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Abstract

This paper presents a method to model the photometric proper-
ties of real-world objects from single-view and calibrated multi-
view image sets. Lights are modelled as point sources and re-
flection properties are modelled using the isotropic Ward re-
flectance model. Lighting and reflectance are simultaneously
recovered using known geometry. Measured reflectance data
and model results are presented along with rendered scenes
generated using the photometric models. The rendered images
compare closely to the original images with the colours, posi-
tions of shadows and highlights accurately reproduced.

1. Introduction

In computer graphics, an image of an object is rendered by cal-
culating how light sources interact with objects, given the shape,
the position of the lights, the reflectivity of the objects and the
viewpoint of the observer. Rendering, or more specifically for-
ward rendering, is widely used to create special effects and an-
imation in television shows and films and is perhaps a more
familiar concept than inverse rendering. Forward rendering in-
volves calculating the appearance of an object when geometry,
reflectance properties and lighting are known.

Inverse rendering is the logical opposite of forward rendering.
It is the process of decomposing a scene with unknown geome-
try, reflectivity and lighting into its constituent elements such
that the same scene could be synthetically recreated through
forward rendering. Recovering geometry, reflectance and light-
ing through inverse rendering when all three properties are un-
known is theoretically an ill-posed problem [15], since in order
to recover the lighting distribution for a scene, geometry and
reflectance data for the objects in the scene are required. Simi-
larly, to measure the reflectance data, geometry and the lighting
distribution are required.

In this paper, geometry is known and is represented by a trian-
gular mesh model consisting of vertices defined in world coor-
dinates and a connectivity matrix. Reflectivity is represented
by a bidirectional reflectance distribution function (BRDF)
model [4, p. 61], which describes how the object’s material ab-
sorbs and reflects light as the incoming light angle and view-
point vary. The lighting distribution is modelled by an ambient
light intensity and point light sources defined by a position in
world coordinates and intensity.

The appearance of an object in a scene can be modelled by a
geometric and a photometric model. The geometric model de-
scribes the position of the object in space and the orientations
of the facets that comprise the model. The geometry of objects

is assumed to be known in this paper. Geometry data is ob-
tained using a 3D scanner. The photometric model consists of
two models: a lighting model and a reflection model. The light-
ing model describes the light distribution of the scene in which
the object is imaged and the reflection model describes how the
light interacts with the surface of the object. Given these mod-
els, the object can be rendered from a novel viewpoint and under
novel lighting.

This paper is organised as follows: Section 2 briefly discusses
work related to this paper; Section 3 describes the process of
fitting lighting and reflectance models to the data; Section 4 de-
tails the equipment, methods and calibration involved in the data
acquisition process; Section 5 explains the preprocessing steps
performed on the data, including aligning the 3D data with the
image data, that are necessary to ensure that the different data
are consistent with each other; Section 6 contains results of the
reflectance and lighting measurements for the rock data. Sec-
tions 7 and 8 contain concluding remarks and possible future
work.

2. Related work

A device known as a gonioreflectometer is traditionally used
to measure the reflectance properties of an object. Recent re-
search has led to image-based methods [11, 12, 18] that mea-
sure reflectance properties of an object without the need for
specialised equipment. BRDF measurements are inherently
noisy [19] and a complete estimated BRDF for an object re-
quires many data points. BRDF models are either empirical or
physics based. Model parameters are optimised so that predic-
tions closely match BRDF measurements. BRDF models are
convenient for applications in computer vision and computer
graphics because an entire BRDF data set can be substituted
by a few parameters. Noise is also averaged out when fitting a
restricted model to the data.

Physics based models, such as the Torrance and Sparrow [17]
and He-Torrance [8] models, are preferred in some litera-
ture [5, 16], but implementation is complicated because of de-
pendence on wavelength. Low dimension models, such as the
isotropic Ward model [19], are simpler to implement and pro-
vide adequate accuracy [6, 18]. Other models by Phong [14]
and Lafortune et al. [9] are also widely used [1, 11, 12, 20].

3. Photometric modelling

To model the photometric properties of an object, a model of
the light sources in a scene is required. This model provides



information about the intensity of the light and incidence angles
for light that arrives at the object’s surface. Only once a model
for the scene lighting distribution is available can the reflectance
properties of the object be measured.

3.1. Modelling light sources

Most reflection models describe the two fundamental types of
reflection, namely diffuse and specular reflection. A simple as-
sumption to make is that the objects in the scene exhibit only
one type of reflection and not a combination, as is usually the
case. The reflection is hence modelled by a single-parameter
BRDF model which describes the albedo or ratio of incident to
reflected light. This parameter cannot be calculated without a
lighting distribution so it is assumed arbitrarily to be unity, thus
the object is assumed to exhibit either perfect specular or perfect
diffuse reflection.

The reflectance model used as an initial estimate should be cho-
sen based on the typical reflectance properties of the objects to
be modelled. Most objects exhibit Lambertian (or diffuse) re-
flection, with some exhibiting both diffuse and specular reflec-
tion. The exception is highly reflective surfaces such as mirrors,
which are mainly specularly reflective. As such, the Lambertian
assumption is used to infer an initial estimate for the lighting
distribution.

For an object with Lambertian reflection, the intensity of a point
p for a given light distribution is given by

I(p) = L0 +

nX
i=1

Np · (Vi − Pp)Γ(p, i)
1

||Vi − Pp||2
Li, (1)

where L0 is the ambient light term that accounts for ambient
light and inter-reflections, n is the number of point light sources,
Γ(p, i) is a function that is 1 when point p is visible to light
source i and 0 otherwise, Np is the normal vector at point p, Vi

is the position vector for light source i, Pp is the position vector
for the point p, and Li is the intensity for light source i.

The vector from the point p on the surface to the light source
i is Vi − Pp. The 1

||Vi−Pp||2
factor is the falloff in intensity

that occurs as a result of the light energy being distributed over
an increasingly larger area as distance from the light source in-
creases. The falloff is inversely proportional to the square of the
distance from the light source.

Light sources are modelled as points with a position in 3D
space and an intensity for each of the RGB channels. There
is an additional ambient light term that accounts for any back-
ground lighting that is present in the room, as well as any inter-
reflection that might occur. The number of light sources is a
user-defined input. Face orientation is extracted from the ge-
ometric model of the object. Selecting the correct number of
light sources for the model is not critical because light sources
will converge to the same point in space if there are more light
sources in the model than in reality.

The position and intensity for each light source is optimised
using the MATLAB non-linear optimisation routine lsqnon-
lin. The cost function employed is defined as the squared er-
ror between the intensity obtained using the rendering equation
(Equation 1) and the observed intensity from image data. The
point light sources are initially optimised without an ambient
light term. Once good estimates for the point light sources are

available, their positions and intensities are optimised in a sec-
ond step along with the ambient light intensity. This lighting
distribution is used as an initial estimate and is further refined
when reflectance and lighting parameters are simultaneously es-
timated.

3.2. Modelling reflectance

The isotropic Ward model [19], used for modelling reflectivity
in this research, is defined as

β(θi, φi, θo, φo) =
ρd

π
+
ρs exp

`
− tan2(δ)/α2

´
4πα2

, (2)

where ρd is the diffuse reflectance, ρs is the specular re-
flectance, α is the standard deviation of the surface slope, and
δ is the angle between the half vector, ĥ, and the surface nor-
mal, n̂. It offers a good compromise between complexity and
accuracy. The Ward model does not explicitly depend on wave-
length, but diffuse and specular reflectivity parameters can be
calculated for each RGB channel so that colour can be mod-
elled.

Calculating the ρd, ρs and α parameters is done by regression in
an optimisation framework using the MATLAB lsqnonlin non-
linear optimiser. Each pixel in every image of an object pro-
vides a data point that is used to calculate optimal BRDF model
parameters to fit the the observed BRDF data. Angle informa-
tion is deduced from the mesh model of the object, the camera
positions, and the light source positions. The viewing ray is
obtained by backprojecting each pixel onto the 3D model of the
object. The cost used in optimising is the squared error between
the intensity of each observed pixel and the intensity calculated
from the rendering equation

I(p) =
ρd

π
L0+ (3)

nX
i=1

β(θi, φi, θo, φo)Γ(p, i) cos(θi)
1

||Vi − Pp||2
Li,

where ρd is the diffuse reflectance parameter of the Ward model,
L0 is the intensity of the ambient light, n is the number of light
sources, β(θi, φi, θo, φo) is the Ward BRDF model, Γ(·) is a
function that is 1 when point p is visible to light source i and 0
otherwise, Vi is the position vector for light source i, Pp is the
position vector for the point p, and Li is the intensity for light
source i.

Once a BRDF model for an object has been calculated, the light-
ing distribution can be refined using the BRDF model. Vogiatzis
et al. [18] choose to alternately optimise the lighting distribu-
tion and the BRDF model until both converge. In this paper
however, the BRDF model parameters and lighting distribution
are optimised simultaneously, which leads to faster convergence
and has a lower likelihood of converging on a local minimum.

4. Data acquisition

Four data sets are used to generate the results in this paper: two
single-view data sets of marbles and two multi-view data sets
of rocks. The geometry for the marbles is approximated by a
sphere and therefore data does not need to be captured in these
cases. Geometry data is captured for the two rock data sets.



Image data is needed for all four data sets to make reflectance
measurements. A single distant point light source is used.

4.1. Capturing geometry data

The geometry of an object is represented by a 3D model that
closely approximates its structure. A 3D mesh model of an ob-
ject consists of vertices connected together in a mesh, with each
facet of the model forming a triangle. A mesh model not only
yields shape information but also contains the normal vectors
for each facet. This is important for measuring the angles at
which the light hits the object surface relative to the viewing
angle. Measuring these two angles is fundamental in the mea-
surement of the reflectance of an object.

Geometry data is captured using the NextEngine Desktop 3D
Scanner. It is a multi-stripe laser triangulation 3D scanner that
interfaces with its own proprietary software to produce 3D mod-
els of real world objects. The 3D models it produces are accu-
rate up to 0.125 mm in macro mode and 0.375 mm in wide an-
gle mode [13]. The high level of accuracy of the model means
it can be used as a ground truth or baseline description of the
geometry of the object.

The scanner captures colour information for each view of the
object and then texture maps these images onto the 3D model.
Regions of overlapping colour data are blended. The colour in-
formation captured is adequate for visualisation purposes, but
qualitative experiments have shown that the colour data can
contain significant errors and are not suitable for photometric
modelling.

It is important to have control over the lighting conditions of the
room for reflectance and lighting recovery so that ambient light
and the positions and types of light sources used are well suited
to capturing data for photometric modelling.

4.2. Capturing image data

Colour data is captured using a digital camera because the data
acquired by the 3D scanner is not suitable for photometric mod-
elling. A 1024 × 768 colour Point Grey Flea camera mounted
on a tripod is used to capture frontlit and backlit images of the
objects. The camera’s gamma and gain parameters are fixed at
unity so that the intensity response of the camera is as close to
linear as possible and noise is minimal. The camera aperture
is chosen to be just large enough so that the brightest regions
of the image are almost saturated when the shutter speed is at a
maximum, but small enough to maintain a large depth of field.
A large depth of field ensures that all parts of the sample are in
focus.

The object is positioned on top of a fluorescent lightbox to
simplify silhouette extraction from the backlit images. A pro-
grammable and accurate turntable is used to change the posi-
tion of the object and light source relative to the camera. The
halogen light source mounted on a stand is positioned on the
turntable approximately 50 cm above the object. To minimise
ambient light, the room is darkened so that the halogen light
source is dominant.

The turntable is used to position the object at 20 different ori-
entations, making up a complete 360◦ revolution. Each orien-

tation is rotated 18◦ from the previous one. The frontlit image
is captured with the halogen light source on and the fluorescent
lightbox off. The backlit image is captured with the opposite
configuration. A frontlit and backlit image is captured for each
orientation.

(a) Frontlit image: rock 1 (b) Backlit image: rock 1

(c) Frontlit image: rock 2 (d) Backlit image: rock 2

Figure 1: Frontlit and backlit images of objects. The frontlit im-
age is used to extract colour information and the backlit image
is used to extract the silhouette of the object.

4.3. Calibration

The images in the rock data sets are captured as a turntable se-
quence. A set of calibration images is captured of a checker-
board pattern positioned on the turntable, which is used to cal-
culate the extrinsic camera parameters for each turntable posi-
tion. This calibration step is performed by means of the Camera
Calibration Toolbox for MATLAB [2].

The grid points extracted from the the turntable image sequence
of the checkerboard calibration pattern are coplanar because the
calibration pattern is rotating about a fixed axis. Calibrating in-
trinsic camera parameters requires non-coplanar grid points. As
a result, the intrinsic camera parameters cannot be determined
from these images. A separate set of calibration images is re-
quired with non-coplanar data points spread over the entirety
of the image plane at varying depths. Intrinsic parameters, in-
cluding focal length, distortion and principal point, can be de-
termined from this calibration image sequence.

The Camera Calibration Toolbox gives a good estimate of the
intrinsic and extrinsic camera parameters. However, there is a
chance that the calibration results contain small errors due to
slight variations in the position of the object. These variations
can be brought on by vibrations from the turntable or small er-
rors in turntable position.

A final calibration step similar to a bundle adjustment [7] op-
timises the camera parameters to minimise these errors. The
silhouettes extracted from the backlit images are used to calcu-
late the epipolar tangency (ET) error. ET error is defined as the



squared perpendicular distance between the tangent point on the
silhouette for a particular epipole and the epipolar line. A bun-
dle adjustment involves optimising the camera parameters for
all cameras such that the ET error is a minimum. This optimi-
sation is performed using the Levenberg-Marquardt non-linear
minimisation method as implemented in the MATLAB lsqnon-
lin function.

5. Data pre-processing

Before reflectance and lighting estimates can be made from in-
put 3D and image data, the raw data resulting from the data cap-
ture stage need to be processed to account for limitations and
inaccuracies in the data capture process. The pre-processing
steps include undistorting image data to remove radial and tan-
gential distortion introduced by the camera lens, and aligning
image and 3D data so that the two forms of data can be pro-
cessed within the same reference frame.

5.1. Undistorting image data

When calibrating the intrinsic properties of the cameras, a 5-
parameter combined radial and tangential distortion model of
the camera lens is calculated. The distortion model produced
by the Camera Calibration Toolbox is non-linear and hence can-
not be modelled by the camera matrix. As a result, the image
data are undistorted directly by generating new images with the
distortion removed. Both frontlit and backlit images are undis-
torted. To reduce the noise in the undistorted silhouette, the sil-
houette is first extracted from the unprocessed image and then
the extracted silhouette coordinates are undistorted. The undis-
tortion is performed using functions from the Camera Calibra-
tion Toolbox.

5.2. Aligning image and 3D data

For measuring reflectance and lighting data from images, the
colour data at points in the images must correspond to the cor-
rect points on the surface of the 3D model. This means that the
coordinate system in which the cameras are specified must be
aligned to the coordinate system in which the 3D model is spec-
ified. This can be achieved by transforming the vertices of the
3D model with a transformation matrix T = [λR t] where λ is a
scaling factor, R is the rotation matrix that aligns the orthogonal
vectors, and t is the translation vector between the origins.

The transformation matrix T is optimised iteratively by min-
imising the ET error between pairs of silhouettes generated
from the transformed 3D model and backlit image data. The vi-
sual hull [10], or volume of intersection of the silhouettes from
each camera, is used as an approximate 3D model that lies in the
same coordinate system as the cameras. A good initialisation is
required for the transformation matrix to ensure convergence,
especially due to the rotational degrees of freedom of the ma-
trix.

The eigenvectors of the vertices of the 3D data form reliable
orthogonal bases that have approximately the same orientation
as the vertex data for both sets of 3D data. The eigenvectors
are used along with the centroids of vertices of the visual hull
and ground truth. The ground truth data is translated so that the

origin coincides with the centroid of the vertices. The vertices
are rotated so that the eigenvectors of the ground truth data are
aligned with the eigenvectors of the visual hull. The vertices
of the ground truth data are then translated so that the centroid
coincides with that of the visual hull. The scaling factor is ini-
tialised to be the average ratio of the caliper diameter measure-
ments [3, p. 12] along the directions defined by the orthogonal
bases of the visual hull and ground truth data.

The cost function that is minimised to find the optimum trans-
formation matrix is defined as

e(C,S,T,V) =

N−1X
i=1

NX
j=i+1

[∆(Ci,Cj , Sj , β(TV,Ci))]
2 (4)

where e(·) is a function that returns the sum of squared dis-
tances between the epipolar lines and tangent points for all
camera pairs, C is the set of cameras, S is the set of silhou-
ette boundary coordinates, N is the number of views, T is the
transformation matrix that is applied to mesh vertices V, ∆(·)
is a function that returns the epipolar tangency error for a pair
of cameras Ci and Cj with boundary points β(TV,Ci) and Sj ,
and β(·) is a function that returns the projection of vertices V
into camera Ci.

Figure 2 shows the initial starting point and also the result of
the optimisation process of aligning the 3D model to the im-
age data. The starting point obtained using the initial guess for
the transformation matrix is close to the optimum solution. Af-
ter the final iteration, the tangent points on the 3D model and
epipolar lines approximately coincide, as is the expected out-
come when minimising Equation 4.

(a) Before optimisation (b) After optimisation

Figure 2: Results of aligning 3D data to image data as seen from
a single viewpoint. Figures 2(a) and 2(b) show the alignment of
the image silhouette (bold red outline) with the 3D model (or-
ange points) before and after of the optimisation process respec-
tively. The initial estimate for alignment can be seen to be a
good starting point, since the silhouette and 3D model are only
slightly misaligned. The image silhouette and 3D model are
well aligned after the final iteration. The epipolar tangent lines
can be seen in blue at the top and bottom of both images. The
tangent points on the 3D model are shown in magenta and can
also be seen at the top and bottom of each image.



6. Results

A representation of the positions of the point light sources is
shown in Figure 3 for the rock data sets. Each image shows the
objects as viewed from the positions of the point light sources
in each scene, this indicates the portion of the surface that is
illuminated by each light.

Figure 4 shows a spherical plot of the measured reflectance data
and the model that fits the data. The data come from the first
marble data set. The diffuse reflection (constant radius) and the
specular highlight (radial spike) can be seen in the plot.

Figure 5 shows the results of the lighting and reflectance re-
covery process for four data sets comprising of two single-view
data sets of an opaque glass marble and two multi-view data
sets of different rocks. Figures 5(a), 5(d), 5(g) and 5(j) show
the original image data with background information removed.
Figures 5(b), 5(e), 5(h) and 5(k) show a rendered image of each
object that is generated using only the recovered lighting dis-
tribution and reflectance parameters for each data set. The po-
sitions of the highlights and shadows in the rendered images
correspond to those in the original images. Figures 5(c), 5(f),
5(i) and 5(l) are difference images that show the difference in
intensity of the green colour band between the original image
and the rendered image. The red and blue colour bands exhibit
similar behaviour. The green colour band is used because there
are twice the number of green pixels in the Bayer pattern of the
colour image than red or blue. Fewer interpolation operations
are required on the green data making it more accurate.

The rendered objects can be seen to closely resemble the origi-
nal images. The rendered image of the first rock data set (Fig-
ure 5(h)) does not capture the spatial variation of the material
present in the original image (Figure5(g)) due to the limitation
that the material is assumed to be homogeneous, i.e. the appear-
ance is modelled by one set of reflectance parameters. As a
result, the reflectance parameters model the average appearance
of the objects, which is especially obvious in the grey appear-
ance of the rendered image of the first rock data set.

(a) Rock 1 (b) Rock 2

Figure 3: Each of the rock data sets as seen from each light
source. Each view is from the position of the recovered light
source and indicates which faces are lit by each light source.
The colour represents an RGB encoding of the surface normals.
In these scenes, lighting is represented by a single point light
source and an ambient light source. Ray casting is used to de-
termine which light sources illuminate each face.

7. Conclusion

This paper details the data capture process for measuring the re-
flectance properties of objects from images and highlights con-

Figure 4: BRDF data and model plotted against the azimuthal
and zenith angles of observation. The BRDF data are plotted
as blue points with the Ward model predication plotted as a
green surface. The radial spike corresponds to a specular high-
light and the regions of constant radius correspond to the dif-
fuse colour. The parameters of the Ward model shown here are
ρd = 0.647, ρs = 0.0127 and α = 0.0629.

siderations that need to be taken into account. The geometry
information is captured using a NextEngine Desktop 3D Scan-
ner, which provides more accurate data than image-based meth-
ods. Colour information is captured separately from turntable
sequences and aligned with the geometry information using the
epipolar tangency constraint. Ward reflectance model parame-
ters are estimated through a regression process that matches the
predicted appearance with the original image data.

Qualitative results show promise, with renderings comparing
closely to original images. These results indicate that the re-
flectance and lighting modelling succeeds in modelling the ap-
pearance of the objects, with discrepancies only appearing when
more than one material is present in an image. This and other
limitations are to be addressed in future work.

8. Future work

The following avenues are envisioned as future work: a quanti-
tative analysis of the accuracy of surface normals obtained from
the visual hull as compared to 3D scanner data; an analysis of
the effect on accuracy of reducing the number of triangles in the
geometry model to find a balance between processing speed and
accuracy; an analysis of the effect on accuracy of reducing the
number of data points in the sample for reflectance and lighting
recovery to find a balance between processing speed and ac-
curacy; extending the reflectance model to account for objects
made of more than one material and spatial variation in mate-
rial on the surface of the object in a similar manner to Lensch
et al. [11]; and colour calibration to ensure linearity in colour
measurements;
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(a) Original image (b) Rendered view (c) Difference (d) Original image (e) Rendered view (f) Difference

(g) Original image (h) Rendered view (i) Difference (j) Original image (k) Rendered view (l) Difference

Figure 5: Results of lighting and reflectance recovery. Ground truth images, rendered views and difference images for the two marble
data sets and the two rock data sets. The shadows and highlights in the rendered images can be seen to correspond with those in
the original images. The difference images show the difference in intensity of the green colour band between the original image and
the rendered image. Positive values occur when the original image is greater in intensity than the rendered image and vice versa for
negative values.
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