
Signals as elements of a vector space

For interest only.



Abstract vector spaces

A vector space V is a set that is closed under finite vector addition and
scalar multiplication. The following must hold for any u, v, w in V and
scalars a, b (real or complex):

1. v + w = w + v (commutativity)

2. u+ (v +w) = (u+ v) +w (associativity)

3. There exists an element 0 in V such that v + 0 = v for all v
(additive identity)

4. For all v in V there exists an element w in V such that v +w = 0

(existence of additive inverse)

5. a(v + w) = av + aw (distributivity of vector sums)

6. (a + b)v = av + bv (distributivity of scalar sums)

7. a(bv) = (ab)v (associativity of scalar multiplication)

8. 1v = v (scalar multiplication identity).

Euclidean space

Euclidean n-space V = R
n is a familiar example of a vector space, where

every element is represented by a list of n real numbers, scalars are real
numbers, addition is componentwise, and scalar multiplication is
multiplication on each term separately.
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Scalar multiplication:
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Exercise: Convince yourself that the 8 vector space axioms hold for
V = R

3.



Canonical basis of Euclidean space

Given a vector x ∈ R
n (n-dimensional Euclidean space) we can write x as

a linear combination (weighted sum) of n vectors:

x = a1
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where ei = (0, . . . , 1, . . . , 0)T with the single nonzero element at position
i . Clearly in this case ai = xi .

The set of vectors {e1, . . . , en} (or alternatively {ei}
n
i=1) forms a basis of

R
n: any values for the weights {ai}

n
i=1 determines a particular x, and any

x is uniquely specified by a set of coefficient values {ai}
n
i=1.

This can be written in the form x = Ia, where I =
(

e1 · · · en
)

represents
the canonical basis and a = x are the coefficients.

So...

Suppose I’m thinking of a vector x in R
3 and you want to know what

vector it is.

You could get some information by asking me ”What is the value of the
first component relative to the canonical basis?”, in which case I might
reply ”The value is 11.” If you asked me the value for the other two
components you would know the overall vector.

Alternatively you could ask me ”What value do you obtain when you take
the dot product of your vector with e1, in which case I would also reply
”The value is 11”. If I additionally gave you the dot products with
vectors e2 and e3 you would know {a1, a2, a3} and x is fully determined
via x =

∑n

i=1 aiei .



General basis of Euclidean space

For Rn, any set of linearly independent vectors {bi}
n
i=1 is a basis. Thus

for any x ∈ R
n we can write

x = a′1b1 + a′2b2 + · · ·+ a′nbn =

n
∑

i=1

a′ibi = Ba′,

where B = (b1 · · · bn). Since

x = Ix = IBB−1x = B(B−1x)

the coefficients of x on the basis B are evidently a′ = B−1x.

One often chooses the basis vectors to be orthogonal and unit length, so
bT
i bj = δij =⇒ BTB = I =⇒ B−1 = BT . In this case a′ = BTx, so the

ith element of a′ is a′i = bT
i x.

The vector space of continuous functions

Let C be the set of real-valued continuous functions of a real variable.
Elements of this space are functions, written for example as s(t).

For elements (functions) u(t) and v(t) in C we can define a vector
addition operation, which takes the two elements and returns a third:
u(t) + v(t): this is a function which, for each t, has a value equal to the
sum of the values of the two functions at the same value of t.

For v(t) in C and a scalar a we can define scalar multiplication in the
obvious way, and the product of the scalar with the function is a new
function av(t): this is a function which, for each t, has a value equal to
a times the value of the function at t.

The vector space axioms hold on the set C with the above operations.
Therefore C is a vector space, and the elements can be considered to be
vectors.

Exercise: Convince yourself that the 8 vector space axioms hold for C
defined above.



Why do we care?

Consider say a temperature sensor on a buoy floating on the Atlantic
Ocean. For each instant in time, this sensor provides a temperature
reading. Thus for each time instant t, the temperature signal takes on a
value s(t). It is therefore natural to represent signals by functions.

If s(t) is a continuous function, then it is a member of C (the vector
space of continuous functions). We can therefore think of the signal s(t)
as a vector of this space.

This is probably the best way to think of signals — as vectors.

There are other properties of signals that make them special, but when
working with them you should keep the analogy of signals as
(generalised) vectors in mind.

Basis of continuous function space
Since C is a vector space, it has a basis. Any element x(t) of this space
can therefore be written as a linear combination (weighted sum) of a set
of basis vectors bi(t). The only complication is that C is infinite
dimensional, so there are infinitely many basis vectors!

If the set of basis vectors is {bi(t)}
∞

i=−∞
, then any x(t) in C can be

written as

x(t) =

∞
∑

i=−∞

aibi(t)

for some appropriate choice of coefficients {ai}
∞

i=−∞
, where i is integer.

Knowing these coefficients is entirely equivalent to knowing the original
signal x(t).

The Fourier series applies to signals x(t) that are periodic with period T .
In this case the set of functions {bi(t)}

∞

i=−∞
with bi (t) = e j2πit/T and i

integer is a basis. This is just the set of complex exponentials with
frequencies 2πi/T for appropriate values of i . The Fourier series
decomposition therefore lets us write any periodic signal x(t) as a linear
combination or weighted sum of a set of complex exponentials. The
coefficients or weights specify the amount of each complex exponential
present in the signal.



Orthogonality of the Fourier series basis functions

The basis functions bi(t) have an important property — they are
orthogonal over the range 0 to T . In particular, it is quite easy to show
that

∫ T

0

bk(t)b
∗

l (t)dt = δklT , where δkl =

{

1 k = l

0 k 6= l .

Exercise: Convince yourself that this is true. Using the previous
definition we have

∫ T

0

bk(t)b
∗

l (t)dt =

∫ T

0

e j2πkt/T e−j2πlt/Tdt =

∫ T

0

e j2π(k−l)t/Tdt =

∫ T

0

e j2πmt/Tdt,

where m = k − l is an integer. This integral is trivially equal to T when
m = 0. Show that for nonzero m the integral evaluates to

1
j2πm/T (e j2πm − 1) = 0, since e j2πm = (e j2π)m = 1m = 1.

Finding the coefficients

Multiplying both sides of x(t) =
∑

∞

i=−∞
aibi (t) by b∗k (t) and integrating:

∫ T

0

x(t)b∗k (t)dt =

∫ T

0

[

∞
∑

i=−∞

aibi(t)

]

b∗k (t)dt =

∞
∑

i=−∞

ai

∫ T

0

bi (t)b
∗

k (t)dt

=
∞
∑

i=−∞

aiδikT = akT .

Thus for each k we have ak = 1
T

∫ T

0
x(t)e−j2πkt/T dt.



So...

Suppose I’m thinking of a signal s(t) and you want to know what signal
it is.

You could get some information by asking me ”What is the value of the
signal at t = 1?”, in which case I might reply ”The value of s(1) is 14.” If
you asked me the value for lots of different values of t (infinitely many),
you would know the overall signal. Thus the signal could be described by
the infinite set of values {. . . , x(0), . . . , x(0.5), . . . , x(1), . . .}.

Alternatively you could also get some information by asking me ”If you

take your signal s(t) and calculate ai =
1
T

∫ T

0
x(t)e−j2πit/Tdt for k = 1

what do you get?”, I might reply ”You get a1 is equal to 2.”. If you
asked me this question for every k you would know the signal, since you
could calculate its value at any instant in time using
x(t) =

∑

∞

i=−∞
aie

j2πit/T . Thus the signal could also be described by the
infinite set of values {. . . , a−1, a0, a1, . . .}.

It turns out that the second description is much more useful in practice.

Euclidean space R
n Function space C (periodic T )

Dimensionality of space n ∞
Vectors in space x x(t)

Inner (dot) product 〈x, y〉 = xTy 〈x(t), y(t)〉 =
∫ T

0 x∗(t)y(t)dt
Orthonormal basis vectors b1, . . . , bn . . . , b−1(t), b0(t), b1(t), . . .

with 〈bk , bl〉 = δkl with 〈bk(t), bl (t)〉 = δkl
Representation on basis x =

∑n

i=1 cibi for some {ci}
n
i=1 x(t) =

∑

∞

i=−∞
cibi(t)

for some {ci}
∞

i=−∞

Analysis ci = 〈bi , x〉 = bT
i x ci = 〈bi (t), x(t)〉 =

∫ T

0 x(t)b∗i (t)dt

Exercise: Suppose bi(t) =
1
T
e j2πit/T . Convince yourself that the

relationships in the function space C above correspond exactly to the
conventional Fourier series relationships.


