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Abstract

Visual tracking of humans has proved to be an extremely chal-
lenging task for computer vision systems. Often the colour ap-
pearance of a person can provide enough information to identify
an object or person in the short-term. However, the imprecise
nature of colour measurements typically encountered in image
processing has limited their use. This paper presents a system
which uses the colour appearances of objects and people for
tracking across multiple camera views in a video surveillance
network. A distributed framework for creating and sharing vi-
sual information between several cameras is suggested, includ-
ing a simple method for generating relative colour constancy.
Tracking has been approached from a classification standpoint
allowing the system to cope with multiple occlusions, variable
camera pose, and asynchronous video feeds. Results indicate
that the system could be used by 3-D tracking methods to re-
cover from failed tracking.

1. Introduction
Object tracking has drawn a large interest in Computer Vi-
sion research due to the wide range of applications it encom-
passes. One such application applies to the area of computer-
aided surveillance. Large buildings regularly use CCTV net-
works to monitor the movements of people in order to provide
security and safety. This leads to a bottleneck of information
since an operator can only manage a finite number of cam-
era views accurately at one time. The idea of computer-aided
surveillance fits into the intermediatory role of filtering out un-
interesting events and drawing the operators’ attention to items
of specific importance (eg. people accessing restricted areas).
A basic requirement of such a system, therefore, is the ability
to keep track of several people simultaneously, especially their
transitions between different camera views.

One interesting problem that arises is the issue of tracker
initialisation. Many predictive tracking techniques have been
developed. However, a common weakness in many of these
systems is their dependence on parameter initialisation. Since
a prediction is based on a current assumption and a noisy ob-
servation, errors are cumulative and can lead to eventual target
loss. Recovery then requires that the tracker be re-initialised to
the target’s current position. The framework of tracking systems
often does not allow for this.

The system proposed here approaches the tracking prob-
lem from a classification standpoint. Often the colour appear-
ance of a person can provide enough information to determine
their identity and thus their position in the short-term. There-
fore, by modelling this colour appearance as a set of features,
colour matching can be used to build a likelihood response to

the model’s spatial position in an arbitrary image. This one-shot
style of tracking has the advantage of being able to deal with oc-
cluding objects, movement between multiple camera views and
asynchronous video feeds. In addition, the framework is ex-
tremely flexible, allowing optional integration with a variety of
information such as camera pose, geometric features and mo-
tion tendencies.

2. System Overview
The primary goal of the system is to provide a suitable frame-
work for person/object matching that can be extended over
a network of cameras. Since video processing is extremely
resource-hungry, a distributed computing, bottom-up paradigm
was chosen as the basis for this framework.

The basic task of the system is as follows. A camera pro-
vides input frames to the Person/Object Detector (POD). Previ-
ously trained colour object models are then used in a matching
process which identifies the location (if any) of the target in the
input frame.

The nodes in the distributed framework, shown in Figure
1, have been defined by three primary functions: Processing;
Storage; and Management. While the diagram depicts that each
node be allocated its own computer, the framework is intended
to be flexible so that multiple node processes can be econom-
ically run on a single machine. Naturally, this only applies if
real-time operation is not a requirement (i.e. off-line analysis).

Figure 1:Distributed Framework.

Each processing node handles one to two cameras. They are
responsible for segmentation, feature extraction, matching and
model updates. High-level data, produced by the processing
nodes, is then synchronised with a storage node which provides



global consistency between all nodes. This framework therefore
allows a modularised processing approach while preserving co-
herence between the multiple data streams.

2.1. Data Flow Model

The processing nodes encapsulate the entire functionality of
the POD system. The system comprises several pre-processing
steps which feed into the matching and training processes. A lo-
cal object model repository provides the stored features of cur-
rent targets which are used during matching. Figure 2 depicts
these operational stages for a single processing node.

Figure 2:Processing Node Data Flow Diagram.

The first stage is the digital acquisition of video from a cam-
era. The image is equalised and filtered for noise using his-
togram analysis and median filtering respectively.

Following this, three pre-processing steps are used to ex-
tract colour features: Motion Segmentation; Colour Segmenta-
tion; and Colour Correction. In order for the matching process
to be as fast and effective as possible, it should be presented
with as little irrelevant data as possible. This allows the sensi-
tivity threshold to be increased without resulting in excess false
positive matches. Searching less of the image relates directly to
a faster matching process.

Motion segmentation is used to separate active people and
objects from the static background, thus reducing the clutter
significantly. Colour segmentation then groups similar pixel re-
gions together, thus producing a compressed representation of
the motion segmentation. This allows concise models to be con-
structed and greatly reduces the computational cost of match-
ing.

When viewing an object with different cameras, it is un-
likely that it will appear identical. Factors such as camera gain,
shutter speed and gamma correction can contribute to large vari-
ances in image formation. Additionally, since each camera
will most likely be positioned differently (probably in differ-
ent rooms), environmental lighting conditions will also cause
inconsistency between views. Since the system must be able to
compare a person or object’s colour between views, a method of
calibrating all cameras to a common colour reference is neces-
sary. Towards this end, the colour correction stage uses trained
samples of a camera’s response to a range of colours in order to
calculate an appropriate adjustment.

The features produced by the pre-processing stages are rep-
resented by a cluster of colour centres. They are then applied to
the core of the system. Initially, since the object model repos-
itory will be empty, the training stage will use the features of

a specific target to discover the best representation for that tar-
get. This trained feature set is then added to the object model
repository.

Once trained object models are available, the matching pro-
cess is activated and produces a likelihood response to the exis-
tence of each target listed in the local repository. Close matches
can be processed through an adaptation stage and used to in-
crementally update the stored models. This allows the system
to track gradual drifts caused by lighting artifacts. Information
about each matched target is compiled into a running profile
and stored. Finally, the likelihood outputs can be combined,
and together with the input image produce a labelled image of
the position of any visible targets.

3. Pre-processing
A simple two-part segmentation scheme is used for reducing
clutter and extracting colour features from objects. Firstly,mo-
tion segmentationby way of background subtraction removes
target candidates from the static background scene. The next
step involves acolour segmentationprocess whereby regions of
similar colour in the foreground are grouped together and rep-
resented by a cluster of colour centres. This reduces the load
on the training and matching stages, and provides a concise ob-
ject description system capable of being synchronised over a
network.

3.1. Motion Segmentation

Essentially, background subtraction operates by taking a frame
BG containing only the static background, and subtracting a
consecutive frameP from it. Any pixel difference which de-
viates more than a set thresholdTdiff is considered foreground
(shown in Equation 1). In this way a foreground maskM can
be obtained:

M(x,y) =

{
1 if |P(x,y) −BG(x,y)| > Tdiff

0 otherwise
(1)

In reality, thresholding all pixels in the image by the same
amount does not provide reliable segmentation. Factors such
as light distribution and colour differences can cause inconsis-
tencies in the comparison between foreground and background
pixels. An alternative to using a global threshold for the sub-
traction is to assume that each pixel deviates according to its
own model, and thus to threshold each pixel in the context of its
model [14].

Since the POD system only uses segmentation as a clut-
ter reduction stage, either method is applicable although direct
subtraction and thresholding is naturally faster.

3.2. Colour Segmentation

A batch colour segmentation method allows an efficient quan-
tisation of the foreground into coloured components, leading to
a compressed data representation which is suited to high-level
processing. As colour segmentation applies to the training of
object colour models, the process operates on the segmented
foreground mask produced by motion segmentation.

Multiscale image processing techniques are hierarchical
processes which use multiple resolutions of an image to perform
analysis. These can be approached as top-down (quad-tree de-
composition) or bottom-up processes (image pyramids). In the
latter methods, image levels are constructed by downsampling
the image by a series of filters — Gaussian in this case — which
provides a smoother output.



The OpenCV library [7] provides a well optimised imple-
mentation based on the algorithm proposed in [3]. The input
image (largest) can be thought of as the base of the pyramid.
Each consecutive level is then built upwards, downsampling by
a factor of two at each stage, until a specified maximum level
is reached (commonly between 3 and 5). Two thresholds,T1

andT2, determine the nature of the segmentation, and linking is
performed in two stages illustrated in Figure 3.

Figure 3:Pyramid segmentation process.

1. A link between a pixelpx,y on level L and its can-
didate fatherp′x′,y′ on level L + 1 is established if:
dist(c(px,y, L), c(p′x′,y′ , L + 1)) ≤ T1.

2. Connected componentsA andB are then clustered to-
gether if: dist(c(A), c(B)) ≤ T2.

The functiondist is the Euclidean distance between local
property functionsc for each pixel. The local propertyc is the
type of measurement associated with a pixel, which in this case
is simply the intensity of the pixel. Therefore, the distance cal-
culated by thedist function is effectively the difference in pixel
intensities|i(x, y)− i(x′, y′)|.

Parameter tuning, which is dealt with in [8], was found to
be fairly inconsequential. Unlike [8], the primary goal here is
to reduce the mass of pixel data to a manageable number of
classes (approximately 5% of the image pixels). Therefore ex-
act parameters for maximising the quantisation are not required.
In fact, a larger list of small regions which more accurately de-
scribe the original pixel colours is preferred. In general, setting
T1 = 30 andT2 = 10 provided equitable results.

4. Colour Correction
One of the primary requirements of a multi-camera colour
tracking system is consistency of colour measurements between
several cameras. Colour constancy refers to the correction of
colour deviations caused by a difference in illumination [17].

In light of the fact that our system is geared towards near
real-time operation, it follows that a fast, robust colour con-
stancy method is needed. Since we are using multiple cameras,
the method must be insensitive to camera pose and position in
addition to the usual invariants. The Video-CRM system de-
scribed in [6], which has similar requirements, proposes the use
of a colour calibration target. The basic idea is to show the cali-
bration target to each camera and use the responses to calculate
the gamut mapping between the two image systems.

In a large camera network it is desirable to have a more
automated approach which does not encumber the users. In any
case, mapping based on a target can never be totally accurate
unless it takes into account colour or intensity shifts within a
single image frame. This would require the calibration target
to be evaluated at several positions for each view, leading to a
lengthy calibration procedure.

Austermeier et al. [1] have shown a useful method for per-
forming an unsupervised, target-based calibration scheme for
normalising illumination changes. Their tests showed that a
cloud of RGB pixels (plotted by omitting their spatial image
placement) preserves its topology when subjected to a change
in illumination. Furthermore, if the clouds of the original and
resulting images are each quantised by a set of Self-Organising
Map (SOM) prototypes, pixel colour can be corrected by sim-
ply translating its prototype between the two maps. SOMs have
the useful feature of being able to quantise data into a set of
prototypes, while at the same time preserving topological rela-
tionships between neighbouring neurons.

To clarify, usually the main usage of SOMs is for dimen-
sion reduction of feature data. However, in this application it
is simply used as a 3-D data-fitting method. Another common
practice is to use a 2-D neuron grid for the SOM. The main
reason is because its distance matrix (depicting clustering infor-
mation) is best understood in planar form. Once again, since
this scheme is using the SOM’s fitting ability, it is necessary
to use an exact representation of the data, and thus the map is
created as a 3-D lattice.

The POD colour correction module differs slightly from the
implementation suggested by [1]. Modifications include: using
CIELAB co-ordinates in place of RGB; using the pre-quantised
colour segmentation groups rather than the entire set of input
pixels; and splitting SOM training into several(5× 5× 5) sets,
which is more manageable.

5. Training Object Models

A primary assumption upon which the system is based is the
notion that a qualitative measure for the difference between
colours exists. The CIELAB colour space provides such a mea-
sure by providing uniform colour co-ordinates which describe
perceptual colour differences using the magnitude of the Eu-
clidean distance between two points. The training procedure
therefore begins by converting the RGB feature list presented
by the colour segmentation to their CIE L*a*b* counterparts.
The system’s main feature vector is therefore simply:

Fn = (L∗n, a∗n, b∗n), (2)

whereFn is an arbitrary feature vector. Training is split into
two phases. The first is geared towards finding clusters spa-
tially within the feature space of a presented observation set.
The second clusters these cluster groups over time as additional
observations are presented. The time-clustering phase therefore
depends on being able to match features between between ob-
servations. This is accomplished by measuring the conditional
probability P (Fn|C) of a featureFn belonging to the set of
centresC which is calculated as follows:

d2
FnCi

= (L∗n − L∗i)
2 + (a∗n − a∗i)

2 + (3)

(b∗n − b∗i)
2



KFnCi =
1√

2πσ2
train

e

(
−d2

FnCi
2σ2

train

)
(4)

P (Fn|C) =
KFnC∑m

j=1 KFnCj

. (5)

These are simply the spherical Gaussian kernel activations
KFnC normalised by the sum of activations of all current cen-
tresC1 . . .Cm. Since CIELAB offers uniformity, it follows
that σtrain should be set to a constant value so that percep-
tual colour differences remain the same between classes. A
σtrain ≈ 5 has been found to provide good separation between
colour classes.

Since similar colours will cluster uniformly in the feature
space (due to the intrinsic nature of the CIELAB space), groups
of like features can be represented by a Gaussian centre. Train-
ing thus involves finding the best possible group of centres
which accurately quantises the input training set — i.e. a Gaus-
sian Mixture Model.

6. Matching
Matching is divided into several stages. Each stage targets a
specific interpretation of the presented data which, when com-
bined, produces a classification likelihood of an image region
for a particular object model.

The process begins by performing colour matching on the
set of input featuresF produced by pyramid segmentation. This
basically assigns each feature to the nearest model centres1 in
the repositoryC (a m × 3 matrix). The result is a list of ac-
tive model centresX and their centroids in image co-ordinates.
Since it is likely that certain colours will match a variety of dif-
ferent objects, an object model confidence is constructed based
on:

• Quality of the colour match

• Variety of model features matched

• Spatial density and size of the features in image space

• Consistence of area proportionality.

Simply put, an object is likely to be found in a spatial clus-
ter in which the colour match and the variety of centres is a
maximum. Furthermore, the proportional areas of the features
in the cluster must be comparable to the object model’s ratios.
If several of these measures agree, a peak in the likelihood will
appear for a certain image region. If the overall confidence ex-
ceeds a lower threshold, the object is marked as found.

6.1. Colour Matching

As with the training procedure, colour matching is done using
the CIELAB distances between the extracted featuresF and ob-
ject model centresC. Equation 6 defines the Euclidean distance
for two features (as in Equation 3).X is then defined as the
matched subset of features, which are less thankmatchσmatch

Euclidean units from any of them model centres inC:

D2(F1,F2) = (F1L∗ − F2L∗)
2 + (6)

(F1a∗ − F2a∗)
2 + (F1b∗ − F2b∗)

2

X = {x ∈ F : D2(x,Ci) ≤ (kmatchσmatch)2, (7)

for 1 ≤ i ≤ m}.
1This is a one-to-many relation since several object models might

claim to match a single feature.

Colour matching is thus effectively a nearest neighbour classi-
fication.

6.2. Confidence Measurement

Estimation of the confidence measurements across a 2-D image
plane requires evaluation of the contribution of each matched
feature for each measurement of every object class. The fact
that each object feature is only represented by a central pixel
dictates that a sliding window operation is needed. Unfortu-
nately this would result in an exceptionally high computational
complexity since the convolution would need to be repeated for
each object class [13]. While this process can be improved us-
ing FFT fast convolution, the computational time is still propor-
tional to the number of measurements and classes.

A less precise (yet efficient) idea is to perform measure-
ment using a 1-D scanning algorithm which can be executed
separately across the image’s x and y directions. There is a pos-
sibility that a better approach might be to evaluate image quad-
rants [15] and use fast integral image convolution with boxlets
[12]. However, separate class processing would still be required
and so this alternative is left for future exploration.

Scanning proceeds by dividing the image into several
evenly spaced, vertical and horizontal strips as shown in Fig-
ure 4(a). The matched featuresX′ falling within a strip di

then contribute to some property measurementz(di) for each
object model. When the measurements of all strips are con-
catenated, the results are two 1-dimensional likelihood signals
(zx, zy) spanning the widthwim and heighthim of the image
respectively. Each signal is then filtered with a Gaussian kernel
to smooth the disparity between the divisors (Parzen’s method).
Finally, the matrix multiplication of each object model’szx and
zy vectors produces a 2-D likelihood mapLr for that object.

This method allows the confidence measurements to be tai-
lored to specific areas for each image dimension. For instance,
the proportionality measure holds little significance for person
models in the horizontal direction since clothing divisions tend
to appear vertical. As each measurement vector is one dimen-
sional, multiple object models can be measured and stored in
separate columns simultaneously. The result is an array of
multi-model confidence measures created by a one-pass scan
of the input image.

The following subsections describe each component of the
overall confidence measurement. In order for the measurements
to be combined equally, each measurement is configured to fit
the range of(0, 1) where1 is the best match. Figure 4 illustrates
matching for a character from a cartoon sequence.

6.3. Likelihood Map

The 2-D likelihood mapLr for each objectr is generated by
the matrix multiplication of the smoothed2, overall confidence
measurementszx andzy (Equation 10). These measurement
vectors are constructed by the scalar multiplication of four mea-
surement components:

zx = zcx .zvx .zax .zpx (8)

zy = zcy .zvy .zay .zpy (9)

L = z0(zxzT
y), (10)

2Smoothing is achieved using a Parzen window.



Figure 4:Matching Example. Image (a) shows the image divi-
sions and identifies the target (black box); Graphs (b) and (c)
show the 1-D measurement signals in the y and x directions re-
spectively; and image (d) shows the likelihood map.

wherez0 is a scaling factor andzc, zv, za, zp are the measure-
ment components relating to quality, variety, area and propor-
tionality respectively. These are discussed in detail later in this
section. In addition each component is the concatenated vector
of the measurements for all divisions. For instance, if there are
i divisions,zcx would consist of:

zcx = [zcx(d1), zcx(d2), . . . , zcx(di)]. (11)

Subsequently,L would then be an(i × i) map, similar to
the example in Figure 4(d)3.

Naturally, the number of divisionsi does not have to be
the same for each direction. In fact, for person tracking it can
sometimes be better to allocate larger division spaces in they
direction since people are more rectangular. Note, however, that
the actual division size in pixels is dependent on the size of
the image dimension. Since most images are not square, this
means that allocating the same number of divisions for each
image dimension will not necessarily result in square likelihood
regions. Generally, retaining the aspect ratio of the image is
desirable, so using equal divisions for each dimension can be
useful.

The effect of adjusting the number of divisions relates pro-
portionally to the output resolution of the likelihood map. Ba-
sically, it defines the minimum detectable object size. A small
value will tend to expect large objects and cause merging be-
tween object classes within close proximity. Conversely, a large
division number will give a high-definition likelihood, but can
cause object fragmentation.

6.4. Quality of colour match

The first measurement component quantifies the quality of the
average colour matchzc(di) between(n×3) feature subsetX′

(the matched features falling withindi) and its corresponding
matched object model centresX′C (i.e. X′ andX′C are the

3The likelihood map in the figure has been resized to be consistent
with the image co-ordinates.

same size):

zc(di) =
1

n

n∑
j=1

e

(
−D2(X′

j ,X′Cj)

2σ2
match

)
, (12)

whereD2 is the Euclidean distance function defined in Equa-
tion 6.

6.5. Variety

If X′ is the subset of matched featuresX falling within division
di, thenhdi(X

′) is the histogram of feature areas for each object
model centre in(m × 3) matrix C (within that division). The
variety measurezv(di) is defined as:

vdi(X
′) =

{
1 for hdi(X

′) > hthresh

0 otherwise
(13)

zv(di) =
1

m

m∑
j=1

vdi(X
′)j . (14)

The thresholdhthresh determines how many hits a bin re-
quires before it qualifies for measurement (generally set to 1).
Effectively the variety measure determines what fraction of the
object model’s centres is visible for each division. This relates
to how much of a model is visible. A high variety will be de-
tected where most of the object centres overlap for a particular
x value.

6.6. Area Distribution

The distribution of feature areas can also hold vital information
about the whereabouts of an object. Once again,X′ is then
feature subset ofX falling within di, and the area distribution
za(di) is:

za(di) =
1

Amax

n∑
j=1

area(X′
j), (15)

whereAmax is the maximum feature area throughout the im-
age. This measurement serves to identify the division that holds
the greatest area of matched pixels.

6.7. Proportionality

Proportionality refers to the ratio of the mixture of colour fea-
tures for a particular object model. Often, several background
regions can match a particular object’s colours (seen in previ-
ous measurements), however the true object can be isolated by
analysis of the proportions of these colours. The proportional-
ity measurement is defined by the Chi-Square distance (Equa-
tion 18) between the area histogramshdi(X

′) (from Equation
13) andhdi(C) (areas of object model centres) within division
di. The histograms each havem bins which relates to the num-
ber of model centres for the specific object and are each nor-
malised by their total sum. The Chi-Square distance provides a
comparative metric between distributions and maps the interval
(−∞,∞) to (0, 1) (where 0 is a close match). To make the
values consistent with the other measurements (0 — no match,
1 — best match), the Chi-Square distance is subtracted from
1. Proportionality measurementszp(di) therefore fall within
the(0, 1) range where1 is the closest possible match (Equation



19):

h′di
(X′) =

hdi(X
′)∑m

j=1 hdi(X
′)j

(16)

h′di
(C) =

hdi(C)∑m
j=1 hdi(C)j

(17)

d2
Chi−Square =

m∑
j=1

(h′di
(X′)j − h′di

(C)j)
2

h′di
(X′)j + h′di

(C)j
(18)

zp(di) = (1− d2
Chi−Square) (19)

6.8. Importance Weighting

It is highly likely that multiple objects will share common
colours, leading to noisy measurements. In cases where seg-
mentation is bad, the background scene can contribute a fair
amount of clutter which will cause some of the measurements
to lose validity. Therefore in order to ensure that the overall con-
fidence measurement is not compromised, each feature must be
weighted by its importance.

Importance is determined based on how common a feature
is found to be spatially. For instance, a colour which is visible
over the entire image should be considered less important than a
colour which is clustered in the vicinity of a target object when
constructing each measurement.

Calculation of the importance weightingsI involves the es-
timation of the spatial variance of each model centre inC for
the entire image. This is accomplished by calculating the pro-
portional spatial range of each feature out of the whole image.
The importance weightingIa for an arbitrary object centreCa

is the sum of the number of occurrenceshsum of Ca across all
divisions, divided by the total number of divisionsi. This is cal-
culated for each image dimension, averaged and then squared to
produce an importance value in the range(0, 1)4:

Iax =
hsumx

i
(20)

Iay =
hsumy

i
(21)

Ia =

(
Iax + Iay

2

)2

(22)

I = (I1, I2, ..., Im), (23)

whereI is the vector of importance values(I1..Im) for all object
centres.

Importance weights are applied by multiplying each object
centre in each measurement by its corresponding weighting.
This also requires that the measurements are subsequently nor-
malised by the sum of the object model’s importance weightings
in order to maintain the(0, 1) measurement range.

7. Results
Acquiring meaningful results for a computer vision system is
a difficult process. This arises from the fact that the exact
definition of good performance varies between different types

4A low importance corresponds to a low contribution of that object
centre to the likelihood and visa versa.

(and goals) of systems. Standard benchmarks are therefore ex-
tremely hard to come by and are generally only comparable
when systems use similar test sequences.

In order to determine the overall performance and versa-
tility of the POD system, several test sequences from different
environments have been selected.

7.1. Performance Evaluation

A number of methods exist for evaluating the performance of
vision systems. Even though the POD system is not entirely a
stand-alone surveillance platform, it does exhibit certain simi-
larities which warrant the use of some surveillance metrics.

7.1.1. Surveillance Metrics

The following basic metrics (taken from [2]) have been used to
gauge overall system performance:

TRDR = Total True Positives
Total Number of Ground Truth Points (24)

FAR = Total False Positives
Total True Positives + Total False Positives (25)

OTE = 1
Nrg

∑Nrg

i=1

√
(xgi−xri)2+(ygi−yri)2

w2
im+h2

im
(26)

OAE = 1
Nrg

∑Nrg

i=1

area(bboxgi
)−area(bboxri

)

area(bboxgi
)+area(bboxri

)
. (27)

The TRDR (Tracker Detection Rate) provides a general
measure of the system’s accuracy by describing the proportion
of correct classifications for all frames in which ground truth
is available. Similarly, the FAR (False Alarm Rate) determines
how often the system claims an object is present when it is not.

Finally, the OTE (Object Tracking Error) quantifies the
overall system error by measuring the average error of the
tracked path with respect to ground truth for each object model.
The equation has been modified from its original form by
adding thew2

im + h2
im denominator. This normalises the pixel

error (numerator) to the length of the image diagonal which
represents the largest possible error.Nrg is the total number
of ground truth points,(xgi, ygi) are the object’s ground truth
co-ordinates at framei, and(xri, yri) is the object’s classified
position point. It should be noted that because the POD system
does not take into account the 3-D pose information of the cam-
era and scene, all co-ordinate measurements are in image space,
i.e. x andy represent columns and rows in the image matrix.

An additional measurement which has been defined, ow-
ing to the 2-D nature of the system, is the Object Area Error
(OAE). This is effectively the the average area difference be-
tween the bounding boxes of classified objects and their corre-
sponding ground truth areas.Nrg is the total number of ground
truth points, andbboxgi andbboxri are the bounding boxes for
the ground truth areas and classified objects respectively. Defin-
ing the area comparison in this way produces a measure in the
range(−1, 1) where a negative value indicates that the classi-
fied bounding boxes tend to be smaller than the ground truth,
and a positive value the opposite.

7.1.2. Perceptual Complexity

In order to compare surveillance metrics between different
types of video sequences a quantitative measurement is needed
to relate the intrinsic differences between each sequence. A rea-
sonable approach is to define the Perceptual Complexity (PC)



for a sequence (suggested by [2]). The PC describes how ‘dif-
ficult’ a sequence is in the visual tracking sense. In this case,
PC ratings are calculated for each test sequence based on a
weighted combination of several quantities: the number and ex-
tent of occlusions; the similarity of colours between objects;
and the overall image quality and variance.

7.1.3. Ground truth

Performance evaluation of vision system is largely dependent
on the availability of ground truth data. Naturally, since real-
time video has a data rate of between 25 and 30 frames per
second, creating ground truth is exceedingly time consuming.
Methods for obtaining ground truth range from using semi-
automated tools [4] to estimation (eg. silhouette fitting [11])
and use of consistency measurements [5].

Fortunately, since the sequences used for evaluation are not
excessively long, manual ground truth could be generated for
each frame. The accuracy of the ground truth is not critical
since the performance measurements only compare the bound-
ing boxes.

7.2. Test Cases

The first test case is a short four person outdoor scene which was
recorded with two Sony camcorders in an exterior environment.
The second sequence consists of a single perspective security
camera viewing a total of seven coloured people entering and
walking around a room. Although the scene is indoors, there is
a fair degree of variance close to the camera caused by the light-
ing arrangement, which causes certain people’s shoulders to ap-
pear whiter when directly exposed. The final sequence used
for testing comprises four ceiling-mounted cameras observing
three people moving in a lab environment. This was created in
an asynchronous manner by four different computers and the
effect of a video network is simulated by processing the entire
quartet of cameras iteratively in order of frame time stamps.

Tables 1 and 2 summarise scene information and overall re-
sults for the three test cases (processed on an Intel Pentium IV
2.8 GHz) respectively. Towards visualising the system perfor-

Details Case 1 Case 2 Case 3
Complexity (PC) 0.394 0.549 0.622

No. of cameras 2 1 4
No. of people 4 7 3

Running time (s) 30 90 200
Image resolution 360× 240 384× 288 285× 189

Table 1:Scene Information

Performance Rating Case 1 Case 2 Case 3
TRDR 0.89 0.85 0.76

FAR 0.025 0.00 0.03
OTE 0.15 0.16 0.24
OAE -0.05 -0.18 -0.23

Processing rate 2.8 fps 1.8 fps 3.8 fps

Table 2:Overall results

mance, Figure 6 shows a labelled frame processed from Test
Case 2. An example trajectory for Person 3 (green) is also
shown as well as the overall confusion matrix for the whole test
sequence.

The trajectory relates to the centres of the bounding boxes
for the ground truth and matched areas respectively. The trajec-
tory image also shows the actual matched positions by means of
plotted triangles. The plotted trajectory is then constructed by
using a 5-point moving average filter which removes spurious
errors in the object’s track. An idea of the tracking performance
can be seen by comparing the matched trajectory to the ground
truth path.

The improvement due to the incorporation of temporal in-
formation illustrates how the POD system could be used by
other systems for recovery from failed tracking. As the POD
system is designed to make instantaneous decisions about an
object’s location, it does not need to process every frame. Thus
ideally, a fast time-dependent tracker could operate unencum-
bered and only use the POD at appropriate times (i.e. when its
confidence is low). Since the primary objective of this work
involves investigating the uses of colour in tracking, these ap-
plications have been left to future work.

7.3. Discussion

From the results, it is seen that the POD system is able to distin-
guish several people based only on colour information provided
that there is enough variety in the trained models. There is a
tendency for detected areas to be slightly smaller than the ac-
tual object (negative OAE trend). This has been attributed to
the fact that lower object extremities are generally occluded by
surrounding objects and shadows. This leads to the regions be-
ing filtered out either by the initial motion segmentation or the
colour matching steps. The result is a smaller, raised bounding
box.

The system proves to be robust through a number of dif-
fering camera environments and is not overly sensitive to pa-
rameter tuning. A beneficial aspect of the system is that it pro-
vides a realisable distributed framework which can be flexibly
integrated with a variety of other systems. Its ability to make
an instantaneous decision about any trained object allows it to
cope with asynchronous video feeds and recovery from occlu-
sions. By additional incorporation of temporal history, it has
been shown in the presented test cases that a smooth trajectory
can be extracted from a classified set at any time.

7.3.1. Overall Ratings

In order to assess the overall system performance, the results of
each test case are compared, using their Perceptual Complex-
ity (PC) as a relative basis. Figure 5 summarises the Tracker
Detection Rates (TRDR) for the test cases.

Figure 5: Overall TRDR (upper green) and OTE (lower red)
ratings for all test cases.



As expected, the TRDR decreases as the PC increases. Un-
fortunately, without more test sets with high PC ratings, it is
impossible to know the exact lower error bound of the system.
Figure 5 also shows the average Object Tracking Error (OTE)
for each sequence. The fact that the OTE seems to comple-
ment the TRDR confirms the fact that the TRDR is a truthful
value. For instance, were a true positive hit acquired with a
very large OTE, it would imply that the wrong object had acci-
dently caused the detection rather than the actual one. Therefore
this summarises the fact that, in general, the overall confusion
between object classes is fairly low for the given test cases.

Finally, the False Alarm Rate (FAR) of the system is on
average just below 2% with a mean processing rate of approxi-
mately 3 fps. The processing rate is not heavily affected by an
increase in the number of trained objects. More elaborate op-
timisation of the current implementation could result in much
faster frame rates.

7.3.2. Colour Correction

Quantifying the overall performance of the colour correction
method is difficult, given the abstract nature of the process. Al-
though comparative CIELAB values could be used to describe
the improvements, this means very little when considering the
system performance as a whole.

Based on the test cases (specifically Cases 1 and 3), there is
approximately a 35% improvement when applying the method
depending on the lighting characteristics of the scene.

7.3.3. Colour difference metrics

The 1976 CIELAB space was selected based on its perceptual
uniformity. This property allows the Euclidean distance be-
tween points to be used as a colour difference metric. Unfor-
tunately, further experiments have proved that CIELAB is not
completely uniform [16] and does not provide a consistently
good measure of the magnitude of perceptual difference be-
tween stimuli. This has lead to the definition of other, more
optimised metrics such as CMC (British standard BS:6923),
M&S (1980 Marks & Spencer equations for textile industry),
BFD (refined CMC equations), and CIE 94 (simplified CMC
version).

While it has not been proved whether any of these new met-
rics are better than the other, the British CMC equation, which
uses user-configurable tolerance ellipsoids, is currently being
considered as an ISO standard.

Since exact colour differences were not critical to the oper-
ation of the POD system (camera noise distorts image quality
in any case), CIELAB, which is computationally simpler and
more intuitive for spherical feature spaces, was retained.

7.3.4. Online Adaptation

It is important to note that while the POD system is able to
adapt the colour models, this feature was not used for the test
cases. Owing to the fact that the sequences are relatively short,
it was thought that allowing adaptation would not significantly
improve performance. Additionally, any improvement due to
the adaptation would then mask the true performance of the
matching process. Online adaptation has been dealt with exten-
sively for Gaussian mixture models [9] and is known to improve
long-term tracking. Thus the POD system can apply adaptation
for situations in which there is more temporal variance.

8. Conclusions
A system capable of using the colour appearance of objects and
people to detect their position within a digital video surveillance
network has been presented. The system suggests a distributed,
bottom-up implementation which can easily be integrated with
off-the-shelf network products.

Features of the system include:

• Independence from camera pose and position

• Ability to deal with asynchronous video connections

• Persistence of object models over a distributed camera
network

• Flexibility of integration with other visual tracking sys-
tems.

A bottom-up approach has been applied and each process-
ing stage is fully modularised. Pre-processing consists of mo-
tion and colour segmentation, and a colour correction method
for dealing with multiple views. System operation then pro-
ceeds in a two-stage process consisting of training and match-
ing. Training involves representing objects as colour Gaus-
sian mixtures which are then matched using a batch analytical
method. While the implementation is equipped to perform on-
line adaptation of the models, the test sequences are not very
long. Thus it was thought that not using adaptation would pro-
vide a clearer view of the system’s actual performance.

Some basic surveillance metrics have been applied in order
to assess the performance of the system. An average accuracy of
approximately 80% is achieved for overall system performance,
though the exact performance is inversely proportional to the
perceptual complexity of the scene. The system exhibits a very
low false alarm rate and is capable of an average processing rate
of 3 fps with little dependence on the number of tracked objects.
It is envisaged that further work may yield better optimisation
with faster frame rates.

9. Future work
While current 3-D tracking systems obtain good results, a com-
mon weakness is their inability to recover from failure. Since
the POD system is able to generate a hypothesis without being
dependent on temporal priors, it is thought that the combina-
tion of the system with a 3-D tracker could produce a viable
solution. One possibility is for the 3-D tracker to exploit the
POD’s ability to deal with asynchronous video by only present-
ing it with frames when the overall system confidence is low.
Alternatively, the POD could be used full-time for providing a
Kalman or particle filter with observations.

While the system can be applied to assisting real-time track-
ing systems, it is also thought that the ideas presented may hold
further application in automated image retrieval and robotic vi-
sion areas. It is hoped that further extension of this work com-
bined with robust 3-D tracking systems such as [10] could lead
to an eventual real-time solution.
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(a) Example matched frame

(b) Overall trajectory for Person 3 (green)

(c) Overall Confusion Matrix

Figure 6:Example result images taken from Test Case 2.


