population based
incremental learning (PBIL). This is a little-known reformulation of the genetic algorithm,
that has been shown to outperform the genetic algorithm on some optimisation problems
[3, 2].

!= symbolises assignment, while == symbolises comparison
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What follows here is an explanation of the genetic algorithm because it is similar to population
based incremental learning and because Johnston’s face recall system uses it. Population
based incremental learning is then introduced to show its position within the hierarchy of
different optimisation algorithms. Population based incremental learning is presented fully in

section 4.5.

Genetic algorithms (GAs)

The following is the algorithm for a standard GA [21, page 10].

1. Start with a random population of n sample solutions. Each of these solutions is created
by forming a bit-string as explained in section 4.3 and randomly placing 1 or 0 with equal

probability in each position of the bit-string. The bit-strings are called chromosomes.

2. Calculate the fitness of each sample solution in the population by evaluating the cost

function at the position it encodes, as specified in section 4.3.
3. Repeat the following steps until n offspring have been created.

(a) Select a pair of parent chromosomes from the current population, the probability
of selection being an increasing function of fitness of the chromosome. The same

chromosome can be selected more than once to become a parent.

(b) With probability p. (the crossover probability) cross over the pair at a randomly
chosen point (chosen with uniform probability) to form two offspring. This is called
one point crossover as shown in Figure 4.5. If no crossover takes place, form two

offspring that are exact copies of their parents.

(c) Mutate the two offspring at each position with probability p,, (the mutation prob-
ability) and place the resulting chromosomes in the new population. The mutation

is performed by flipping the bit at the position to be mutated.
4. Replace the current population with the new population.

5. Until some terminating condition is met, goto step 2.

The terminating condition could be a limit on the number of generations the GA is to run
for, or it could be when the GA has converged to a certain degree. Convergence occurs
when all the chromosomes in the population become almost identical. This will result in the
children looking very much like their parents and therefore each generation being similar to

the previous. A GA is typically iterated for hundreds or thousands of generations.
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Parent A 0000000 00000

One Point Parent B 1111111 11111

Crossover N
Child A 0000000 11111
Child B 1111111 00000

Figure 4.5: Demonstrating one point crossover.

Due to the random factors involved in producing children chromosomes (step 3b above), the
children may, or may not, have higher fitness values than their parents. However, because
of the selective pressure applied through a number of generations, the overall trend is to-
wards higher fitness chromosomes [3]. This process of survival of the fittest can over many

generations result in the optimal or a close to optimal point being found in the cost function.

The population size n, crossover probability p. and mutation probability p,, are all parameters
that have to tuned according to the fitness function and the type of GA used. This is a trial
and error process and unfortunately the speed of convergence of the GA onto the minimum is
dependent on the settings of these parameters. Mutations are used to help preserve diversity

in the population or, stated differently, to stop premature convergence.

There are many variations of the GA adapted for different problems. Amongst these variations
are different types of crossover and mutation to the ones described above. Two-point and
uniform crossover are shown in Figure 4.6. In two point crossover two points are randomly
chosen and the contents of the chromosomes between these points are swapped to generate
the two children. In uniform crossover the parent for each bit position is chosen randomly
for the first child, the bits that were not used by the first child are then used to create the
second child. The selection of parents to use in the production of children is also a process

that has many different strategies.

Another variation is to use elitist selection. If it is used the best chromosome from generation
G is automatically carried to generation G+ 1. This will cause the fitness of the best solution
in each generation to monotonically increase. Without elitist selection the best solution in

generation G + 1 could be worse than the best solution in generation G.

Johnston’s system [5, 15] uses a genetic algorithm to search for the optimum parameters
for its face model. The witness evaluates each face in the population on a similarity scale
according to its similarity to the perpetrator. This is the fitness associated with that member
of the population. He uses a population of size 20 and claims to get good likenesses in as few
as 10 generations [5]. This still necessitates the user having to provide a similarity measure

for 200 face images.
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Parent A 000 0000 00000

Two Point Parent B 111 1111 11111
Crossover " A
Child A 000 1111 00000
Child B 111 0000 11111
Parent A 000000000000
Uniform Parent B 111111111111
Crossover
Child A 011100101101
Child B 100011010010

Figure 4.6: Demonstrating two point and uniform crossover.

It has been decided (see section 4.2.1) that it would be easier for the witness to choose a
winner (most similar face) from the population as opposed to evaluating each face in the
population. For this reason the GA has been ruled out for use in the face recall system to be

developed.

Population based incremental learning (PBIL)

PBIL is an evolutionary optimisation algorithm that only needs to know the winner of the
population in order to generate a new population. This, the fact that it has been shown to
outperform the GA, and simplicity to implement, are the reasons why PBIL was chosen as
the optimisation algorithm for the face recall system. PBIL is explained in full in the next

section, Section 4.5.

4.5 Population based incremental learning (PBIL)

PBIL is an optimisation algorithm that was developed by Baluja in 1994 [1, 3, 2]. This section
presents his algorithm. It starts with a conceptual overview and then explains how this is
implemented. Finally a comparison is made with the GA, since the underlying mechanisms

are based on similar principles.

4.5.1 Conceptual overview

The following is a brief conceptual overview of how PBIL works:
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1. Set up a random number generator with an initial uniform probability density function

(pdf) across the space to be optimised.

2. With the random number generator, generate a population of trial points and evaluate

each one.

3. Adjust the pdf of the random number generator to slightly favour the trial point which
evaluated to be the best.

4. Until some terminating condition is met, return to step 2.

4.5.2 Implementation

Figure 4.7 shows how the above conceptual overview is implemented. The pdf is maintained
in a probability vector PV of length LENGTH, the length of the encoded bit-string (see Section
4.3). Each position in PV holds a real number between 0 and 1, representing the probability of
a 1 being generated when the PV is sampled at that position. The sampling process is shown
in Figure 4.8. What is done in Figure 4.8 is to generate a random number between 0 and 1
for each position of the PV. If the random number is less than the corresponding number in
the PV, then the corresponding value in the returned vector will be 1, else it will be 0. This is
the implementation of the random number generator with the pdf that was presented in the

conceptual overview above.

During initialisation PV is set to have 0.5 in all its positions. This means that when PV is
sampled in this state, there is equal probability of 0 or 1 being generated for each position in

PV. Thus the initial sampling of the search space will be uniform.

Generate NO_TRIALS trialVectors by sampling the PV. After each trialVectors is created
evaluate it; this is done by first decoding the bit-string into the decimal variables and then
feeding the variables into the cost function. Let bestVector be the trialVector that eval-
uates the best. Update the probability vector so that in the next generation of trials the
probability of trialVectors looking more like bestVector is increased. This is done by
increasing the positions in the PV that correspond to 1’s in bestVector and decreasing the
positions that correspond to 0’s. The amount that PV is increased and decreased is relative
to LEARNING RATE.

The mutation in Figure 4.7 is to try and stop premature convergence on a particular point in
space. Premature convergence could result in the search space not being properly explored
and the algorithm converging on a local minimum. The mutation is performed after PV has
been updated. Each bit in PV has a probability of MUTATION PROBABILITY of being shifted.
The bits that do get shifted are done so by MUTATION _SHIFT either up or down, each direction
having a probability of %
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*kkkk* Inttialise the Probability Vector *¥xkx*
for i = 1 to LENGTH

PV[i] = 0.5;
end for

while (NOT termination condition)

*¥kxkxk Generate Trials **kk*x
for i = 1 to NO_TRIALS
trialVectors[i] = sample(PV);
evaluations[i] = evaluateSolution(trialVectors[i]);
end for
bestVector = findBestVector(trialVectors, evaluations);

*xkxkx* Update the Probability Vector towards the best solution *¥¥kk*
for i = 1 to LENGTH

PV[i] = PV[i] * (1.0 - LEARNING_RATE) + bestVector [i]*LEARNING RATE;
end for

*xxxxk Mutate the Probability Vector *¥kkkxx
for i = 1 to LENGTH
if (random(0,1) < MUTATION_PROBABILITY)
if (random(0,1)>0.5)

mutateDirection = 1;

else
mutateDirection = 0;

end if

PV[i] = PV[i]*(1.0 - MUTATION_SHIFT) + mutateDirection * MUTATION_SHIFT

end if
end for
end while

Figure 4.7: Pseudo-code for population based incremental learning.
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Once the PV has been updated and mutated, a new population of trialVectors is created and
the process repeats itself. The above iteration carries on until some terminating condition
is reached. This could be after a maximum number of trials, or after the evaluation of
bestVector is sufficiently high, or when the population generated by PBIL has converged to

a certain degree.

The probability vector can be viewed as a prototype vector for generating trial solution
vectors which will have high evaluations. The knowledge of which trial vectors will have high

evaluations is gained from the feedback obtained from the previous generations.

As the number of generations increase, the values in the PV should converge on values close
to 1 or 0. This will result in 1’s and 0’s respectively being generated with a high probability

in the corresponding positions of the trialVectors.

sample (PV)
for i = 1 to LENGTH
vector[i] = PV[i] < random(0,1);
end for
return vector;

Figure 4.8: Pseudo code for the function sample used in Figure 4.7. The function
random(0,1) generates a random number between 0 and 1 with a uniform probability density
distribution.

4.5.3 Comparison of PBIL to the GA

Population based incremental learning (PBIL) is a simplification of the genetic algorithm,
which matches or outperforms the standard GA on problems commonly explored in GA
literature [1, 2]. This has also been shown to be true for a problem designed to be easy
for the purported mechanisms of the traditional GA [3]. The results achieved by PBIL are
more accurate and are attained faster than a standard genetic algorithm, both in terms of
the number of evaluations performed and the number of processor clock cycles used. The

reduction in clock cycles is due to the simplicity of the algorithm [1].

The GA uses a population to maintain the information learnt about the points in the search
space sampled in previous generations and then utilises this information by using operators on
the population to produce offspring. The learning is achieved by using the fittest members of
the population with a higher probability when generating offspring. Thus as the generations

increase the population should consist more and more of members in areas of the search space
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that have been evaluated to have a high fitness.

PBIL, instead of using a population to maintain the information learnt about the points in
the search space already sampled, uses a probability vector which is in effect a pdf. After
each generation the pdf is updated, so that the likelihood of the winner of that generation
being generated when the pdf is sampled is increased. The pdf will still reflect the changes
to it from previous generations, this is how the information about the search space is learnt
and kept. The using of a pdf to maintain this information is a more direct approach and is

easier to implement than that of the GA.

Another advantage of PBIL is that it is less sensitive to its free parameter settings than the

GA is to its own.



Chapter 5

Creating and Analysing the Face
Space

This chapter analyses the search space to be navigated by the PBIL algorithm in its search
for a good likeness. This is to ascertain the difficulty of the task and to find ways in which

to make it easier. It also demonstrates the concepts presented in Chapter 3.

The chapter starts by describing how the eigenfaces, used in the developed system, are gener-
ated. This includes a description of the standardisation process and why it is needed. Then
the face reconstruction capabilities of the generated eigenfaces are explored in order to assess
whether a good likeness can be generated if the optimal coefficients are found. Finally the

smoothness of the cost function and the distribution of the faces in face space are investigated.

5.1 Defining/creating the face space used in the study

5.1.1 The face images used

Figure 5.1 shows 10 face images from a set of 50 face images which were obtained from The
Psychological Image Collection at Stirling (PICS), maintained by the University of Stirling
Psychology Department. The image collection is available from the Internet via http://pics.-
psych.stir.ac.uk/.

As can be seen in Figure 5.1 these are all grey-scale images of young British males looking
directly into the camera. The background around the neck has been blackened with the use

of a black piece of material.
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Figure 5.1: Examples of the face images obtained from the University of Sterling
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5.1.2 Standardising the face images

For the eigenfaces technique to work the face images, on which principal component analysis
will be performed, have to be standardised so that each face is in the same position within
the image. The hair also has to be removed — this is because there exists too much variation

in hair-styles and colour to be captured by a small set of eigensurfaces.

Demonstration of the need for standardisation

The reason for requiring standardisation can be demonstrated with the extreme case where
the set of face images are divided into two equal size groups. The one group has the faces
positioned in the bottom left hand corner of the image, samples of this group are shown

in Figures 5.2 a-d. The other group has the faces positioned in the top right hand corner,
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samples of which are shown in Figures 5.2 e-h.

Figure 5.2: Samples of the shifted face images. The images in the top row are a sample of the
25 images with the face shifted to the bottom left of the image. The images in the bottom
row are a sample of the 25 images with the face shifted to the top right of the image.

These two groups of face images will be used to show that if the images are not standardised
then eigenfaces generated from them will not just describe the variations within the faces, as

would be desired. They must then also describe the variations due to the different position
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of the faces within the image.

If principal component analysis is applied to the whole set of images at once the eigenfaces
generated are those shown in Figure 5.3. The value associated with each pixel position in
the eigenfaces can be both positive or negative. The colour-map that maps the values to
the colours is a smoothly increasing range of grey-scale values from black to white. Black in
the colour-map is associated with the most negative number in the eigenface, while white is
associated with the most positive number in the eigenface. The mid-level gray is associated
with 0. Therefore each eigenface deviates from the uniform gray where there is variance
among the set of training face images. The eigenfaces can be considered to be some sort of

map of the variations between face images.

In Figure 5.3 it can be seen that the average face is made up of two different average faces,
one in the bottom left hand corner and one in the top right hand corner. The first eigenface
mainly describes the variance due to the shift of the faces from the bottom left hand corner

to the top right in the images. This can be seen in the white rectangles at the top and the

right of the first eigenface.

Figure 5.3: The average face and the first 8 eigenfaces generated from the shifted face images.
Examples of the shifted face images are shown in Figure 5.2. The order of the images is left
to right, top to bottom.

That the first eigenface describes the shift in the face positions is substantiated in Figure 5.4.
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This plot shows the coefficients for the first eigenface plotted against those for the second
eigenface. These coefficients were obtained by projecting the shifted set of face images onto
the eigenfaces using (3.31). (These are the coefficients that would be used in the eigenface
reconstruction of the shifted face images, an example of which is shown in Figure 5.5.) The
faces in the shifted left-down set have negative coefficients for the first eigenface and those
in the shifted top-right set have positive coefficients for the first eigenface. This clearly

demonstrates that the first eigenface describes the shift.
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Figure 5.4: The coefficients of the second shifted eigenface versus those of the first. The
coefficients are those obtained from projecting the 50 face images onto the face space. The
x’s show the 25 face images that are shifted left-down. The o’s show the 25 face images that
are shifted right-up.
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Figure 5.5: Reconstruction of the face image in Figure 2(c) using the average face and all
the eigenfaces derived from the shifted faces. The face image being reconstructed was in the
training set.

Figure 5.6 shows the results of a reconstruction of a face image from the set of faces on which
principal component analysis was performed. This was done using only the average face and
the first 10 eigenfaces. Figure 5.12 is also a reconstruction with the average face and the first
10 eigenfaces but these were calculated on standardised face images. By comparing the two

figures it can be noted that the reconstruction in Figure 5.12 is much better and that there
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Figure 5.6: Reconstruction of face image in Figure 2(c) using only the average face and the
first 10 eigenfaces derived from the shifted faces. The face image being reconstructed was in
the training set.

is not as much blurring in it. This is due to the fact that if the face images are standardised
there is less variation between them and the variation that does exist, is due to the differences
between the face and not their positions. If there is less variation, then the variation can be

described in fewer eigenfaces.

Another issue is that the face recall system could try and generate a face image from any
point in face space. It can be derived from Figure 5.4 that not all points in face space will
result in face images. The empty space in the face space in Figure 5.4 will result in some kind

of mixture between a top right and a bottom left face.

Standardising the face images

Figure 5.7: Showing how images in Figure 5.1 are cropped to obtain those in Figure 5.8. The
crosses are points specified by a user and the box shows where the image is to be cropped.

The 50 face images obtained from PICS were standardised in the following manner: The
outside corners of the eyes and the bottom of the chin were specified manually. These points
are shown with the crosses in Figure 5.7. The drawn-in box shows where the image was
cropped relative to the crosses. The sides of the vertical edge of the cropping rectangle are
22 pixels to left and right of the left and right eye X’s respectively. The top horizontal edge
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is 100 pixels above the average y-position of the eye crosses and the bottom horizontal edge
is 10 pixels below the y-position of the chin cross. The images were then resized to 51 by 76

pixels (width by height). Figure 5.8 shows some of the face images after being cropped and

il

(b) (c) (d) (e) (f)

resized.

Figure 5.8: Examples of the standardised face images used to obtain the eigenfaces.

5.1.3 Performing principal component analysis

Principal component analysis was performed on a set of 46 of the standardised face images,
examples of which are shown in Figure 5.8. The whole set of standardised face images is shown
in appendix A. The four faces shown in Figure 5.9 were left out, so that the reconstruction
capabilities of the face space could be tested on face images not in the set on which principal
component analysis was performed. The reason for this is that the developed system will be
expected to construct faces that were not in the set of faces from which the eigenfaces were
calculated. Using terminology from pattern recognition, the set of 46 faces on which principal
component analysis is performed will be called the training set and the 4 faces left out will
be called the test set.

There are two factors that can make the system perform worse in generating faces in the test
set compared to those in the training set. Firstly, it is not known how well a new face can
be reconstructed with the eigenfaces. Secondly, face images created with the eigenfaces will

probably have a disposition to be likenesses to the faces in the training set. This would be
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(a) (b) (c) (d)

Figure 5.9: The test set of face images. Face images excluded from the set of images on which
the principal component analysis was performed

due to large parts of the face space resulting in face images that are likenesses to the faces in

the training set.

Figure 5.10 shows the eigenfaces generated from applying principal component analysis on
the set of 46 standardised face images. In comparison to the eigenfaces of the shifted faces in
Fig 5.3, it can be seen that the areas of variance are more localised. The deviations from the

average grey (towards black and white) are localised to the positions of the facial features and

the positions of these are generally much the same, in the eigenfaces and the average face.

Figure 5.10: The average face and the first 8 eigenfaces generated from applying principal
component analysis on the training set of 46 face images.

5.2 The reconstruction capabilities of the eigenfaces

It is important to know how well the eigenfaces reconstruct face images not in the training
set, since this is what a face recall system will be expected to do. This is tested in Section
5.2.2 .

Section 5.2.1 shows the reconstruction capabilities of the eigenfaces on face images in the
training set. Though this has no relevance on the face recall system it is included to demon-

strate eigenface reconstructions of images in face space and other DFFS issues.
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The reconstructions in Sections 5.2.1 and 5.2.2 that only use the first few eigenfaces are there

to demonstrate the effects of increasing the DFFS.

5.2.1 Reconstructing face images in the training set

This subsection shows that face images in the training set can be perfectly reconstructed if

all the eigenfaces are used.

Using the average face and all the eigenfaces

If a face image in the training set is to be reconstructed with all its M = 46 associated
eigenfaces, then the reconstruction will be perfect, because the face space includes all the face
images that were used in the principal component analysis. This is can be seen in Figure 5.11

which is a reconstruction of Figure 5.8(d) — the two images are identical.

-

Figure 5.11: Reconstruction of the face image in Figure 5.8(d) using the average face and all
the eigenfaces.

Using the average face and only some of the eigenfaces

If a face image in the training set is to be reconstructed using only some of its associated
eigenfaces, then the reconstruction is unlikely to be perfect. This is because the face space
is now smaller, introducing a non zeros DFFS between the image to be reconstructed and
its projection onto the now smaller face space. The reconstruction of Figure 5.8(d) using the
average face and the first 10 eigenfaces is shown in Figure 5.12. It can be seen that even

though the two faces images are not identical they are similar.

5.2.2 Reconstructing face images in the test set

This subsection shows that the eigenfaces used in this thesis can be used to reconstruct face
images in the test set adequately if all the eigenfaces are used. This is used as an indication

that face reconstruction with eigenfaces can be used to reconstruct new face images.



CHAPTER 5. CREATING AND ANALYSING THE FACE SPACE 58

Figure 5.12: Reconstruction of face image in Figure 5.8(d) using only the average face and
the first 10 eigenfaces derived from the training set

Using the average face and all the eigenfaces

If a face image in the test set is to be reconstructed with all the M eigenfaces then the
reconstruction will not be perfect. This is due to the fact that the face image in the test set
is almost certainly a point in the original image space that is not included in the face space
defined by the eigenfaces. The reconstruction of Figure 5.9(b) using the average face and the
first 10 eigenfaces is shown in Figure 5.13. It can be seen that the thickness of the lips of the
person in Figure 5.9(b) have not been properly reproduced in Figure 5.13 — here they are
thinner. There also exists an overall fuzziness in Figure 5.13. There still exists a remarkable
similarity between the faces, which is an indication that face reconstruction with eigenfaces

has got good generalising capabilities to faces not in the training set.

Figure 5.13: Reconstruction of face image Figure 5.9(b), from the test set, using the average
face and all the eigenfaces derived from the training set.

This statement is further validated by the reconstructions shown in Figure 5.14. These are
the reconstructions of the rest of the faces in the test set shown in Figure 5.9. Once again a

good similarity exists.

Using the average face and only some of the eigenfaces

If a face image in the test set is to be reconstructed with only some of the eigenfaces, then
the reconstruction will poorer than a reconstruction with all the eigenfaces shown in Figure
5.13. This is because on top of the fact that the face image does not fall into the full face

space defined by the M = 46 principal component axes, we are now using a subspace of the
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Figure 5.14: Reconstruction of the rest of the face images in the test set, shown in Figure 5.9.
This was done using the average face and all the eigenfaces derived from the training set.

face space. Thus test set face images will be even further outside the subspace of face space
than they were outside the full face space. Figure 5.15 shows the reconstruction of Figure
5.9(b), from the test set, using the average and the first 10 eigenfaces. It can seen that the
fuzziness has increased in comparison to the reconstruction, with all the eigenface, in Figure
5.13, but the likeness is still strong.

Figure 5.15: Reconstruction of the face image in Figure 5.9(b), from the test set, using only
the average face and the first 10 eigenfaces derived from the training set

5.3 Moving through face space

In order to get an idea of what the faces in the face space looked like and how they changed
when the space was traversed, the coefficients for two face images, in the test set, were
calculated and then the face images ‘in between’ were generated. This was done by traversing
equal distances along the straight line between the calculated coefficients of the two face
images and generating images with the coefficients at these intermediate points. The results
of this can be seen in Figure 5.16. Figure 5.16 shows that this traversal of the face space

could be used as a morph from one face image to another.
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Figure 5.16: Images generated with coefficients obtained by traversing the face space in a
straight line from one face image to another.

5.3.1 The shape of the cost function

In Figure 5.16 it can be seen that there is a smooth transition from one face to another, that
it is easy to note the similarity between a face and its neighbours and that there are no faces
in between that are significantly different from those enclosing it. These factors all contribute
to making the witness’ cost function reasonably smooth. The smoother the cost function, the
easier it is for an optimisation algorithm to traverse to its optimum or a close-to optimum

point.

5.3.2 The shape of the cost function of Johnston’s system

Johnston’s face recall system as described in section 2.1.3 builds up its faces through posi-
tioning a forehead, a set of eyes, a nose, a mouth and a chin together. The dimensions of
the face space of Johnston’s system are then an axis for each of the facial features described

above and an axis for the positions of each of the facial features.

To achieve this, each forehead in the set of foreheads must have a number associated with it,
so that the foreheads can be ordered along the forehead axis. This ordering must result in
some sort of progression from the forehead at the start of the axis to the forehead at the end
of the axis. The same must be done for the other facial features. There is no natural ordering

of the features and it must be done manually based on the subjective decisions of the sorter.

This, combined with the fact that the there are a limited number of each of the facial features
with no intermediate versions, stops the cost function from being smooth. This makes it

harder for the genetic algorithm to find the optimum or a close-to optimum point.

5.3.3 Artifacts due to the non alignment of facial features

In the middle face images in Figure 5.16 it can be seen that there are double eyebrows. This

is due to the eyebrows of the face image on the right hand side being slightly higher than
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those on the left hand side. So as we traverse the face space from one face to the other, there

has to be some form of transition. This transition results in the double eyebrows.

The reason for there being eyebrows in different positions is that the images were standardised
to have the outside part of each eye in the same position. Thus even though the eyes are
set to the same position, the eyebrows can be in different positions if they are in different
positions relative to the eyes. The face on the right has eyebrows which are higher relative to
the eyes than those of the face on the left. For the same reason, other facial features can be
in different positions in the standardised training set. This is the cause of the other artifacts

that can be seen in the generated face images displayed in the GUI, shown in Figure 6.5.

These double features in the generated images could be removed by using more landmark
points in the standardisation process. The problem with this is that all generated faces would
have their features in the same same position and the faces would be the same shape. The
information held in the position of the facial features and in the shape of the face would then

be lost to the system. All generated faces would be of the same overall shape.

5.4 Distribution of faces in face space

Moghaddam and Pentland [22] state that, in their experience, the distribution of faces in
face space is accurately modelled by a single Gaussian distribution. For a distribution to be
Gaussian each variable must have a Gaussian distribution and all linear combinations of the
variables must be Gaussianly distributed. This is not readily tested because it is impractical
to test an infinite number of linear combinations of variables for normality [31]. Even though
it is not possible to verify that the distribution is Gaussian, by analysing the distribution it is
possible to determine if the distribution seems to approximate a Gaussian distribution. This
was done by looking at the distribution of the coefficients of the eigenfaces used to reconstruct

the images in the training set.

Firstly the distribution of the coefficients of each eigenface was plotted in a histogram. Figure
5.17 shows the distribution of the coefficients of the first eigenface. It can be seen that
the distribution seems to approximate a Gaussian distribution. The distributions of the

coefficients of the other eigenfaces look on average similar.

Secondly, scatter-plots were generated showing the distribution of the coefficients with respect
to each other. Figure 5.18 shows the distribution of the coefficients of the first eigenface
plotted against those of the second eigenface. The distribution looks like it is a sampling of
a Gaussian distribution. Other combinations of the coefficients were looked at and they had

on average the same spread of points.
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Figure 5.17: Histogram showing the distribution of the coefficients of the first eigenface, these
were obtained by projecting the images in the training set onto it. It seems to approximates

a normal distribution.
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Figure 5.18: Scatter plot showing the distribution of the coefficients of the first and second

eigenfaces. These were obtained by projecting the images in the training set onto them.
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Although the it cannot be confirmed that the distribution faces in face space is a Gaussian
distribution, it can be seen from looking at the above plots (Figure 5.17 and Figure 5.18) that
a ‘best guess’ approximation to their distribution would be a Gaussian distribution. If this is
assumed, then the best approximation to the true distribution would be the multidimensional
Gaussian parameterised by the covariance matrix of the eigenface coefficients. As a result of
face space being described in terms of the principal component axes of the face images, the
covariance matrix is a diagonal matrix with the eigenvalues going down the diagonal from

largest to smallest.



Chapter 6
The Developed Face Recall System

This chapter describes the implementation and use of the developed face recall system. Also
included are the results of automated simulations that were performed. Chapter 7 presents

the results of trials with humans trying to generate faces.

The chapter starts by explaining why the system was implemented in MATLAB. Then it
explains how PBIL was modified to search through a solution space with a Gaussian distri-
bution. The results of running simulations with the computer, instead of a human, choosing
the best match face in the population are also presented. These were for preliminary feasi-
bility trials and to find settings for PBIL’s free parameters. The chapter ends with simple

explanation of how to use the developed face recall system.

6.1 Platform of implementation

The developed face recall system was implemented in MATLAB. This decision was taken
because of the powerful mathematical capabilities of MATLAB, due to its easy matrix ma-
nipulation and built-in functions. MATLAB is a high-level interpreted prototyping language
which enables the rapid development of algorithms and programs. It has a similar structure
to compiled procedural languages like C. This makes translation of the MATLAB code into C
straightforward — each MATLAB function can be translated into an equivalent C function.
This one to one translation of functions simplifies the tasks of debugging and checking for
errors, since the new function can be checked against the MATLAB one. There also exists
a MATLAB compiler that translates MATLAB code to C++ and the MATLAB C++ math
library which is a library of C++ classes which provide the functionality of most of the built
in MATLAB functions.
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6.2 Transforming PBIL’s pdf to start as a Gaussian pdf

The initial sampling of the face space by PBIL is uniform. This is inefficient. We have
already noted in section 5.4 that the distribution of face images in face space seems to be a
Gaussian with a mean of zero. The algorithm will therefore waste generations learning what
we already know. This initial uniform sampling of face space results in some very unface-like

‘face images’ appearing in the initial population.

To rectify this the random variables generated by the PBIL algorithm are transformed. What
this transform does is to make the initial pdf of the random number generator in PBIL
Gaussian and then, as the winner of each generation is found, this pdf will get modified

accordingly.

To do this the inverse-transform method is used [19, page 242]. The inverse transform method
is generally used to generate random numbers with a non-uniform pdf f from a random
number with a uniform pdf. Given f’s cumulative distribution function (cdf) F' and its

inverse F~!, to perform the transform the following operation is performed:

1. Generate U, a random number with a uniform distribution between 0 and 1.

2. Set X = F1(U).

X is now the random number which will have a non uniform pdf f. U will always fall into
the domain of F~! which is [0, 1]. This is because by definition the range of F is [0, 1].

Figure 6.1 shows a graphical representation of what is done above.

Figure 6.1: Figure showing the inverse transform method. U is the uniform input random
variable and X is random variable that has been transformed, F~1(U).

Another way of thinking about the transform in this context is that it is a mapping from
one part of a space to another. This mapping is such that a uniform sampling of the space

will result in a Gaussian sampling after the transform. This is shown in Figure 6.2, here the
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inverse transform method was used to transform a two dimensional uniform sampling between
zero and one, to a two-dimensional Gaussian sampling of the space. Equation (6.9), which is

derived in Section 6.2.1, was used to perform the transform.
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(a) A uniform sampling in (0,1) (b) The transform of the points in (a).

Figure 6.2: The transform of a uniform sampling between zero and one to a two-dimensional
Gaussian sampling with a mean zero and standard deviation of one along each axis. This was
done using (6.9).

6.2.1 Calculating the inverse transform

The cdf of a Gaussian with mean m and standard deviation ¢ is

Fx(z) = ! / e (@ =m)?/20% gt (6.1)

210 J o

To obtain F~!, F will first be written in the form of the error function erf (x). Then to obtain
the inverse, the inverse error function erfinv(x) will be used. erfinv(x) is a MATLAB

function that does a fast numerical approximation to the inverse of the error function.

The form of the error function is [30, page 746]

erf(x) = %/(; e dt (6.2)
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Rewriting the Gaussian cdf (6.1) in terms of the error function (6.2) is done as follows.

Letting
_'=m (6.3)
P V20 .
we have
dp = —dm = dz' = V20dp. (6.4)
V20
So
1 /’i/if 2
=— e P dp. (6.5)
VT oo

Since we can assume that the mean of the distribution of faces in face space is zero we can
let m = 0. This is because we have subtracted out the average face before the calculation of

the eigenfaces. Then

1 [V _
Fx(z) = \/—77/ e P dp
—0o0

1 0 1 [V
Fx(z) = 7_/ e_i”zal;zﬂ——/\/5 e P’ dp
0

Fx(z) = /\[a P dp
1 T
Fx(z) = 2erf(\/_a)
exf(—1) = 2Alx(a) — ). (6:0

(6.7)

Now that the cdf of the Gaussian has been obtained in terms of erf (x), we can use erfinv(x)

to get the inverse

2o = erfinv(2Fx(z) — 1)

r = V20 erfinv(2Fx(z)—1) (6.8)

As shown in Figure 6.1, substitute the random variable U for Fx(z) will give X, the trans-
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formed random variable. So the transform to be used is

X = V20 erfinv(2U — 1). (6.9)

6.3 System implementation

The following is a description of how the system is implemented. Section 6.5 gives a description

of how the implemented system works from the user’s point of view.

6.3.1 General overview of the system implementation

The developed face recall system [26] uses PBIL as an optimisation algorithm to search
through a face space defined by a set of eigenfaces, using a human to perform the evaluation
of the cost function. The cost function evaluation that the witness performs is to look at the
population of face images generated by PBIL and to specify the face that looks most like the
perpetrator. The witness specifies the best match by clicking on the face in the GUI shown in
Figure 6.5. The population size used by PBIL is noFaces, the number of faces shown on the
GUI at one time. Since it is assumed that the distribution of faces in face space is a Gaussian

the coefficients generated by PBIL are transformed to match this.

6.3.2 Detailed description of the system implementation

Figure 6.3 shows a block diagram of the system implementation. What follows is a description

of the individual parts of the system.

PBIL

This is the implementation of the PBIL algorithm described in Section 4.5 with the pseudo-
code for its implementation shown in Figure 4.7. The implementation used is exactly like Fig-
ure 4.7 except that the function call evaluateSolution(trialVectors[i])® is not made.
The task this function performed is now combined into findBestVector (trialVectors)
(note that the function does not pass the argument evaluations as it has not been calcu-
lated and is not needed). The dashed box in Figure 6.3 performs the task of the function
findBestVector. Therefore the output of the PBIL block is trialVectors. trialVectors

'This font refers to variables in the PBIL algorithm’s pseudo-code, presented in Figure 4.7. While this
font is for numbers used in the block diagram of the system, presented in Figure 6.3.
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Figure 6.3: A block diagram of the implementation of the developed system.
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contains noFaces encoded bit-strings. The return from the block findBestVector and input
into the PBIL block is the trial vector that resulted in the face that the witness selected.

The free parameters in the PBIL algorithm shown in Figure 4.7 are set as follows: LENGTH,
the length of the bit-string, is 1012 and is explained in the description of the block decode
trial vectors below. NO_TRIALS is not set — the loop is modified to carry until the witness is
satisfied with one of the faces in the population. He/she is then to press the stop button on
the GUI. The LEARNING RATE was set to 0.3. The arrival at this figure is described in Section
6.4. This is a relatively high setting, but is used because the number of generations must be
kept to a minimum or the witness will loose concentration. MUTATION PROBABILITY is set to
0.02 and MUTATION_SHIFT = LEARNING RATE.

Decode trial vectors

Each trial Vector is encoded as a 46 x 22 = 1012 element bit-string. See Section 4.3 which
describes the encoding and decoding of the bit-string. What is performed in this block is
exactly as described in section 4.3. Each bit-string holds the information to generate one of
the faces in the GUI, so 46 coefficients must be encoded and the precision of the encoding
is 22 bits. (This is a precision is not necessary, but the system performance is fast enough.)

The output of this block is noFaces sets of 46 real-numbered eigenface coefficients.

Gaussian

Each coefficient is transformed as described in Section 6.2 using (6.9). For each coefficient,
o is set to the standard deviation of the projected coefficients of the training set onto its

eigenface axis. This is the eigenvalue associated with the eigenface.

Generate faces

This block multiplies each set of eigenface coefficients by their associated eigenfaces and then
sums the products and the average face as shown in (3.32). This is repeated for each set of

coefficients to generate noFaces face images.

GUI

The GUI displays the noFaces face images as shown in Figure 6.5. In this case noFaces = 20.
The witness is then to click on the face perceived to be the most similar to the perpetrator’s.

The face number of this face (selectedFaceNo) is output from this block.
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Associate trialVector

This block feeds back into PBIL the trial vector that provided the coefficients for generating

the face image that the user selected. This trial vector is trialVector [selectedFaceNo].

6.4 Computer simulations

In the following experiments the computer chooses the winner of each population. The goal

of the experiments is to try and find a face image in the test set.

This is done by letting the face recall system run as explained previously. The only difference
is that instead of a human user choosing the closest match face image, the computer does.
This is done by calculating the DIFS from the face image to be found to each face image in

the population being displayed. The winner is the face image that has the smallest DIFS.

It must be noted that the face in the GUI that is the closest in terms of DIFS would not
necessarily be the face that a human user would select as being the most similar. In fact in

the later trials discussed in Chapter 7 it is seen that this is almost never the case.

The reasons that these experiments were performed with the computer choosing the best

match is that its choices are consistent and could in a sense be called the optimal choices.

6.4.1 Assessing the convergence of the system to a target face

Generally optimisations are performed over thousands of generations. With a human choosing
the best match this is not viable. The first experiment performed was to see how many
iterations it would take PBIL to converge on an acceptable set of coefficients if the optimal

best match was automatically chosen each time.

The face that was searched for was a face in the test set, Figure 5.9(b). It can be seen from
Figure 6.4 that if the optimal best match is chosen as the winner of each population, then
after 30 generations (the second last face in Figure 6.4) the best match face looks like the
face that is being searched for. In fact it is almost identical to the closest approximation
that can be made with the eigenfaces, which is shown in Figure 5.13. This is an extremely
promising and surprising result as it usually takes thousands of generations for optimisation
algorithms to find points close to the optimum. Unfortunately the optimal best matches that

were automatically chosen are not the obvious choices for best matches to a human user.

Table 6.1 shows the DIFS between the best match face images in Figure 6.4 and the face image

being searched for. It can be seen that the DIFS generally decreases over the generations, but
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Figure 6.4: The optimal best match faces chosen in the automated simulation with a popu-
lation size of 100 and a learning rate of 0.2. The face to be reproduced is Figure 5.9(b). The
best match face for every second generation is displayed from left to right, top to bottom.

1578 | 1450 | 1435 | 1179 | 1121 | 1065 | 931 | 964
920 | 827 | 765 | 719 | 728 | 675 | 696 | 606

Table 6.1: The DIFS between the faces in Figure 6.4 and the face being searched for. The
position of the numbers in the table match the positions of the images in Figure 6.4.

is not monotonic. It increases from 931 to 964 from the 14th to the 16th generation. This is
a characteristic of PBIL, which exists because it does not keep a copy of the best match of
the previous generation in the current generation. This helps to stop PBIL from converging

prematurely on a local minimum.

6.4.2 Finding settings for the PBIL parameters

Values had to be chosen for the parameters LEARNING RATE and NO_TRIALS (the population
size) for the PBIL algorithm in the developed system before trials with humans could be run.
The learning rate should be set high enough so that the system does not take long to converge
on a good likeness, but it must not be so large that it results in premature convergence on a
local optimum. The population size should be large enough that the update to the probability
vector is based on a good sampling of the search space, but there should not be too many
faces displayed on the screen. This is because it is difficult for human users to compare a
large number of faces every generation. This was noted during the preliminary trials with
humans using the system. It was further substantiated during the experiments carried out
described in Chapter 7.

To choose settings for these parameters, simulations were run with the computer choosing the
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best match based on the smallest DIFS. These simulations were automated because it was

desired to sweep through a large range of possible settings.

It would not be possible for a human to perform all these trials. Also there would be a
large difference in the resultant face generated by a human, for the same parameter settings,
over different trial runs. This difference would be even larger if different people performed the
trials. To average out these differences many runs would have to be made for each combination

of parameters. This is impractical.

Three runs were made for each combination of the parameters. The best match DIFS after
30 generations was averaged across the three runs and then noted. These averaged DIFS are
shown in Table 6.2. The learning rate was swept from 0.05 to 0.4 and the population size
from 10 to 50.

Learning rate

0.05| 0.1 |0.15| 0.2 | 0.25 | 0.3 | 0.35 | 0.4
10 | 1631 | 1360 | 1069 | 985 | 965 | 914 | 958 | 902

15 | 1407 | 1303 | 1048 | 963 | 808 | 870 | 940 | 905

20 | 1478 | 1173 | 886 | 864 | 977 | 876 | 841 | 915

Population 25 | 1381 | 1203 | 928 | 813 | 828 | 765 | 788 | 806
size 30 | 1361 | 1171 | 937 | 776 | 717 | 667 | 669 | 791

35 | 1346 | 1097 | 887 | 850 | 702 | 738 | 762 | 865

40 | 1441 | 1079 | 856 | 796 | 713 | 616 | 773 | 766

45 | 1359 | 993 | 840 | 714 | 717 | 752 | 715 | 699

50 | 1349 | 1063 | 897 | 768 | 625 | 654 | 627 | 734

Table 6.2: DIFS measures after 30 PBIL generations with the learning rate and population
size being changed. Each block is the average taken over three runs. In the simulations the
best match was chosen according to the smallest DIFS.

Looking at the results shown in Table 6.2 it was decided to have a population size of 30 with
a learning rate of 0.3. This is the fourth smallest DIFS in the table. Some combinations with
populations sizes greater than 40 resulted in a lower final DIFS, but it was decided to present
a smaller number of faces to the users at a time. These are the parameters settings used for

the experiments in Chapter 7, where the results of humans using the system are presented.

6.5 Using the developed face recall system

Figure 6.5 shows the graphical user interface (GUI) of the developed system. The face recall
process is started with the GUI displaying a random sample of faces. Using a mouse the
witness will then click on the face that most resembles the perpetrator’s face. A new set of

faces will then appear on the screen which look more similar to the clicked-on face, but the
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Figure 6.5: User interface of the developed face recall system after the user has made 1 choice.
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spread of different looking faces will still be wide. Once again the witness is to click on the
most similar looking face and a new set of faces will be displayed. With each iteration of the
above process, the displayed set of faces will look more similar. This enables the witness to
narrow in on a likeness of the perpetrator. This can be seen in Figure 6.5 which shows the
second set of faces displayed, Figure 6.6 which is after 8 iterations and Figure 6.7 which is

after 14 iterations.

Once the witness is satisfied that one of the displayed faces is a good enough likeness to the
perpetrator, the process is stopped and that face can be printed onto paper or saved as a

computer image to be used later.

The system described above is still a prototype system, it is only able to construct the face
without a hair-style and other accessories such as beards, glasses etc. This could done using
a similar method to that of a facial composition system, an example of which is shown in
Figure 2.4. Different sets of eigenfaces should be used for different sex, race, age groups. This
would restrict the search space and make it easier for the witness to find a good likeness face

image.
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Figure 6.6: User interface of the developed face recall system after the user has made 8 choices.
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Figure 6.7: User interface of the developed face recall system after the user has made 14
choices.



Chapter 7
Experiments Assessing the System

This chapter presents the results of experiments run with the system. These experiments
are with people interacting with the face recall system — unlike those in Chapter 6 where
the computer simulated the optimal choices. Two different experiments are presented in this
chapter. In the first the face to be reconstructed is viewable during the whole construction
process. In the second the face to be reconstructed is only shown for a brief period before the
reconstruction. This is the more realistic condition under which a face recall system would

be used.

7.1 Experiment 1

Experiment 1 was constructed to test how the system would work under optimal conditions.
The optimal condition would be a person with a perfect memory of a face trying to construct
a visual likeness to it. This optimal condition is simulated by having in view of the user, while
interacting with the system, a picture of the face to be found. The face to be reconstructed will
be referred to as the target face. This is a test of a human’s ability under optimal conditions
to generate a good likeness to the target face while interacting with the developed face recall
system. (It is already known that the system can generate good likenesses if the face with

the smallest DIFS from the target is automatically selected each generation.)

This experiment is broken into two stages: the first is the construction phase where likenesses
to the target faces are generated (Section 7.1.1), the second is the assessment phase where
judgements are made on the similarities of the generated likeness images to the target faces
(Section 7.1.2).

78
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7.1.1 Experiment 1 construction phase

What follows is a description of the construction of likenesses to the target faces with the
developed face recall system (in procedure). Then the generated likeness face images are

presented with an analysis of their generation (in results).

Procedure

Fifteen undergraduate psychology students from the University of Cape Town volunteered to
perform the constructions. Their makeup was 11 females and 4 males between the ages of 18

and 30. They will be referred to as the participants of the experiment.

The construction phase took place over three days, with the participants coming one at a
time to perform their face image constructions. Their constructions were performed on the
developed face recall system, described in Chapter 6. The system used the set of eigenfaces
presented in Section 5.1.3. The participants were each given an explanation of what was
expected from them and how to use the system. Then they were given a few minutes to

familiarise themselves with the system.

(a) (b) (c)

Figure 7.1: The face images to be found in Experiment 1.

The experiment started with the displaying of one of the faces in Figure 7.1 on the computer
screen next to the system GUI. The participant then tried to construct a likeness face image
to it using the face recall system. She was told to stop when she was satisfied that she had
found a good likeness to the target face. Her choices for best match in each generation was
then displayed on the computer screen and the participant had to select the face image which
she believed to be the most similar to the target face. This image will be referred to as the
participant’s best choice. This procedure was repeated for the other two faces in Figure 7.1.
The order in which the faces were presented for reconstruction was such that the permutations

of the order were as different as possible.
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Results

Appendix B contains all the results obtained from Experiment 1. What is presentation here

is a portion of the results and some summarising statistics with discussion.

E1
(c)

participant 1’s
reconstructions

(b)

participant 8’s
reconstructions '
(d) (e) )

participant 11’s
reconstructions

i, - e

(h) (i)
Figure 7.2: Likenesses to the faces in Figure 7.1 found by participants 1, 8 and 11. The
order of presentation of the face images in each line is: likeness to Figure 7.1(a), likeness to

Figure 7.1(b) and likeness to Figure 7.1(c). All the likenesses generated in Experiment 1 are
presented in Appendix B.

Figure 7.2 shows the best choices of some of the participants. All the best choice likenesses

generated in Experiment 1 are shown in Figures B.2, B.3 and B.4 in Appendix B.

Figure 7.3 shows the best match faces chosen by participant 1 in her search for a facial likeness

to the target, Figure 7.1(a). It can be noted that there is little difference in the last faces.



CHAPTER 7. EXPERIMENTS ASSESSING THE SYSTEM 81

-

i |

Figure 7.3: The best match faces chosen by participant 1 in her search for the face in Figure
7.1(a). The first face is her choice of best match for the first generation, the second face is
her choice for the second generation and so on. The sequence goes from left to right, top to
bottom. She made 18 choices in all and chose her 16th choice to be her best choice.
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This is due to the convergence of the displayed population of faces in the latter generations.

generation DIFS of smallest DIFS | faces in population closer
user’s choice | in population than user’s choice
1 3036 1590 20
2 2177 1560 12
3 2320 1614 16
4 3011 1780 26
5 2700 1990 12
6 2407 1673 7
7 1983 1737 3
8 1844 1661 2
9 1780 1612 2
10 2046 1633 16
11 1954 1642 13
12 1701 1685 1
13 1930 1636 11
14 2185 1620 24
15 1816 1638 5
16 1884 1681 12
17 1772 1719 3
18 1642 1642 0

Table 7.1: A table showing the DIFS of participant 1’s best match choices, shown in Figure
7.3, to the target Figure 7.1(a). The smallest DIF'S to a face image in the displayed population
and the number of faces in the population who have a smaller DIF'S than participant 1’s choice.
This is shown for each generation.

Table 7.1 shows the DIFS from participant 1’s best match choices to the target face. It also
shows what the smallest DIFS from the target to a face in the displayed population was and
the number of faces in the population a shorter DIFS away than the participant’s choice. It
can be seen that participant 1’s choice of the most similar face is almost never the face that
is the smallest DIFS away from the target face. The only time that they were the same was
in the 18th generation. Generally a substantial number of faces are closer in terms of DIFS.

The values shown in Table 7.1 are characteristic of the other reconstructions.

Table 7.2 gives an analysis of the times taken to find likenesses to each of the target faces.

The average times turned out to be lower than expected.

Table 7.3 gives an analysis of the number of generations that were run through to find like-
nesses to each of the target faces. The average number of generations also turned out to be

lower than expected.

Table 7.4 gives an analysis on the differences between the number of choices made and the
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mean minimum | maximum | standard deviation
(minutes) | (minutes) | (minutes) (minutes)
Figure 7.1(a) 10.5 5 25 5.0
Figure 7.1(b) 11.7 5 28 6.3
Figure 7.1(c) 10.3 5 24 5.8

Table 7.2: The mean, minimum, maximum and standard deviation of the time taken to find
the facial likeness images in Experiment 1. The time for each reconstruction is given in Table

B.1 in Appendix B.

mean | minimum | maximum | standard deviation
Figure 7.1(a) | 15.5 6 29 6.8
Figure 7.1(b) | 15.0 6 28 6.0
Figure 7.1(c) | 14.5 8 30 6.2

Table 7.3: The mean, minimum, maximum and standard deviation of the number of choices
made to find facial likeness images in Experiment 1. The number of choices for each recon-

struction is given in Table B.1 in Appendix B.

mean | minimum | maximum | standard deviation
Figure 7.1(a) | 24 0 12 3.4
Figure 7.1(b) | 3.2 0 12 3.4
Figure 7.1(c) 2.9 0 11 3.4

Table 7.4: The mean, minimum, maximum and standard deviation of the difference between
the number of choices made and the choice number of the best choice for each face search in

Experiment 1.
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choice number of the best choice. This is presented to assess the need for making a final best
choice out of all the choices as opposed to taking the last choice as the resultant likeness face
image. The relatively large mean, maximum and standard deviations of this difference shown
in Table 7.4 seem to suggest that this a necessary step in the face recall process. Although
this may seem to undermine the effectiveness of the PBIL algorithm, it is not so since a
characteristic of PBIL is that a population will not necessarily have fitter members than the

previous population. This is to stop premature convergence (see Section 4.5).

7.1.2 Experiment 1 assessment phase

This phase of Experiment 1 is to obtain a measure of the quality of the reconstructions. This
must in some way measure the resemblance of the generated face image’s likeness to its target
face. This was done by presenting the generated face image above a lineup of faces which
included the target face. Judges then specified the face in the lineup that they thought was

the most similar to the generated face.

Procedure describes the judging procedure and results presents the results of the judging.

Procedure

For each of the target faces 6 other standardised face images were chosen to be in the lineup
with it. For each participant a page was laid out with their three constructions each above
the associated lineup containing the construction’s target. The order of presentation of the
constructions as well as the position of the targets within the lineup were changed in each
participant’s lineup page. This was done such that the permutations were as different as
possible. Then 20 copies of each of these pages were made, resulting in 300 pages each
containing three lineups. Two of the 15 different lineup pages are included at the end of

Appendix B.

These 300 lineup pages were handed out to 300 first year students at the University of Cape
Town at the start of their psychology lecture. The 300 judges were then told to specify which

face in each lineup looked most like the generated face image above the lineup.

Results

267 of the 300 lineup pages were returned unspoilt. The judgements they contained are
tabulated in Table 7.5. It shows the judgements for each of the generated facial likeness

images.

Table 7.5 is summarised in Table 7.6. Table 7.6 shows that the constructions of Figure 7.1(a)
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Figure 7.1(a) Figure 7.1(b) Figure 7.1(c)
correct | incorrect | correct | incorrect | correct | incorrect

participant 1 14 2 8 8 4 12
participant 2 8 11 12 7 7 12
participant 3 10 5 9 6 0 15
participant 4 12 5 16 1 11 6

participant 5 16 3 4 15 3 16
participant 6 10 8 12 6 0 18
participant 7 13 2 9 6 7 7

participant 8 14 4 15 3 6 12
participant 9 11 7 8 10 1 17
participant 10 11 9 11 9 11 9

participant 11 12 6 8 10 15 3

participant 12 | 14 3 11 6 5 12
participant 13 14 4 13 5 2 16
participant 14 13 6 11 8 5 14
participant 15 12 8 5 15 1 19

Table 7.5: Tabulation of the results obtained from the evaluation of the Experiment 1 lineups.
The table shows for each construction performed in Experiment 1 the number of judges that
selected the correct face in the lineup and the number of judges that selected an incorrect
face. For each construction the larger of the two is in bold.

lineups | targets targets

judged | identified | identified (%)
Figure 7.1(a) 267 184 69
Figure 7.1(b) 267 79 30
Figure 7.1(c) 267 152 57

Table 7.6: The number and percentage of correctly selected target faces out of the lineups in
Experiment 1.
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enabled the judges to identify it, out of the used lineup, 69% of the time. The constructions
of Figure 7.1(b) enabled a 30% correct identification and the constructions of Figure 7.1(c)
enabled a 57% correct identification. These percentages should be compared to the one in
seven chance resulting in a 14% probability of correctly guessing which is the target face if

the likeness face image provides no information as to which is the target face in the lineup.

7.2 Experiment 2

Experiment 2 was constructed to test the system under more realistic conditions. This is to

use the system to construct a face from memory.

Again the experiment is broken into two stages: the construction phase where likenesses to
the target face are generated (Section 7.2.1) and the assessment phase where judgements are

made on the similarities of the generated likeness images to the target faces (Section 7.2.2).

7.2.1 Experiment 2 construction phase

What follows is a description of the constructing of likenesses to the target faces with the
developed face recall system (in procedure). Then the generated likeness face images are

presented with an analysis of their generation (in results).

Procedure

Fifteen undergraduate psychology students from the University of Cape Town volunteered
to perform the constructions. Their makeup was 13 females and 2 males between the ages
of 18 and 22. They will be referred to as the participants of the experiment. None of the

participants of Experiment 2 were also participants of Experiment 1.

The constructions performed during this experiment were made with the developed face recall
system, which is described in Chapter 6. The system used a new set of eigenfaces generated
for this experiment. The principal component analysis was performed on a combination of
the training set and the test set with the exclusion of the face image shown in Figure A.1.36.

This is an image of one of the faces to be constructed in this experiment.

The construction phase took place over 3 days, with the participants coming one at a time

to perform their face image constructions.

The procedure was as follows: a short explanation of the purpose of the experiment and
what was expected was given. One of the two face images in Figure 7.4 was shown to the

participant for 15 seconds. A brief explanation of how to use the system was given. A lineup
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including the face presented previously was shown to the participant and she had to identify
the face that was previously shown. This was to check that the participant remembered what
the target face looked like. A five minute filler task was then given to the participant to
perform, so that there would be a time lapse and intermediate task performed between her
exposure to the target face and her construction of it. The participant was then told to start
constructing the target face with the face recall system and to stop when she was satisfied
that she had found a good likeness to the it. Her choices for best match in each generation
was then displayed on the computer screen and the participant had to select the face image
which she believed to be the most similar to the target. This image will be referred to as
the participant’s best choice. The participant was then shown another lineup containing the
target face and was asked to identify it. This was done to see whether the exposure to the
faces displayed by the face recall system had corrupted her memory of the target face. This
procedure was repeated for the other face in Figure 7.4. The order in which the two faces for

reconstruction were presented was alternated for each participant.

(a) Strange face. (b) Familiar face.

Figure 7.4: The face images to be found in Experiment 2. The strange face is a face image
that came from the same set of faces that where used to generate the eigenfaces. The familiar
face is Tom Cruise, a well-known actor.

Results

Appendix C contains all the results obtained from Experiment 2. What is presented here is

a portion of the results and some summarising statistics with discussion.

Figure 7.5 shows the best choices of some of the participants for the reconstruction of the
unfamiliar face. All the best choice likenesses to the unfamiliar face generated in Experiment

2 are shown in Figure C.2 in Appendix C.
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(a) (b) (c) (d) (e) (f)

Figure 7.5: Face likeness images to the unfamiliar person found in Experiment 2. A facial
image of the unfamiliar person is shown in Figure 7.4(a). The face images shown are the best
choices of participants 2, 4, 7, 8, 12 and 15, displayed in the same order.

(a) (b) (c) (d) (e) (f)

Figure 7.6: Facial likeness images to the familiar person (Tom Cruise) found in Experiment
2. A facial image of Tom Cruise is shown in Figure 7.4(b). The face images shown are the
best choices of participants 5, 6, 8, 11, 12 and 13, displayed in the same order.
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Figure 7.6 shows the best choices of some of the participants for the reconstruction of the

familiar face. All the best choice likenesses to the familiar face generated in Experiment 2 are

shown in Figure C.3 in Appendix C.

R

1
y| V' IR

Figure 7.7: The best match faces chosen by participant 6 in her search for a facial image
likeness to Tom Cruise. The first face is her choice of best match for the first generation, the
second face is her choice for the second generation and so on. The sequence goes from left
to right, top to bottom. She made 22 choices in all and chose her 17th choice to be her best
choice.

Y

Figure 7.7 shows the best match faces chosen by participant 6 in her search for a facial likeness

to Tom Cruise. Again it can be noted that there is little difference in the last faces.

Table 7.7 gives an analysis of the times taken to find likenesses to each of the target faces.

As in Experiment 1 the times were low.

Table 7.8 gives an analysis of the number of generations that were run through to find like-
nesses to each of the target faces. The mean number of choices made per construction is

approximately 5 choices more than in Experiment 1.

Table 7.4 gives an analysis on the differences between the number of choices made and the

choice number of the best choice. The mean difference is also larger than in Experiment 1.
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mean minimum | maximum | standard deviation
(minutes) | (minutes) | (minutes) (minutes)
strange face 12.3 6 28 5.4
familiar face 11.9 4 28 7.0

Table 7.7: The mean, minimum, maximum and standard deviation of the time taken to find
the facial likeness images in Experiment 2. The time for each reconstruction is given in Table
C.1 in Appendix C.

mean | minimum | maximum | standard deviation
strange face | 19.6 9 30 5.7
familiar face | 21.5 10 30 6.1

Table 7.8: The mean, minimum, maximum and standard deviation of the number of choices
made to find facial likeness images in Experiment 2. The number of choices for each recon-
struction is given in Table C.1 in Appendix C.

mean | minimum | maximum | standard deviation
strange face 5.7 0 15 5.3
familiar face 4.4 0 17 3.8

Table 7.9: The mean, minimum, maximum and standard deviation of the difference between
the number of choices made and the choice number of the final choice for each face search in
Experiment 2.
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7.2.2 Experiment 2 assessment phase

Like in Experiment 1 the assessment was done by presenting the generated face image above
a lineup of faces which included the target face. Judges then specified the face in the lineup

which they thought was the most similar to the generated face.

Procedure describes the judging procedure and results presents the results of the judging.

Procedure

For each of the target faces 6 other face images were chosen to be in the lineup with it. For
the unfamiliar face image the 6 face images were chosen from the original unstandardised
face images obtained from the University of Sterling. For Tom Cruise’s face 6 other face
images of famous actors were selected. For each participant a page was laid out with their
two constructions above the associated lineup containing the construction’s target. The order
of presentation of the constructions as well as the position of the targets within the lineup
was changed in each participant’s lineup page. This was done such that the permutations
were as different as possible. Then 20 copies of each of these pages were made, resulting in

300 pages. Two of the 15 different lineup pages are included at the end of Appendix C.

These 300 lineups were again handed out to psychology students at the University of Cape
Town. The 300 judges were told to specify which face in each lineup looked like the generated

face image above the lineup.

Results

227 of the 300 lineup pages were returned unspoilt. The judgements they contained are
tabulated in Table 7.5. It shows the judgements for each of the generated facial likeness

images in Experiment 2.

Table 7.10 is summarised in Table 7.11. It shows that the unfamiliar face was correctly
identified 17% of the time and the familiar face was identified 58% of the time.

The 17% correct identification of the constructions of the unfamiliar face is not much better
than the pure chance probability of 14%. The reason for the poor reconstruction was initially
thought to be the poor reconstruction capability of the eigenfaces for the unfamiliar face.
This was checked by projecting the unfamiliar face onto the eigenface axes and then using
the obtained eigenface coefficients to reconstruct the face. The results of this reconstruction
are shown in Figure 7.8 and this however shows that a good reconstruction of the unfamiliar

face can be obtained with the eigenfaces.
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strange face familiar face
correct | incorrect | correct | incorrect

participant 1 5 8 9 4
participant 2 7 7 13 1
participant 3 0 16 8 8
participant 4 3 10 7 6
participant 5 0 16 10 6
participant 6 6 10 9 7
participant 7 3 14 12 5
participant 8 1 16 14 3
participant 9 0 14 3 11
participant 10 2 14 5 11
participant 11 0 15 5 10
participant 12 4 9 11 2
participant 13 5 11 12 4
participant 14 1 14 9 6
participant 15 2 14 5 11

92

Table 7.10: Tabulation of the results obtained from the evaluation of the Experiment 2
lineups. The table shows for each reconstruction performed in Experiment 2 the number of
judges that selected the correct face in the lineup and the number of judges that selected an
incorrect face. For each reconstruction the larger of the two is in bold.

lineups | targets targets

judged | identified | identified (%)
strange face 227 39 17
familiar face 227 132 58

Table 7.11: The number and percentage of correctly selected target faces out of the lineups

in Experiment 2.

(a)

Stan-

dardised
unfamiliar

face.

2 '
-

(b) Recon-
struction.

Figure 7.8: The optimal reconstruction of the unfamiliar face in Experiment 2 with the

eigenfaces used.
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7.3 Feedback from participants

While the participants were reconstructing the target faces in Experiment 1 and Experiment

2 the following feedback was obtained from them:

e Even though they were told to concentrate on the face as a whole when making their
choice of best match, most of the participants said that they chose their best match
according to particular features. 15 participants said they based their decision mainly
on the eyes and eyebrows, 6 said the mouth, 5 said the nose, 4 said the jaw and chin
and 2 said the overall face shape. Many said they based their best match on the most

prominent feature of the face to be found.

e Approximately half the participants said their method of looking through the faces in
the GUI was to look at all the faces at once and wait for a face to ‘jump out’ at them.

The rest said they scanned the faces row by row and assessed each face individually.

e Most participants found it hard to distinguish between face images displayed in the
GUI after the population started converging. The convergence results in the displayed

images looking very similar, this is shown in Figure 6.7.

e Most participants commented on the variation of the displayed face images. The vari-
ations noted were the lighting and the orientation of the head and the position of the

pupils of the eyes.
e Most participants commented on the fuzziness of some of the displayed faces.

e Many participants said they would like to go back to a previous generation of displayed

faces.

e Most participants expressed the wish to change a particular facial feature once the

population had converged.

e Some participants said that it would be easier for them if fewer faces were displayed at

time.

7.4 Problem of cut out hair

A major shortcoming of the developed face recall system in its present implementation is that
the face images it generates do not include the full face image. The sides of the face are cut

away and the face images do not include hair.
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This results in very similar looking faces. The effects of cropping away the hair and parts of
the face on the resultant look of the face can be seen by comparing face images in Figure 5.1,
which are full face images, to those Figure 5.8, which are the same face images cropped. It

can be seen that there is much more information content in the full face image.

This issue is further emphasised in Figure 7.9, which shows the same face with different hair-
styles. That the faces look like those of different people shows the importance of the hair in

face images.

Figure 7.9: The effect of changing the hair on the same face image (Ellis [8]).

Because of this major shortcoming in the current system, not too much can be read into these

experiments.

7.5 Discussion of experiment results

The identification of the target faces in the face lineups were far from as high as would be
wanted for an operational face recall system used by police forces. This is true for both the

unlikely optimal condition in Experiment 1 and the more realistic condition of Experiment 2.

The reconstruction of the unfamiliar face from memory in Experiment 2 was the more real-
istic conditions under which a face recall system would be used. The judged quality of its
reconstructions were especially low. The 17% correct identification is just above chance. It

would seem like the generated face likeness images did not provide any information at all.

The reconstructions of the familiar face from memory were fair with a 58% correct identifica-
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tion in the lineups. Some of the likeness images generated for it were extremely good. This

can be seen in judgements of each likeness image in Table 7.10.

What can also be noted is that some people seem to be able to generate better quality likeness

face images than others. This can be seen in Tables 7.5 and 7.10.

Some of the target faces seemed to be harder to construct with the system than others. This
can be seen in the Tables 7.6 and 7.11, which show that there existed a big difference in the

quality of the reconstructions for the different targets faces.

The short times and small number of generations taken by the participants to arrive at their
best choice is a good feature. Because of the short times the face generation process could be

run repeatedly to try and come up with a good likeness to the target.



Chapter 8

Comparison with Existing Systems

This chapter compares the developed face recall system with the existing face recall systems
presented in Chapter 2. The developed face recall system is shown to address many of the

shortcomings of the existing systems (these were laid out in Section 2.2).

8.1 Comparison to normal composite based systems

The three main problems in face recall systems put forward in Section 2.2 are addressed by

the developed system as follows:

1. The expressive capabilities of the system, if implemented properly, should be sufficient.
This is because by using the correct coefficients in the linear combination of the eigen-

faces a good likeness to the desired face can be generated (see Section 5.2.2).
2. There is no need to have a skilled intermediary due to the simplicity of the system.

3. It is recognition based, so there is no selection of individual features in isolation. It is

a true holistic solution to the problem.

Thus this system addresses the three main problems which sketch artists and normal composite-

based systems (not recognition-based, like Johnston’s) did not properly address.

Johnston’s and Brunelli’s systems, even though they have not been used for law enforcement
purposes, seem to address the three main problems better than their predecessors. Both
systems have unique problems associated with their methods which might stop them from
being viable face recall systems. The developed face recall system is based on a combination

of the ideas used in both systems and thereby addresses the unique shortcomings of both.
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8.2 Comparison to Johnston’s system

The expressive capabilities of the developed system is better due to the fact that the system
can potentially generate any likeness if implemented properly.

It should be easier for an optimisation algorithm like PBIL or a genetic algorithm to search
through faces in the developed system than in Johnston’s (see Section 5.3). This should result
in fewer generations needed before an acceptable facial likeness is generated. By restricting
the number of generations the witness is exposed to, he/she has to judge fewer faces. This
makes it easier for him/her to maintain concentration. By exposing the witness to fewer
images the chances of corrupting their memory should also be reduced. Memory corruption
occurs when the witness’s mental image of the perpetrator gets modified due to the exposure

to other faces.

The user only has to click on the best likeness image in each generation instead of evaluating
every face image that is displayed as has to be done in Johnston’s system. This once again
reduces the load on the witness and should help them maintain concentration. It also reduces

the time needed to arrive at a facial likeness.

8.3 Comparison to Brunelli’s system

Internally Brunelli’s system also uses linear combinations of eigensurfaces to produce a face
image. However, instead of using one set of eigenfaces to produce its face image, it uses
eigeneyes, eigennoses and eigenmouths which are positioned and smoothed together to form

a face image. A set of eigeneyes was shown in Section 3.3.1.

Because of the reconstruction capabilities of the eigensurfaces technique, both Brunelli’s and
the developed system should be able to produce sufficiently good facial likenesses if the correct
coefficients are found for the systems. The deciding factor in the feasibility of both methods

is whether these coefficients can be found for the system.

The differences between the developed system and Brunelli’s are :

1. In Brunelli’s system each facial feature is made independently of the others and then
positioned in the face, as opposed to the developed system where the whole face image

is made up of one set of eigenfaces.

This has the following consequences for Brunelli’s system:

(a) There are more coefficients to set. There must now be sets of coefficients for each

eigenfeature and also coefficients associated with the positioning of these features,
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instead of just one set of coefficients for the eigenfaces as in the developed system.
This results in a much larger search space, which makes finding an optimum or

close to optimum point more difficult.

(b) The system is not truly holistic as only one feature is modified at a time, even

though this modification can be seen in context of the face built at that point.

(c) The intrinsic statistical information about the allowable matching and position-
ing of different-looking features in real faces is captured to a large degree in the
eigenface technique. This information is lost using the eigenfeature technique. It
is possible with Brunelli’s system to have a face that has eyes and mouth that
could both exist, but which would never be found on the same face. Thus in the
developed system all the possible faces generated conform to the statistics of real
faces with respect to the matching and positioning of different-looking features,
while with Brunelli’s system this is not the case. So while using Brunelli’s system
the witness will have to sort through faces that could not exist, this adds to the
difficulty of the task.

2. In Brunelli’s system there is no systematic searching strategy — it is up to the witness
to try and devise some sort of searching method and then to execute it. The system
is also restricted by the witness’s memory as a result of the following: to reduce the
number of faces to be exposed to, it is necessary to remember the faces presented by
the system and their associated coefficients. This can be used to stop the witness from
being exposed to faces similar to those they have already seen but do not look like the
perpetrator. It can also be used to direct the witness to faces that are close to faces that
they rated as being similar to the perpetrator’s. The remembering of many different
combinations of scroll bar settings and their associated faces is something which humans

will not do well.

In the developed system the searching strategy is implemented by the system. The
search algorithm, PBIL, performs the task of choosing faces for the user to evaluate
better than the user can. Because it is implemented on computer it can have a memory

of how previously displayed faces and their associated coefficients were evaluated.



Chapter 9

Conclusion

The significant findings and results obtained in this thesis are summarised and presented in

this chapter.

The literature survey performed in this thesis led to the conclusion that existing face recall
systems do not solve the task of translating a face in a person’s memory to a visual image as

effectively as would be desired. This prompted the development of a new face recall system.

It was shown in this thesis that using a linear combination of eigenfaces it is possible to
generate acceptable face likeness images to new face images, with different coefficients in the
linear combination resulting in different looking faces. The novel idea of using an optimisation
algorithm to search through these coefficients to try and generate a face likeness image to a
face in memory was tried. PBIL was the evolutionary optimisation algorithm used and the
evaluation of the cost function is performed by the human user trying to generate the visual

image.

The developed face recall system has a simple user interface because all that is required from
the user is to repeatedly specify which of a set of face images looks most like the face that
he/she is trying to construct. This is the evaluation of the cost function. It is also shown
that if the correct coefficients for the linear combination of eigenfaces are found the system

is capable of generating good photographic quality likenesses.

A drawback of this technique is that eigensurfaces cannot be used to generate realistic hair
in the face images, so all the face images produced by this system show the face up to the
start of the hairline above the forehead. This makes the task of constructing a face likeness
image harder for the user and the resultant generated face likeness image does not have hair

— this detracts from its ability to be a good representation of the face in memory.

Experiments were performed with the developed face recall system. These experiments each
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had 15 participants who generated face likeness images. In the first experiment the partici-
pants generated three face likeness images with the target images to be reconstructed viewable
throughout the generation process. In the second experiment the participants generated the
face images from memory. Here they were briefly shown a picture of a familiar and an un-
familiar face and had to construct them from memory using the face recall system. Each of
the face likeness images created in the two experiments where then judged by a different set
of 13 or more judges. This was done by presenting the generated face likeness image above
a lineup of 7 face images containing the target face that was reconstructed. The judges then

had to try and identify the target face in the lineup.

The number of generations and time used by the participants to generate their face like-
ness images were low. The highest mean number of generations for a target image was 20.
This is extremely low considering that evolutionary optimisation algorithms normally run for

thousands of generations. The highest mean time for a target image was 22 minutes.

In the experiments where the face likeness images were generated from memory by the partic-
ipants, the results were good enough for the judges to identify the target image in the lineup
only 17% of the time. This is just above the 14% probability of the target face being selected
if the face likeness image provided no information as to which was the target face in the
lineup. The reconstructions of the familiar face were better with a 58% correct identification

of the target in the lineup.

The results obtained from experiments performed using this system show that in its present
state it is not a viable system, but if these are interpreted as being preliminary feasibility

studies the results are promising.
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Appendix A

Face images used to obtain the

eigenfaces

The following croped face images are the standardised (see section 5.1.2) set of face im-
ages that were used to generate the eigenfaces. These are 46 of a set of 50 face images
from The Psychological Image Collection at Stirling (PICS) maintained by the University
of Stirling Psychology Department. The image collection is available from the internet via
http://pics.psych.stir.ac.uk/. The other 4 images are shown in Fig. 5.9. The set of 46 faces
shown below is reffered to as the training set of face images and the set of 4 in Fig 5.9 is

reffered to as the test set.
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Figure A.1: Part A. Face images used to obtain the eigenfaces
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Figure A.1: Part B. Face images used to obtain the eigenfaces



Appendix B

Experiment 1

This appendix contains the results obtained from experiment 1 and some of the inputs used

in it. Some of these results are in Chapter 7, but have been included here for completeness.

All the target faces to be reconstructed are shown in Figure 7.1. The 15 reconstructions of
each target are shown in Figures B.2, B.3 and B.4. Table B.1 shows the number of generations
used, the best choice number and the time taken for each face likeness image generated in
this experiment. Table B.2 gives the judgements obtained on the reconstructions. The last
two pages of this appendix contain the lineup pages used in the judging of participants 3 and
11.

(a) (b) (c)

Figure B.1: The face images to be found in Experiment 1.
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13 14 15

Figure B.2: The results of trying to find the face in Figure B.1(a). The number under each
face image is the number of the participant who generated the face likeness image.
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13 14 15

Figure B.3: The results of trying to find the face in Figure B.1(b). The number under each
face image is the number of the participant who generated the face likeness image.



APPENDIX B. EXPERIMENT 1 110

E1
|

= e Y )
i

1 2 3 4

F 1 E 1
+ntiE

7 8 9 10 11 12

13 14 15

Figure B.4: The results of trying to find the face in Figure B.1(c). The number under each
face image is the number of the participant who generated the face likeness image.
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Fig. B.1(a) Fig. B.1(b) Fig. B.1(c)

choices | final | time | choices | final | time | choices | final | time

choice | (m) choice | (m) choice | (m)

participant 1 18 16 15 12 9 22 13 11 18
participant 2 9 9 14 7 2 15 8 3 7
participant 3 10 10 10 13 13 15 8 8 9
participant 4 10 10 8 7 5 5 8 6 7
participant 5 6 5 5 7 5 7 9 9 9
participant 6 17 17 5 17 17 6 19 18 5
participant 7 20 18 8 15 13 6 19 10 10
participant 8 11 11 7 21 21 18 9 9 7
participant 9 15 15 12 16 14 16 17 14 28
participant 10 15 13 13 19 14 24 13 13 10
participant 11 27 15 25 16 15 11 22 15 10
participant 12 9 6 11 6 1 11 13 13 13
participant 13 24 20 10 21 21 6 13 11 6
participant 14 12 11 7 20 11 8 17 15 10
participant 15 29 20 8 28 16 6 30 19 8

Table B.1: The number of generations used, the best choice and the time taken for each
reconstruction in Experiment 1. The time is from when the first population of faces was
displayed on the GUT until the participant pressed stop.

Fig. B.1(a) Fig. B.1(b) Fig. B.1(c)
correct | incorrect | correct | incorrect | correct | incorrect

participant 1 14 2 8 8 4 12
participant 2 8 11 12 7 7 12
participant 3 10 5 9 6 0 15
participant 4 12 5 16 1 11 6
participant 5 16 3 4 15 3 16
participant 6 10 8 12 6 0 18
participant 7 13 2 9 6 7 7
participant 8 14 4 15 3 6 12
participant 9 11 7 8 10 1 17
participant 10 11 9 11 9 11 9
participant 11 12 6 8 10 15 3
participant 12 14 3 11 6 5 12
participant 13 14 4 13 5 2 16
participant 14 13 6 11 8 5 14
participant 15 12 8 5 15 1 19

Table B.2: Tabulation of the results obtained from the evaluation of the Experiment 1 lineups.
The table shows for each reconstruction performed in Experiment 1 the number of judges that
selected the correct face in the lineup and the number of judges that selected an incorrect
face. For each reconstruction the larger of the two is in bold.
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Appendix C

Experiment 2

This appendix contains the results obtained from Experiment 2 and some of the inputs used

in it. Some of these results are in Chapter 7, but have been included here for completeness.

All the target faces to be reconstructed are shown in Figure 7.4. The 15 reconstructions of
each target are shown in Figures C.2 and C.3. Table C.1 shows the number of generations
used, the best choice number and the time taken for each face likeness image generated in
this experiment. Table C.2 gives the judgements obtained on the reconstructions. The last
two pages of this appendix contain the lineup pages used in the judging of participants 6 and
13.

(a) Strange face. (b) Familiar face.

Figure C.1: The face images to be found in Experiment 2. The strange face is a face image
that came from the same set of faces that where used to generate the eigenfaces. The familiar
face is Tom Cruise, a well known actor.
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13 14 15

Figure C.2: The results of trying to find the unfamiliar face from memory. Figure C.1(a) is
the face which is to be reconstructed. The number under each face image is the number of
the participant who generated the face likeness image.
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7 8 9 10 11 12

13 14 15

Figure C.3: The results of trying to find the familiar face from memory. The familiar face was
Tom Cruise’s. Fig C.1(b) was shown to the participants to refresh their memory. The number
under each face image is the number of the participant who generated the face likeness image.
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strange familiar

choices | final time | choices | final time

choice | (min) choice | (min)
participant 1 25 25 11 30 26 8
participant 2 30 19 11 30 23 9
participant 3 12 8 6 15 11 4
participant 4 14 14 10 10 9 7
participant 5 17 11 12 21 19 13
participant 6 22 7 12 22 17 12
participant 7 18 17 15 21 19 9
participant 8 16 14 18 28 25 28
participant 9 18 5 8 30 25 9
participant 10 17 8 14 19 15 16
participant 11 20 16 12 25 8 13
participant 12 29 25 28 23 21 27
participant 13 9 7 8 13 7 9
participant 14 24 9 6 16 16 6
participant 15 23 23 13 20 16 9

Table C.1: The number of generations used, the best choice and the time taken for each
reconstruction in Experiment 2. The time is from when the first population of faces was
displayed on the GUI until the participant pressed stop.

strange face familiar face
correct | incorrect | correct | incorrect

participant 1 5 8 9 4
participant 2 7 7 13 1
participant 3 0 16 8 8
participant 4 3 10 7 6
participant 5 0 16 10 6
participant 6 6 10 9 7
participant 7 3 14 12 5
participant 8 1 16 14 3
participant 9 0 14 3 11
participant 10 2 14 5 11
participant 11 0 15 5 10
participant 12 4 9 11 2
participant 13 5 11 12 4
participant 14 1 14 9 6
participant 15 2 14 5 11

Table C.2: Tabulation of the results obtained from the evaluation of the Experiment 2 lineups.
The table shows for each reconstruction performed in Experiment 2 the number of judges that
selected the correct face in the lineup and the number of judges that selected an incorrect
face. For each reconstruction the larger of the two is in bold.



