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Abstract

This dissertation investigates the feasibility of using the same digital profile images

of fruit that are used in commercial packing houses for colour sorting and blemish

detection purposes to estimate the volumes of the corresponding individual pieces of

fruit. Data sets of actual fruit volumes and digital images of the fruit that simulate both

single and multiple camera set-ups are obtained. Shape features are extracted from the

digital profile images using various digital image processing techniques. These shape

features are used in conjunction with the actual volumes of the fruit as targets, to train

and test both linear and artificial neural network methods of volume estimation. The

results, in terms of error and of the associated confidence of the volume estimation

methods, are presented.
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Chapter 1

Introduction

1.1 Background

With the rise of consumerism since World War II, customers have become more dis-

cerning of quality and also more demanding of it. For example, supermarkets are

under increasing pressure to provide fruit and vegetable produce of the highest qual-

ity. Now, more than ever before, fruit1 is displayed and sold to consumers in batches of

uniform quality, shape, colour, weight, volume and density. Because of these increas-

ingly stringent requirements, and also as a result of advances in the available digital

hardware and in image processing techniques, there has recently been much interest

in using digital image analysis in grading systems at packing houses [21, 30, 39].

CCD camera Computer

Cup control

Batch of type A

Batch of type BConveyor system

Fruit in cup

Figure 1.1: The basic components of an automated fruit sorting system.

1For convenience, the vegetable produce investigated in this project will always be referred to as

fruit, since apart from the potato all of the produce is the biological fruit of the parent plant.

1
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Such systems vary from one another, but usually consist of one or more charge-

coupled device (CCD) cameras mounted above the packing line ‘looking’ at the fruit

as it passes along on a conveyor. A diagram of the typical components of a grading

system that uses digital image analysis in this way is shown in Figure 1.1. As the fruit

pass under the camera they are photographed to form digital profile images. These

images are analysed by computer and the results of the analysis are used to sort the

fruit into batches of consistent colour, size and quality. Sorting is often implemented

through the sending of signals to the cup control mechanisms on the roller on which

fruit pieces sit, so as to redirect each fruit to its appropriate batch. Automation of the

fruit sorting process has significant economic and labour saving benefits, especially

when considered in the context of the relative inability of human graders to sort the

fruit quickly and consistently [31]. Typically, a packing line is over 75m long and

may pack one million pieces of fruit per day [36]. The throughput rate of such an

inspection system might be 10 pieces of fruit per second [38].

This dissertation investigates the possibility of using these same digital images, which

are mainly used in existing systems for colour sorting and blemish detection, to es-

timate the individual volume of each piece of fruit as it passes along the conveyor

system. An estimate of the volume of each fruit would be a useful addition to a fruit

sorting system for the following reasons:

� If the volume and the weight (determined by a mechanical weighing device on

the packing line) of the fruit were known, then it would be easy to compute the

fruit density, which is a useful measure for identifying the presence of hidden

defects such as frost-damage and internal damage caused by insects. Such a

system would be useful, for example, for oranges, the eating quality of which is

related roughly proportionally to the density of the fruit [23].

� Alternatively, if the fruit densities were assumed to be constant, then the system

could estimate fruit weight from the volume, replacing the need for a weighing

device on the packing line. Such a system was developed by Marchant [21] for

potato sorting—a technique which was justifiable because potatoes do not differ

greatly in density from one another.

� Used in conjunction with a weighing device, such a weight estimate from vol-

ume could also be used to verify the output of the weighing device (which may

jam and give an incorrect reading in an environment where fruit debris and

spillage of fruit juice are unavoidable).
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� A knowledge of fruit volume allows supermarkets to display fruit in batches of

consistent size. Furthermore, consistently-sized fruit can be packed efficiently

for transport and for display at the supermarket. Such consistency is also an

ever-increasing demand of today’s consumers.

Commercial fruit sorters require an estimate of fruit volume that can be calculated

rapidly, that is easily incorporated into existing systems and that is cheap to imple-

ment. The root-mean-squared (RMS) error on the volume estimates should be less

than 5% [38] to be of use either as a replacement or as verification of the currently-

used mechanical weighing devices.

1.2 Competing volume estimation methods

At first glance, the solution to the problem of volumetric determination of fruit may

seem to lie within the field of multiple view geometry—reconstruction of the three-

dimensional surface of the fruit from multiple views provided by two or more cameras.

Such an approach, however, would suffer several important time and cost disadvan-

tages:

� Although some fruit sorting systems have multiple camera set-ups to view a

larger portion of the fruit’s surface than would be possible with a single camera,

many single-camera systems would require the installation of a new camera at

an appropriate viewing angle to reconstruct the three-dimensional structure of

the fruit. Such an expense is not justified, considering the value of the volume

information compared with the cost of such an installation [38].

� If multiple appropriately-positioned cameras were available, the problem of

matching points in the various images would be difficult. This is because, as

biological objects, the fruit lack visible features such as flat surfaces meeting

at obvious corners that would be required for three-dimensional surface recon-

struction of unlabelled images [28]. The fruit is often largely uniform in colour,

and so without some marking system such as the projection of structured light

onto the fruit, accurate matching of enough points to provide a surface model

would be very daunting.
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� Even with two cameras, less than half of the three-dimensional fruit surface

could be reconstructed. If many cameras were used to determine the three-

dimensional surface characteristics of the whole fruit, the problem of fitting the

various pieces together would be highly computationally intensive and would

be subject to error.

Projection of structured light onto a biological object for three-dimensional surface

determination has been used before with success [5, 41] . This method is used to facil-

itate the point matching problem and has the added advantage that only one camera is

required, because the view of the structured light pattern from the position of the pro-

jector is known and need not be photographed—in effect, the projector takes the place

of one of the cameras. It still has the disadvantage that less than half the fruit surface

can be modelled, since the optical plane of the camera must be at an angle to the plane

of projection for the grid to be distorted. Figure 1.2 demonstrates the idea by showing

the projection of a grid pattern onto an apple. Although occlusion of the projected

light by protruding or indented features on the fruit’s surface may yield benefits, such

as allowing identification of the position of the calyx and the stem [41] (these concave

regions cause discontinuity in the projected light), it remains a disadvantage to the

accurate modelling of the three-dimensional surface.

Figure 1.2: Chessboard pattern projected onto an apple to show three-dimensional

surface characteristics of the fruit by means of analysing the distortions of the grid

pattern on the fruit’s surface.
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Another surface-determination technique is shape from shading, which recovers sur-

face shape from changes in image intensity. This requires fixed illumination and imag-

ing conditions, as well as a surface with known reflective properties. In the case of

fruit grading, the objects to be inspected are biological, with surfaces that have un-

predictable intensity variations. These difficulties, coupled with the fact that it is de-

scribed as being of limited use in practice [17], indicate that this method is an unlikely

candidate for the estimation of fruit volume.

Solutions to the three-dimensional shape determination problem which incorporate

the use of ultrasonic devices [19] or x-rays have considerable potential for providing

an accurate volume estimate, but the expense of the installation of the device would

by far outweigh the benefits to the packing house of having volume measurements for

their fruit.

1.3 Aims and methods of this project

The above disadvantages have motivated the development of methods which estimate

fruit volume from the fruit profile images that are currently used for colour and blem-

ish detection by existing sorting systems. It is the development and testing of these

methods that form the subject matter for this dissertation.

The methods make use of the a priori knowledge that the fruit is of a particular culti-

var, and attempt to estimate the statistically-most-likely volume of the fruit by form-

ing a function of profile shape features (such as perimeter and area). The function is

trained on typical samples of fruit from the particular cultivar to determine the func-

tion parameters. The problem is thus one of function approximation or regression.

This approach has the advantages of high speed (since the volume estimate will sim-

ply be a calculable combination of a few rapidly extractable shape features), of being

easily adaptable to different fruit and packing house set-ups without the need for ex-

plicit camera calibration, and also of relatively low cost (since no extra hardware need

be added to the sorting system).

Algorithms were developed to estimate the volume both of odd-shaped fruit such as

the pear and the potato and of more regularly-shaped fruit such as oranges and lemons.

The algorithms are robust in the sense that, provided that they are trained in the con-

ditions in which they will be utilised, they are not reliant on the particular cultivar or
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camera set-up used in the packing house (unlike an algorithm developed by the author

[7, 9] in previous work, which relied on the mechanics of the conveyor system to align

the fruit so that a side view was always seen by the camera). As long as the methods

developed in this project are adequately trained on samples taken from the cultivar

population, they will adapt to the specific environment of the packing house.

The purpose of this project is thus to develop statistical methods to estimate volumes

from profile images of fruit and to test the performance of these methods experimen-

tally. By quantifying the performance of these methods (calculating the RMS errors

attained with use on different fruit types, namely oranges, pears, lemons and potatoes),

their expected suitability for particular uses on packing lines can be established.

The practical work in the project included photographing and measuring the actual

volumes of fruit samples to form data sets. In addition, the photographs were pro-

cessed using digital image processing techniques to extract numerical features. These

features were used, in conjunction with the actual measured volumes as target values,

to form methods of volume estimation from the profile image features using artificial

neural network and other statistical methods. The results of the various methods were

tested on portions of the data set not used in the training process, in order to assess the

performance of the different methods on unseen data.

The results of this study are for the use of manufacturers of vision-based fruit sorting

equipment. To incorporate volume estimation from profile images into a fruit sorting

system, the system would have to be trained on a sample of fruit from the population to

be sorted. These sample fruit would have to have their volumes accurately measured to

serve as target volumes before the system could be commissioned to estimate volumes

from a function of shape features from digital photographs. After the training process,

by analysing the corresponding digital image, a volume estimate would be given for

each fruit that had passed beneath the camera.

1.4 Preview of later chapters

Chapter 2 of this dissertation introduces the available published literature on the es-

timation of fruit volume from profile images. The general approach to estimating

fruit volume statistically is then discussed in terms of how one might expect a volume

estimation system to function. The important issues to be taken into account are pre-
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sented. A mathematical analysis is then performed on a hypothetical ellipsoid ‘fruit’

to illustrate the inherent uncertainty in volume estimation from profile images, and to

highlight some of the theoretical issues raised in approaching the volume estimation

problem.

The bulk of this project is concerned with image processing and function approxima-

tion. Some of the theory and background to these two subjects, particularly as they

relate to what was done in this project, is given in Chapters 3 and 4.

Chapter 3 presents the image processing methods which were used in this project to

reduce the digital profile images of fruit from the camera into a format from which

features could readily be extracted for regression analysis. The theory behind some of

the shape features to be extracted is also discussed.

Chapter 4 discusses the theory behind the use of artificial neural networks (ANNs) as

tools for regression and classification. ANNs play an important role in this project as

they are used to combine the features extracted from the profile images of the fruit to

form an estimate of the volume of the fruit. Attention is specifically given to the multi-

layer perceptron (MLP) architecture of an ANN, as the MLP was the chosen ANN for

function approximation in this project. The chapter also discusses many points which

are applicable to function approximation in general. This includes explanations of the

method by which the function approximators are tested, and of how an estimate of the

confidence in the test results can be quantified.

Chapter 5 explains the experimental method used to measure the actual volumes (for

use as target values in regression analysis and for testing the performance of the vol-

ume estimation methods) of hundreds of pieces of fruit. This chapter also details how

thousands of digital images of fruit were obtained, using a mirror chamber that was

designed and built by the author for the purpose of providing multiple images of each

fruit piece. The mirror chamber could be used to obtain four images of a single piece

of fruit simultaneously, and fruit pieces were invariably photographed in six orienta-

tions within the chamber so that 24 images of each fruit piece were available as data.

Chapter 6 describes the key operations of preprocessing, segmentation and feature ex-

traction that were performed on the digital images for the various different fruit. This

entire process essentially reduces an image to a vector of numbers which collectively

describe the important characteristics of the corresponding profile image.
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Chapter 7 shows how the various features from the digital images were combined

using linear and artificial neural network methods, to provide volume estimates for

the fruit data. The performances of the different methods are discussed and compared.

Chapter 8 concludes the investigation by summarising the results and their implica-

tions.

The details of a solution developed for a related optimisation problem concerning

the selection of weight thresholds for packing fruit into boxes are described in Ap-

pendix A. It is shown how this optimisation problem is an interesting example of

how a reduction in fruit weight estimate error (which could be derived from a volume

estimate) can translate directly into savings for the packing house.

Tables of the error results and of the associated statistics for the various volume estima-

tion methods developed in this project are repeated for convenience in Appendix B.



Chapter 2

Overview of Volume Estimation from

Profile Images

This chapter discusses various aspects of the problem of volume estimation from pro-

file images, beginning with a review of published literature on the subject. It explains

how an initial volume estimate can be obtained from the area of the fruit profile, and

how this estimate could be improved using an implicit estimation of the fruit’s orien-

tation with respect to the camera. This estimation of orientation is formed by taking

the shape, as opposed to the size, of the fruit profile into account.

Towards the end of the chapter, a theoretical derivation of probable volume is pre-

sented for a simple mathematically-defined object. This is done to show how, in the-

ory, an expected volume with an associated uncertainty can be calculated from a given

profile of an object, provided that a priori knowledge about the population of such

objects exists. Later in this dissertation, it is shown how, in practice, an estimated vol-

ume with an associated uncertainty can be calculated from a given profile of a fruit,

using a priori knowledge about the population of such fruit.

2.1 Literature review

Although the available literature describes many machine vision fruit grading systems,

the main task of these systems has been to classify fruit in terms only of colour and

quality. For instance, at the University of Cape Town, Kay [18] developed colour clas-

9
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sification functions for sorting fruit into standard colour classes from digital images of

the fruit, and Henry [14] used similar methods and included some geometrical mea-

surements to investigate the classification of dried fruit into standard quality classes.

Some implemented fruit sorting systems described in the literature include an on-line

system for mango-grading [29] and a real-time video grading system for oranges [30].

The mango sorting system classifies mangoes according to colour, size (using linear,

not volumetric, measurements), and taste (using infra-red sensors). The orange sorting

system uses multiple orthogonal views of each orange, as it is propelled through an

inspection chamber, to identify surface defects on the oranges. The diameters of the

orange profiles are measured from the digital images.

Some commercial fruit sorting system manufacturers have sites on the Internet [1,

6, 15]. The fruit sorting systems which they implement are described as ‘custom

designed’, and are fully integrated with the conveyor system. They promise to sort

fruit into colour, size, shape and weight categories, and use recording software to

keep track of each lot of produce.

In the available literature, relatively little attention is given to the sorting of fruit by

size. Those systems that have been implemented to give some form of measure of the

size of the fruit usually use a direct measurement from a two-dimensional image (such

as fruit diameter), as opposed to using size and shape features explicitly to estimate

volume as is done in this project. The former method is of little use with fruit that is

not approximately spherical because there is usually no guarantee that the fruit will

be appropriately orientated with respect to the camera; and the widest portion of the

fruit, for instance, may happen to be either hidden or visible to the camera, giving

inconsistent results even with the same piece of fruit (at different orientations).

Documentation of only two systems which estimate volume from shape parameters

was found after an extensive world-wide library search. Both methods use relatively

simple functions of one or two shape features to estimate volume. These shape fea-

tures are measured or extracted from digital profile images of the fruit.

The first of these systems is the machine vision system described by Miller [23, 39] to

estimate the volume of oranges for the purpose of identifying freeze damage. Freeze-

damaged fruit have a lower-than-average density and can thus be identified and re-

jected through the use of some measurement of density. In the days prior to the de-

termination of orange density from volume estimated by a machine vision system and
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weight measured by a load cell, oranges were separated by density through the use of

emulsions. The separating equipment contained an emulsion of purified mineral oil

and water, whose specific gravity was adjusted to be more than that of the damaged

fruit but less than that of the undamaged fruit. Sound fruit sunk onto one roller eleva-

tor, damaged fruit floated onto another; and the separated fruit were carried out of the

emulsion [23].

From a digital image of an orange at arbitrary orientation, Miller used an algorithm

which measured the orange diameter eight times at successive angular increments of

221
2
Æ

. Using the arithmetic mean of these eight readings as the diameter, d, and by

approximating the shape of the oranges to that of a sphere, the formula

Vorange �
πd3

6
(2.1)

gave readings with what the author described as “a larger variation than the estimate

by liquid displacement” [23]. As Miller’s results were not quantified, his method is

repeated on a new data set and is then compared with an alternative method later in

this study. The alternative method estimates the volume as a function of fruit profile

area. It is felt that this alternative method is simpler, and that it may even reduce

volume estimation error because an area measurement is likely to be more immune to

noise than the diameter measurements used by Miller.

The second system is described by Marchant [21, 37] as a process which estimates

the weight of potatoes by forming a function of shape features. Although volume is

not explicitly derived, Marchant’s assumption of uniform potato density essentially

reduces his problem to one of volume estimation, albeit only by implication. It is

far easier to obtain a training set with known target weights than with known target

volumes, since the acquisition of accurate volume by measurement of liquid displace-

ment is much more time consuming than measuring weight using a balance. It thus

makes more sense, where density may be assumed constant, to use weight as the target

variable of a function of shape features, since in this case nothing can be gained by

first using volume and then dividing by a measured average density. The weight of

potatoes was estimated by Marchant, using the average of

Wpotato �
(projected area)2

length
(2.2)

derived from 12 different images as the potatoes were rolled along a conveyor system.

The average error on the estimated weight was 7%. Marchant’s method of weight
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estimation for potatoes is repeated later in this study, using a new data set of potatoes,

as an exercise in volume estimation and for comparison with other volume estimation

methods.

2.2 Discussion of approach

This section discusses some of the issues and methods that are relevant in developing

and testing methods for estimating fruit volumes. Most of these issues are discussed

theoretically, with little reference to the actual data used in this project. The section

thus serves to introduce the reader to some concepts that affect the approach taken in

this project, and that are discussed with reference to the actual data used in the project

in later chapters.

This study attempts to make a better estimate of volume than the methods described

by Miller and Marchant, by using further shape features to parameterize the boundary

shape of the fruit profiles and by using different methods for combining these features.

Such an approach generalises the method, making it particularly applicable to odd-

shaped fruit (such as the pear) which have boundary profiles of different size and shape

depending on the fruit’s orientation (which can in turn be implicitly predicted to an

extent because most pears are approximately radially symmetric [8]). This discussion

is primarily based on the pear, yet is applicable in many ways to other fruit. As will

be seen later, the pear is a useful example because it clearly highlights the main issues

in estimating the fruit volume from profile images.

If all pears (of differing volume) were of exactly the same shape, and were pho-

tographed in exactly the same orientation, then the pear volume would be a mono-

tonic function of the area of the fruit profile. If the pear were sufficiently far from

the camera, so that a profile boundary formed by effectively-parallel tangential rays is

captured, then the volume would be related to the profile area by

Vpear = KApear
3
2 (2.3)

where Vpear is the volume of the pear in cubic centimetres, Apear is the area of the

pear profile image in pixels and K is constant for such shape-and-orientation-invariant

pears. However, in the real world case where the shape and orientation of the fruit

varies, K is not constant. Estimating the value of K from two-dimensional digital
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profile images of the fruit can be seen as the crux of the volume estimation problem

in this study.

(a) Smaller K (b) Larger K

Figure 2.1: Two orientations of the same pear.

In a fruit sorting system, the projected profile area of the fruit as seen by the camera

varies depending on the orientation of the fruit. As an example, Figure 2.1 shows the

same pear photographed in two different orientations, resulting in different projected

areas and different boundary profile shapes. Profile areas may also differ between

pears of different intrinsic shapes. For example, a long thin pear of the same volume

as a regular pear may have a larger projected area when viewed side-on than the regular

pear. Figure 2.2 shows an example of such a case.

(a) Larger K (b) Smaller K

Figure 2.2: Profiles of two pears of equal volume, but the area of (a) is 10% less than

the area of (b).
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By examining the standard deviations of K with a real data set of pear images, it is

possible to gain an impression of the relative importance of the two factors that may

cause K to differ from image to image, namely the variation in orientation and the

variation in shape from pear to pear. In this project, four image data sets were formed,

one for each of oranges, pears, lemons and potatoes. The acquisition of these data

sets is described in Chapter 5. Table 2.1 shows, in the second column, the standard

Fruit type STD(K)
K

, one fruit STD(K)
K

, different fruit K

Orange 0:035 0:035 5:32�10�5

Pear 0:068 0:070 6:19�10�5

Lemon 0:091 0:091 5:45�10�5

Potato 0:155 0:151 5:19�10�5

Table 2.1: Spread of K for different fruit types.

deviation of K, STD(K), divided by the mean of K, K, calculated for the 24 images of

each individual piece of fruit in the data sets. The value shown is an average derived

from many measurements, each obtained over 24 images of each fruit piece at random

orientations. The third column shows the standard deviation over the mean for K

calculated for different fruit in random orientations. The value shown is the average

of 24 such calculations for each fruit. The fourth column shows the average value of

K for each fruit. The pears show a slightly larger value than the other fruit, since the

data was gathered with a slightly different camera set-up, with the camera further back

from the fruit than it had been with the other fruit types. This is the reason that the

standard deviations were divided by the means for purposes of comparison.

Table 2.1 indicates, as would be expected, that the variation of orientation is the main

contributor to variance in K, rather than the difference in shape between different fruit

of the same type. This is because the change in the standard deviation of K when

moving from one fruit at any orientation to any fruit at any orientation is small. Note

that it would not be possible to calculate the standard deviation of different fruit at

the same orientation, since the absolute orientation of a real fruit cannot usefully be

defined because it has no rigorously predefined body axis. There is no need explicitly

to define orientation for real fruit, but the concept of orientation is very useful in

thinking about the problem.
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Table 2.1 is also useful in showing how the spread of K varies in different fruit types.

Oranges have a low spread of K, since they are almost spherical, and the profile area

does not differ much with orientation. Pears and lemons have a greater spread than

oranges, since the same fruit exposes different profile areas at different orientations.

One might expect that the pear’s K value could be predicted to an extent from exam-

ining the shape parameters of an image. This is because the pear’s top and side views

have distinctly different shapes. The prediction of K for lemons also seems viable,

because lemons are roughly ellipsoidal and possess a certain degree of rotational sym-

metry. Later in this chapter, a theoretical examination of ellipsoids shows that there is

a future in estimating volume (and hence predicting K implicitly) with a probabilistic

approach. The potatoes have a large spread of K, since they are irregularly shaped.

Although there is little obvious evidence that K could easily be predicted in the case

of potatoes, a statistical approach may be able to give a probabilistic estimate of K.

By measuring certain shape features (for example circularity or aspect ratio [40, 32])

from the profile images of a pear, it is possible to determine the degree to which a

pear is viewed from the side or the top [8], or how oblate or prolate it is. The shape

features, x1; x2; : : : ; xn, may be of use in approximating a value for K, and hence in

deriving a volume estimate. That is to say

K � f (x1; x2; : : : ; xn) (2.4)

In fact it is better to use these features to predict volume directly and only implicitly

to predict K or orientation. By directly calculating the volume of the fruit using

V̂ = f (x1; x2; : : : ; xn; A) (2.5)

where V̂ is the estimated volume and A is the area of the fruit profile, the assump-

tion that Equation (2.3) holds is no longer necessary. It remains, however, useful for

descriptive purposes and also for a linear regression approach described later.

The features x1; x2; : : : ; xn should be specifically chosen to identify the probable shape

and orientation of the pear from the given profile image. As a function, f is highly

non-linear, but it may be approximated very effectively by an artificial neural network

(ANN) that has been trained with a set of shape features, areas and corresponding

target volumes for many different pears in different orientations [8]. The ANN at-

tempts to approximate f by minimising the RMS error on the volume estimates. It is

preferable to have a large training set and few shape features to encourage the ANN to
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generalise and not to model the specific training set [3]. The use of only a few features

has the added advantage of rapidly producing a volume estimate, reducing the number

of calculations that would need to be made, for example, in a commercial sorting line.

A good start for identifying satisfactory shape features to feed into an ANN is to check

for correlation between each proposed shape feature and K. A feature which shows

correlation is a good predictor of K and can be used in conjunction with profile area

to train an ANN to provide a volume estimate.

By taking multiple images of the fruit either at fixed angles or at successive ran-

dom orientations, it is possible to improve the volume estimate by even more than

is achieved by averaging the volume estimates from the multiple images calculated

separately. For instance, a function

V̂ = f 0(x1image A ; : : : ; xnimage A ; x1image B ; : : : ; xnimage B) (2.6)

for two images A and B, taken at right angles to one another, will outperform the mean

of the two volume estimates obtained from calculating two separate f functions, one

for each image. A top view of a long thin pear will result in a volume estimate biased

towards that of the average shape for pears, as no length information is present and the

ANN would assume the pear to be of typical volume for its profile area. If a side view

image is also available, then features derived from both images in conjunction will

provide a better volume estimate than can be obtained from averaging estimates de-

rived from the two views taken separately. This is because working with two separate

views biases the estimate from the side view image (presumably a reasonable volume

estimate because of the fruit’s near symmetry about its stem-calyx axis) towards a

volume that is typical of the mean pear volume for the top-view profile area.

Figure 2.3 shows the steps that are undertaken to derive a volume estimate from a

single digital image.

190cm3

0.567

0.987

0.122

0.434( )
Original
image

Fruit
boundary

Shape
features

Artificial neural network
or other function approximator

Volume
estimate

Figure 2.3: Flow chart to show an example of the progression from digital image to

volume estimate.
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The basic method of approach for the evaluation of the effectiveness of volume esti-

mation algorithms has been as follows:

1. Accurately measure the actual volumes of a training set and test set of fruit.

2. Acquire multiple images of each fruit in the set.

3. Preprocess and segment the fruit images to identify the fruit profile boundaries.

4. Extract appropriate shape features from the fruit profile boundaries.

5. Using the actual fruit volumes as targets, train linear functions or ANNs to esti-

mate the fruit volumes from the extracted features of the training set.

6. Test and compare the performances of the different volume estimation methods.

2.3 Regression analysis and volumetric spread

This section explains why it is necessary to consider the spread in the population of

fruit volumes when interpreting the results of a statistical volume estimation. Consider

a population of n fruit with volumes V = (V1;V2; : : : ;Vn), each described by a sin-

gle shape feature stored in corresponding elements of the vector S = (S1;S2; : : : ;Sn),

which is some shape feature function formed from features extracted from n profile

images of the fruit (one image per fruit). For instance, S might comprise

Si =C � widthi

lengthi
�area

3
2
i (2.7)

where Si is the ith element of S, C is a constant multiplier to convert Si to the same units

as Vi (say cubic centimetres), and widthi is the width, lengthi is the length and areai is

the area (all counted in pixels) of the fruit object in the profile image of fruit number

i. However, for the purposes of the discussion in this section, it is not important how

S is calculated. The shape feature S might be related to the corresponding volume V

(dropping the subscript i and now treating V and S as variables) by the equation

V = S+u (2.8)

where u is an uncertainty or error term, due to the fact that the fruit was randomly

orientated when photographed and that all fruit in the population are not identically
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shaped. Quantisation errors of the shape features due to the finite resolution of the

camera, errors in the precise positioning of the fruit for the purposes of photographing

it, any inconsistencies in lighting conditions and so forth may also contribute to u, to

a limited extent. For any given shape feature S, V̂ = S is the expected value for the

volume of the corresponding piece of fruit. Thus u behaves as a random variable with

zero mean in this context.

50 100 150 200 250 300 350
50

100

150

200

250

300
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S

V

V = S

V = mS + c

V = V

Figure 2.4: Plot of computer-generated values of V versus S.

Figure 2.4 shows an example of a plot of V versus S. The n = 500 values of V in this

plot were generated randomly by sampling a normally distributed probability density

function (PDF) with a mean of 200 and a standard deviation of 40. The values of S

were obtained by subtracting u, which was in turn obtained by sampling a normally

distributed PDF of zero mean and a standard deviation of 25.

The blue line has the equation V = S and can be used to estimate V from a given S.

Using V̂ = S to predict V from S gives an RMS error of 25:4 for this particular set of

500 points.

The green line has the equation V = V , where V is the mean of the 500 values of V.

Volume can also be predicted using this equation. Using V̂ =V amounts to predicting

the volume of any new sample to be the mean volume of the population, and entirely

disregarding the value of S. This method gives an RMS error of 40.2 on the 500 points.
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The red line shows the linear regression line V = mS+ c for the set of points. The

slope, m, of this line may be calculated using a standard result from linear regression

theory [22]

m =
n∑SV � (∑S)(∑V )

n∑S2� (∑S)2 (2.9)

and the intercept, c, may be calculated using the equation [22]

c =V �mS (2.10)

where S is the mean of S. Using V̂ = mS+ c to predict the values of V from S gives

an RMS error of 21.1 over the 500 data points in this example. Note that although

one would usually use a separate test set of data points to evaluate the RMS error on

prediction, not using a test set does not in any way detract from the validity of the

argument.

Although V̂ = S is the best estimator of volume in the absence of any information other

than S, in the given example there is additional information, namely the distribution

of volumes. One would expect new points drawn at random from the same population

(considering the existing n = 500 points to be a sample drawn from the population)

to produce lower RMS errors on volume estimates when using the existing regres-

sion formula V̂ = mS+ c than when using V̂ = S. This is because linear regression

implicitly makes uses of the a priori knowledge of the distribution of volumes when

predicting volumes from new data. The V̂ = S method uses no knowledge of any a pri-

ori information (although this information could be used explicitly with this method

in conjunction with Bayes’ Theorem [20], but it is far easier to use regression methods

which implicitly make use of the a priori distribution of the population).

A population with a greater spread (standard deviation) of volumes would have a

regression line closer to the V = S line. In the extreme case, where the spread is

infinite, the PDF of the volumes is uniform and the regression line is the V = S line.

This is equivalent to having no a priori knowledge of the volume distribution of the

population, with any volume being equally likely. This, of course, is impossible in

practice for several reasons, one of which is that fruit with negative volumes do not

exist.

A population with less spread would have a regression line that was closer to the V =V

line. There is no spread in the extreme case where all fruit are of the same volume. In

this case the regression line is the same as the V =V line. If the spread of the volume
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is small enough, then a volume estimate using V̂ = V would outperform an estimate

using V̂ = S in terms of RMS error.

The purpose of this section is thus to highlight the fact that the RMS error associated

with a given volume estimation method should be seen in the context of the distri-

bution of volumes from which the RMS error was derived. Two volume estimation

methods cannot be directly compared unless they are evaluated on data sets with the

same distribution of volumes1. A volume estimation method for a particular type of

fruit will not have one RMS error value associated with it, but would instead produce

different RMS errors when applied to populations with different overall volume distri-

butions. A good volume estimation method is one in which the spread of the ‘random

variable’ u is small. This would mean that the size and shape of the profile images

are appropriately taken into account. The better the volume estimation method, the

lower will be the effect of improving the volume estimate through knowledge of the

volume distribution. One would thus expect a reasonably good estimation method to

be relatively insensitive, in terms of a change in RMS error, to changes in the spread

of the volume distribution of the population. A poor method would, by contrast, de-

crease in performance with increasing spread of volume distribution, as most of its

information would come from the a priori knowledge of the volume distribution. In

the extreme case, the V̂ = V method makes no use of the shape or size of the pro-

file images. This method would be expected to perform increasingly poorly, without

bound, as the spread of the population distribution is increased.

2.4 An analytically derived volume estimate for a math-

ematically described object

In this section, the volume estimates, associated uncertainty and error estimates are

derived for a simple mathematically described population of objects. The derivation
1The probable volume of a piece of fruit is a function both of the PDF of fruit volumes, V , and

the PDF of u, neither of which is necessarily known (although they can be estimated from sample

values). Nor is either PDF necessarily normally-distributed or necessarily independent of the other.

This means that there is no simple, direct way of comparing volume estimation results for fruit data

sets with different volume PDFs (such as dividing the RMS errors by the standard deviation of the

volume PDFs). It is, however, enough for one to be aware that a direct comparison of RMS errors

would not be meaningful.
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is entirely theoretical, and makes the assumption that all measurements are perfect.

This is done to demonstrate the inherent uncertainty on a volume estimate due to

lack of information alone. The overall uncertainty can of course be expected to be

larger in a real system with additional sources of error such as those due to imperfect

measurement, quantisation, camera imperfections and so forth.

From this demonstration, it can be seen that the a priori knowledge of the distribution

of the sizes and hence of the distribution of the volumes of the mathematical object (an

ellipsoid) is not only important in estimating volume, but is fundamentally necessary

in solving this problem.

The three-dimensional surface shape characteristics of a fruit can be parameterized

to arbitrary accuracy by a vector x = (x1;x2 : : :xn). Any piece of fruit from a pop-

ulation of fruit (or cultivar) could be described by a particular instance of x. The

parameterization could, for instance, take the form of a set of spherical harmonics, or

it could simply be a set of co-ordinate triplets defining points on the fruit’s surface

in three-dimensional space. Figure 2.5(a) shows a computer-generated pear. It has

been parameterized with a set of 64 co-ordinates in an 8� 8 mesh pattern as shown

in Figure 2.5(b) and to a greater accuracy with 256 co-ordinates in a 16�16 grid pat-

tern in Figure 2.5(c). The value of n, the size of x, for the parameterization shown in

Figure 2.5(c) would thus be n = 16� 16� 3 = 768. Using this parameterization, the

three-dimensional surface shape characteristics of any fruit from this cultivar may be

described by a vector of 768 values.

(a) (b) (c)

Figure 2.5: Parameterization of a fruit to arbitrary accuracy.

Each parameter of a fruit is determined probabilistically, remembering that for real

fruit the probability functions associated with a population of fruit are hidden and can

only be estimated. By considering a piece of fruit which is parameterized by a vector,
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x, and which is randomly selected from a population, the inherent uncertainty associ-

ated with a volume estimate from a photograph of such a fruit can be demonstrated.

To obtain the fruit profile boundary as if in a photograph, the piece of fruit is placed in

a Cartesian co-ordinate system and is rotated to a random orientation. A ‘photograph’

is then taken of the fruit, with the camera looking down at the xy plane from z = ∞.

2.4.1 Estimating the volume and associated error of an ellipsoid

The estimation of volume and the calculation of the uncertainty on the volume esti-

mate can become complex, even with the number of parameters, n, being low. For

purposes of demonstration, consider a theoretical population of fruit each of which

is an ellipsoid with two of its three semi-axes equal. Such an ellipsoid is a surface

of revolution. It can be obtained by revolving the ellipse x2

a2 +
y2

b2 = 1, z = 0 around

the x-axis. An example of this type of ellipsoid is shown in Figure 2.6 at arbitrary

orientation. The ellipsoid is parameterized by only two values, a and b.

a

b

b

Figure 2.6: An ellipsoid with two of its semi-axes equal.

Figure 2.7 shows two PDFs which generate values a and b according to certain prob-

abilities. In this case, for purposes of simplicity, the two probability functions are

independent of one another.

Figure 2.8 shows a photograph of the ellipsoid taken at an arbitrary orientation with

the camera looking down onto the xy-plane from infinity (there are no projection ef-

fects, the resulting ellipse is simply the ellipsoid projected onto the z = 0 plane). Two

parameters or features, r1 and r2, can be extracted from the photograph. These two

features completely describe the ellipse’s shape (yet describe nothing of its orienta-

tion).
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a

p (a)Ap (a)A

(a)

b

p (b)Bp (b)B

(b)

Figure 2.7: Probability density functions pA(a) and pB(b).

r2r2 r1r1

Figure 2.8: Photograph of the ellipse at an arbitrary angle.

The equation for the surface of the ellipsoid in Figure 2.6 is

x2

a2 +
y2 + z2

b2 = 1 (2.11)

The equation of the ellipse in Figure 2.8, obtained by projecting the ellipsoid onto the

xy-plane, can be found by setting z = 0 in Equation (2.11):

x2

a2 +
y2

b2 = 1 (2.12)

This is only possible because the projection happens to be the same as a cross-section

through the ellipse at z = 0, which is not in general the case at other orientations.

To rotate the ellipsoid to any other orientation, it can be rotated about the x-, y- and

z-axes by arbitrary angles. The rotation of a single point anti-clockwise about the y-

axis through an angle θ is illustrated in Figure 2.9. Mathematically, this rotation is

performed using the rotation matrix as shown below:"
xnew

znew

#
=

"
cosθ �sinθ
sinθ cosθ

#"
xold

zold

#
(2.13)
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x

z

�
Old point

New point

Figure 2.9: A point rotated anti-clockwise by θ in the xz-plane.

Since the ellipsoid is radially symmetrical about the x-axis, rotation about the x-axis

has no effect on the ellipsoid’s apparent position or shape. The entire ellipsoid can be

rotated about the y-axis by the angle, θ, yielding a new equation for the ellipsoid

(xcos(θ)� zsin(θ))2

a2 +
y2 +(xsin(θ)+ zcos(θ))2

b2 = 1 (2.14)

Since there is no reference angle for the camera plane, which is parallel to the xy-

plane, there is no need to rotate the ellipsoid about the z-axis: that is, the ellipse

parameters r1 and r2 are unaffected by any rotation of the ellipsoid about the z-axis,

so Equation (2.14) can be used to describe an arbitrarily-rotated ellipsoid.

The probability density function for the volume of the ellipsoid can be calculated,

given r1 and r2, which are the lengths as shown in Figure 2.8. The ellipse in the

photograph could have come from a range of different ellipsoids, each with a corre-

sponding probability. Any ellipsoid with a b value equal to one of the two r values in

the photograph, and an a value such that the other r value lies between a and b could

produce such an ellipse at some specific orientation. Each ellipsoid has an associated

probability of occurrence, which can be calculated from the PDFs of the ellipsoid’s

parameters, a and b.

The volume, V , of the ellipsoid is given by the formula [34]

V =
4π
3

ab2 (2.15)

For a given volume, there are two cases which must be considered. Either r1 = b or

r2 = b. These two cases give rise to two possible values of a, a1 and a2, and two
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possible values of b, b1 and b2. These quantities are related to the observed lengths,

r1 and r2 as follows:

a1 =
3V

4πr2
2

(2.16)

b1 = r2 (2.17)

a2 =
3V

4πr2
1

(2.18)

b2 = r1 (2.19)

Each case occurs with its associated PDFs, pA(a) and pB(b), for a and b. The prob-

ability of the ellipsoid being of a specific volume given a photograph from which r1

and r2 are obtained is (after some derivation)

pV (V jr1;r2) =

2

∑
n=1

pA(an)pB(bn)U [(bn� rn)(bn�an)]U [(rn�an)(bn�an)]

Z ∞

0

2

∑
n=1

pA(an)pB(bn)U [(bn� rn)(bn�an)]U [(rn�an)(bn�an)] dV

(2.20)

where the unit step U(t) is defined by [24]

U(t)�

8><
>:

0 t < 0
1
2 t = 0

1 t > 0

(2.21)

The unit step functions in Equation (2.20) are used to remove cases which could not

occur, because of the constraint that r must fall between a and b. The denominator

ensures that the final volume PDF is of unit area. The summation signs are used to

consider both of the two cases, where b = r2 and where b = r1.

From this PDF the expected value of the volume and the uncertainty in terms of stan-

dard deviation can be calculated. The RMS error for the system over many volume

estimations of many ellipsoids can also be derived.

The mean value of the PDF

E[V ] =
Z ∞

0
V pV (V jr1;r2)dV (2.22)

is the expected value of the volume for a given r1 and r2.

The standard deviation of the PDF

σV =
q

E[V 2]�E[V ]2 (2.23)
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gives a measure of the uncertainty on the volume estimate.

The root-mean-squared error (RMSE) for a theoretical system which estimates the

ellipsoid volume from a photograph is

RMSE =

vuuuuuuuuut

2πZ

0

∞Z

0

∞Z

0

�
4π
3

ab2�E[V jr1(a;b;θ);r2(a;b;θ)]
�2

pA(a)pB(b)dbdadθ

2πZ

0

∞Z

0

∞Z

0

pA(a)pB(b)dbdadθ

(2.24)

Equation (2.24) integrates the squared error of all possible ellipsoids in all possible

orientations and multiplies in each case by the associated probability of occurrence.

The denominator is again for purposes of normalisation.

To use Equation (2.24), the functions r1(a;b;θ) and r2(a;b;θ) must be derived. As

can be seen in Figure 2.10, which shows the side view of an ellipsoid with the camera

taking the profile photograph (as shown in Figure 2.8) looking down from on top, the

value of r1 can be determined by setting y = 0 and locating the turning point of the

z

Camera looking down

at ellipsoid from z=�

x

r1

�

Figure 2.10: Side view of the ellipsoid.
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ellipse in the xz-plane. The equation of this ellipse is

(xcos(θ)� zsin(θ))2

a2 +
(xsin(θ)+ zcos(θ))2

b2 = 1 (2.25)

This can be rewritten as�
cos2(θ)

a2 +
sin2(θ)

b2

�
x2�

�
2cos(θ)sin(θ)

a2 � 2cos(θ)sin(θ)
b2

�
xz+

�
sin2(θ)

a2 +
cos2(θ)

b2

�
z2 = 1

(2.26)

and, by introducing the quantities

A =
cos2(θ)

a2 +
sin2(θ)

b2 (2.27)

B = �2cos(θ)sin(θ)
a2 +

2cos(θ)sin(θ)
b2 (2.28)

C =
sin2(θ)

a2 +
cos2(θ)

b2 (2.29)

the equation becomes

Ax2 +Bxz+Cz2 = 1 (2.30)

Now taking the derivative of this equation with respect to z, and writing x 0 = dx
dz for

convenience:

2Axx0+Bx+Bx0z+2Cz = 0 (2.31)

) x0 = �Bx+2Cz
2Ax+Bz

(2.32)

At the turning-point x0 = 0, so

� Bx+2Cz
2Ax+Bz

= 0 (2.33)

) z =
�Bx
2C

(2.34)

Substituting this into Equation (2.30) gives

(A� B2

2C
+

B2

4C
)x2 = 1 (2.35)

) r1 = x =

r
4C

4AC�B2 (2.36)

The value of r2 is simply the radius of the circular cross section of the ellipsoid, r2 = b.
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2.4.2 An example of ellipsoid volume estimation

The use of the equations described above may now be demonstrated through a specific

example.

a [mm]a [mm]

p (a)Ap (a)A

(30,0) (60,0)

(50, )
1

15

(a)

b [mm]b [mm]

p (b)Bp (b)B

(20,0) (40,0)

(30, )
1

10

(b)

Figure 2.11: Example of probability density functions pA(a) and pB(b).

Figure 2.11 shows an example of a pair of PDFs which describe the characteristics of

a family of ellipsoids.

r1=37mm

r2=35mm

(a) E[V ] = 243cm3, σV = 28:4cm3

r1=35mm

r2=59mm

(b) E[V ] = 305cm3, σV = 1:2cm3

Figure 2.12: Two examples of ellipses with volume estimates and associated uncer-

tainties, given the PDFs in Figure 2.11.

Figure 2.12(a) shows an ellipse (representing a photograph of an ellipsoid from the

family described by the PDFs in Figure 2.11). Its corresponding expected volume of

243cm3 was calculated using Equation (2.22) after first using Equation (2.20) to cal-

culate the PDF shown in Figure 2.13(a). The associated standard deviation of 28:4cm3

was calculated using Equation (2.23). Note how the PDF is the sum of two functions,
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100 200 300
0

0.004

0.008

0.012

V [cm
3
]V [cm ]

3

p (V)Vp (V)V

(a)

V [cm
3
]V [cm ]

3

p (V)1p (V)1

100 200 300
0

0.004

0.008

0.012

(b)

V [cm
3
]V [cm ]

3

p (V)2p (V)2

100 200 300
0

0.004

0.008

0.012

(c)

Figure 2.13: (a) is the PDF of volume for the ellipse shown in Figure 2.12, and is the

sum of (b) and (c) which represent the cases r2 = b and r1 = b respectively.

the first (shown in Figure 2.13(b)) assuming that the ellipsoid’s axis of symmetry cor-

responds to r1, and the second (shown in Figure 2.13(c)) assuming that it corresponds

to r2. These two functions are summed in the numerator in Equation (2.20).

Figure 2.12(b) shows an ellipse with a corresponding expected volume of 305cm3

and associated standard deviation of 1:2cm3. The uncertainty is much lower than in

the first example, since there is a much smaller range of ellipsoids that could have

produced the projected ellipse.

The RMS error for a system which estimates volumes of the ellipsoid fruit in this ex-

ample was calculated to be 22:8cm3 using Equation (2.24). In order for the error on

a volume estimate to be calculated, the actual volume of the ellipsoid must be known,

but to measure the uncertainty by means of the standard deviation, only the ellipse

parameters r1 and r2 need be known. For instance, an ellipsoid with a = 56:1mm

and b = 34:3mm, oriented at an angle of θ = 322:5Æ, will produce an ellipse with

parameters r1 = 49:2mm and r2 = 34:3mm. The volume of this ellipsoid is 276:4cm3

and the expected volume calculated by looking at the ellipse is 260:1cm3, resulting

in an absolute error of 16:3cm3. However, the uncertainty measure on the volume

estimate calculated with no knowledge of the actual ellipsoid is 12:5cm3 (using Equa-

tion (2.23)) .

A computer was used to evaluate the integrals in the various equations, but there is

no reason to assume that they could not be solved entirely analytically. A computer

simulation which generated random ellipsoids using the given PDFs confirmed the

RMS error result.
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This discussion shows that even if a fruit’s generating parameters and PDFs are known

(which is not the case in real systems), there is an intrinsic error associated with the

volume estimate due to the lack of given information. This is because the volume can

only be determined probabilistically. In a real system, where the parameterization and

associated probabilities are hidden, further errors are accumulated, as these param-

eters are implicitly, yet imperfectly, derived by the volume estimation system. The

ellipsoid example thus helps to show that since a fruit profile image could have been

produced by fruit with a range of volumes, the statistically-most-probable volume

must be chosen as the volume estimate.

It can also be seen from this ellipsoid demonstration that the knowledge of the distri-

bution of shape features (and thus of volumes, which are functions of shape features)

is of great importance, if a statistical approach is to be taken in the volume estimation

problem. This information is implicitly incorporated into a real volume estimation

process during the training stage, in which the system is exposed to a number of sam-

ple features which must typify the population from which they were drawn. This is

usually achieved by selecting the samples randomly from the population.



Chapter 3

Image Processing Methods

This chapter describes the methods and terminology of some of the tools that were

used for digital image processing and analysis in this project. The digital image pro-

cessing is required firstly to preprocess the data set of fruit images into a format from

which features can be extracted, and secondly to extract and measure these features.

Eventually, the features are to be combined to form a volume estimate of the fruit from

whose image they were extracted and measured.

3.1 Introduction

The digital fruit images used in this project, and those used in packing houses for

colour sorting and blemish detection, are obtained using a charge coupled device

(CCD) camera. The CCD is a two-dimensional array of light-sensing elements on

a chip. Sensor elements are located spatially to correspond with the pixels in an im-

age. These sensors form the red, green and blue (RGB) values for each pixel in the

output digital image when exposed to light. An RGB image is thus comprised of three

matrices of intensity bands, one for each of R, G and B. Each of the bands on its own

forms a grey-scale image.

By convention the intensity values usually range from 0 (dark) to 255 (light), but they

are also often scaled to run from zero through to one, so that they can be interpreted as

the proportion of full intensity. A binary image is an image which contains only ‘ones’

and ‘zeros’ and may be obtained by thresholding a grey-scale image (setting all pixels

31
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above a certain value to zero and all others to one). In some conventions, the ‘ones’

in a binary image represent foreground pixels and the ‘zeros’ represent background

pixels.

3.2 Region labelling

Region labelling is the division of an image into objects or sets of connected pixels.

Generally the ‘ones’ in a binary image form the objects, and the ‘zeros’ form the

background. Two object pixels are directly connected to one another if they are neigh-

bours of one another. Pixel neighbourhoods can be defined in terms of 4-connectivity,

in which the two pixels share a common side, or of 8-connectivity in which the two

pixels share either a common side or a common corner (see Figure 3.1).

(a) (b)

Figure 3.1: Black object pixel with (a) 4-connected and (b) 8-connected neighbours

shown in grey.

The region labelling process begins by scanning the binary image for the first instance

of an object pixel. A search algorithm is then implemented to locate all pixels con-

nected to the initial pixel, so that the connected pixels can be assigned to the same

region, namely region one. After this, region one may be removed from the binary

image (by setting each of its pixels to the value of the background) and the process of

locating another object pixel and its connected pixels may be repeated. The process

continues until all object pixels have been labelled. Figure 3.2 shows an example of

a binary image with three labelled objects if connectivity is defined as 4-connectivity

or two labelled objects if connectivity is defined as 8-connectivity. In this project

connectivity, for the purposes of region labelling, will be defined as 4-connectivity.
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Figure 3.2: (a) Binary image, with (b) three 4-connected objects, or (c) two 8-

connected objects.

3.3 Binary morphology

Binary morphology [40, 32, 16] is a non-linear branch of image processing that is used

to alter the geometrical structure of a binary image. The two fundamental processes

of morphology are erosion and dilation. These processes are used for the alteration

of an image with another image called a structuring element. The structuring element

is usually smaller than the image. An example of erosion and of dilation is shown in

Figure 3.3.

(a) Original image with

structuring element

(b) Eroded image (c) Dilated image

Figure 3.3: Example of binary erosion and dilation of an image.

Erosion uses a structuring element to reduce the number of ‘ones’ or non-zero pixels

in an image. The origin of the structuring element is overlaid over each pixel in the

original image, and only if every non-zero value of the structuring element is contained

in the original image should the corresponding pixel in the resultant image be set to
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‘one’. The erosion of an image, A , by a structuring element, B , is written A 	B ,

where A and B are treated as the sets of non-zero pixels in the images. Figure 3.4(a)

shows an example of a binary image, A , with ‘ones’ shown in black. The co-ordinate

locations of the black pixels form the set A which completely describes the binary

object:

A = f(1;1);(2;1);(2;2);(2;3);(3;1);(3;3);(3;4);(4;1);(4;3);(4;4)g (3.1)

Similarly, for B , in Figure 3.4(b),

B = f(0;0);(0;1);(1;0)g (3.2)

0

1 2 3 4 50

1

2
3

4
5

y

x

(a)

0

10

1
y

x

(b)

Figure 3.4: An example of (a) a 6� 6 binary image, A , and (b) a 2� 2 structuring

element, B .

Erosion is mathematically defined as follows [40]:

A	B =
\

b2�B

�
t 2 I

2 : t = a+b; a 2 A
	

(3.3)

where I
2 is the two-dimensional space of an image. Thus, erosion is the intersection

of the translations of A by �B . In this case

�B = f(0;0);(0;�1);(�1;0)g (3.4)

Since in this case �B has 3 elements, there are 3 translations of A :

A(0;0) = f(1;1);(2;1);(2;2);(2;3);(3;1);(3;3);(3;4);(4;1);(4;3);(4;4)g
A(0;�1) = f(1;0);(2;0);(2;1);(2;2);(3;0);(3;2);(3;3);(4;0);(4;2);(4;3)g
A(�1;0) = f(0;1);(1;1);(1;2);(1;3);(2;1);(2;3);(2;4);(3;1);(3;3);(3;4)g
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Figure 3.5: The (a) erosion and (b) dilation of the binary image shown in Figure 3.4(a)

using the structuring element shown in Figure 3.4(b).

The intersection of A(0;0), A(0;�1) and A(�1;0) is the set of the pixels in the eroded

object as shown in Figure 3.5(a). This intersection consists of two pixel co-ordinates:

(2;1) and (3;3).

Dilation uses the structuring element to increase the number of non-zero pixels in an

image. The origin of the structuring element is overlaid over each pixel in the image

in turn. If the image pixel is non-zero, then each pixel is added to the resultant image.

The dilation of an image, A , by a structuring element, B , is written A �B and is

mathematically defined as follows [40]:

A�B =
[

b2B

�
t 2 I

2 : t = a+b; a 2 A
	

(3.5)

Thus, dilation is the union of the translations of A by B . In the example case, B has 3

elements, so there are 3 translations of A :

A(0;0) = f(1;1);(2;1);(2;2);(2;3);(3;1);(3;3);(3;4);(4;1);(4;3);(4;4)g
A(0;1) = f(1;2);(2;2);(2;3);(2;4);(3;2);(3;4);(3;5);(4;2);(4;4);(4;5)g
A(1;0) = f(2;1);(3;1);(3;2);(3;3);(4;1);(4;3);(4;4);(5;1);(5;3);(5;4)g

The union of the sets A(0;0), A(0;1) and A(1;0) gives the co-ordinates of the pixels in

the dilated object as shown in Figure 3.5(b).

Since the structuring element is commonly disk-shaped, it can often help to visualise

dilation as the result of rolling the disk around the outer boundary of the object, and

then forming the resultant object by adding to the original object all the pixels through
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which the disk passes. Likewise, erosion can be visualised as the result of rolling

the disk around the inner boundary of the object, and forming the resultant object by

removing from the original object every pixel through which the disk passes. (The

example shown in Figure 3.3 is of erosion and dilation by a disk-shaped structuring

element.)

The morphological operations of opening and closing are defined [40] as combina-

tions of erosions and dilations of a binary image. The opening of an image, A , by a

structuring element, B , is written A ÆB , and is defined as

A ÆB = (A	B)�B (3.6)

Opening a binary image smoothes the contours of objects within it, eliminating small

islands and sharp spikes.

The closing of an image, A , by a structuring element, B , is written A �B , and is

defined as

A �B = (A�B)	B (3.7)

Closing a binary image smoothes the contours of the objects within it, eliminating

small holes and fusing narrow breaks.
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Figure 3.6: The (a) opening and (b) closing of the binary image shown in Figure 3.4(a)

using the structuring element shown in Figure 3.4(b).

Following the example of Figure 3.4, the results of opening and closing A with the

structuring element B are shown in Figure 3.6. Another example, which presents the

opening and closing of a fruit image using a disk structuring element, is shown in Fig-

ure 3.7. Note how opening the image removes the stalk of the fruit (see Figures 3.7(a)

and (b)).
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(a) Original image with

structuring element

(b) Opened image (c) Closed image

Figure 3.7: Example of binary opening and closing of an image.

Opening and closing are both idempotent operations [16]; that is, after the initial open-

ing or closing, further opening or closing with the same structuring element has no

effect:

A �B = (A �B)�B (3.8)

A ÆB = (A ÆB)ÆB (3.9)

3.4 Boundary sampling

(a) Binary pear object (b) Sampled at 46 pixel corners (c) Resampled to 64 points

Figure 3.8: Boundary sampling.



3. IMAGE PROCESSING METHODS 38

Figure 3.8(a) shows a binary image containing a pear object. It was chosen to be

low resolution to demonstrate the sampling algorithm that is to be discussed in this

section. It is often far more efficient in terms of speed and storage space to extract

features from a binary object by keeping a list of boundary co-ordinates than it would

be by operating directly on the binary image itself. The boundary of a binary object

can be described by the list of co-ordinates of the pixel corners that lie on the line

separating background and foreground (see Figure 3.8(b)). Note that pixel corner

co-ordinates are used, rather than the pixels themselves, as this describes the true

boundary between foreground and background. Each co-ordinate is one unit distance

apart from its predecessor in the list.

The list of co-ordinates is formed by first locating an arbitrary starting position known

to be on the object’s boundary. This can be done by selecting the upper-right corner

of the object pixel with the maximum y value, for instance. If there is more than one

such pixel, then, of those pixels, the one with the maximum x value may be used.

After adding the first corner’s co-ordinates to the list, the boundary is traversed by

moving on to the next pixel corner position that lies on the boundary and adding

its co-ordinates to the list, and so progressing through all the corner points until the

starting point is returned to.

Often it is desirable to use a fixed number of sample points to describe an object.

For instance, for a group of objects it might be useful to have each object’s boundary

stored in an array of, say, 64 points (see Figure 3.8(c)), instead of each object having

a different number of samples to describe its boundary. Also, when implementing the

fast Fourier transform (FFT) it is useful to have a number of points which is a power

of two (e.g. 26 = 64). It is possible to resample the boundary using the existing list

of boundary co-ordinates, whilst keeping the new sample points equidistant along the

boundary. The length of the boundary is known from the existing list of co-ordinates,

and so, by dividing this length by the desired number of new samples, the distance

that must separate the new samples can be determined. A new co-ordinate list can

then be compiled by traversing the boundary as marked by the old co-ordinate list,

and by storing the co-ordinates of the points on the boundary that are the appropriate

length apart from one another (see Figure 3.8(c)).
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3.5 Fourier descriptors

The Fourier descriptors of an object boundary provide a means of describing the ob-

ject through the use of the one-dimensional discrete Fourier transform. The discrete

Fourier transform is defined for complex-valued, periodic functions, and this permits

two-dimensional, closed boundaries to be treated in an elegant mathematical fashion.

The x and y co-ordinates (x;y) that lie on the boundary of an object can be represented

as complex numbers, x+ jy. By periodically traversing the boundary, for example

over time t, the function

f (t) = x(t)+ jy(t) (3.10)

can be formed. This function is periodic with a period of T and is defined over the

range �∞ < t < +∞. An example of a portion of such a function is shown in Fig-

ure 3.9.
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Figure 3.9: Portion of f (t) with the boundary shown projected on the side of the box.

The Fourier transform of f (t) is defined as

F f f (t)g= F(ω) =
Z ∞

�∞
f (t)e� jωt dt (3.11)

Since f (t) is periodic, F(ω) is discrete [24][25]. F(ω) is zero for all values of ω
except multiples of 2π

T ; and, at multiples of 2π
T , F(ω) is a weighted impulse that is a

multiple of the Dirac delta, δ(t), which has the following general properties:

δ(t) = 0 for t 6= 0; and
Z ∞

�∞
δ(t)dt = 1 (3.12)
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In particular, a Dirac delta function cδ(t�k), where c and k are constants, has weight,

or area, c at the point t = k.

The function f (t) can be sampled N times per period with a train of equally spaced

unit impulses, known as a Dirac comb

δT (t) =
∞

∑
n=�∞

δ(t�n) (3.13)

giving a sampling period of T
N (since there are N samples per period of length T ).

Every impulse of the Dirac comb samples f (t) to form

fs(t) = f (t)δT (t) = f (t)
∞

∑
n=�∞

δ(t�n) (3.14)

fs(t) is periodic and discrete, and so Fs(ω) is also both periodic and discrete with N

impulses repeated periodically. The weights of these N impulses are known as the

Fourier descriptors of the boundary f (t). They are also the values of the Discrete

Fourier Transform (DFT) of the N boundary points. The DFT of an N-element, one-

dimensional function g(r), sampled where r = 0;1;2; : : :N�1 is

G(u) =
N�1

∑
r=0

g(r)e
� j2πur

N for u =�N
2
; : : : ;�1;0;1; : : :;

N
2
�1 (3.15)

The N values of G(u) are the Fourier descriptors obtained from the sample values of

g(r). The values of g correspond to the weights of the impulses of fs. Likewise, the

values of G correspond to the weights of the impulses of F .

If the original boundary function f (t) is strictly band-limited, then it can be recovered

from fs(t) provided that N is large enough to satisfy the Nyquist sampling criterion

[25]. In practice, the boundary is unlikely to be strictly band-limited, but, since the

boundary function is a finite power signal, F(ω) decays to zero at slowest like 1
ω [24].

Figure 3.10(a) shows an example of a boundary described by f (t), with the magnitude

of the corresponding F(ω) shown in Figure 3.10(b). Note how quickly F(ω) dies

away, implying that most of the information about the shape lies in the lower-order

Fourier descriptors, and that the effects of aliasing at a high sampling rate (say N = 32

samples or more in this case) are negligible. The effects of aliasing in recovering f (t)

from fs(t) can be made acceptable by making N sufficiently large.

The inverse Fourier transform

F �1fF(ω)g= f (t) =
1

2π

Z ∞

�∞
F(ω)e jωt dω (3.16)
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(a) (b)

Figure 3.10: An example of (a) f (t), and (b) magnitude of corresponding F(ω).

can be used to reconstruct the original object boundary. The integral becomes a sum-

mation of Dirac delta weights multiplied by complex sinusoids. The inverse Fourier

transform (as opposed to the inverse DFT) is required, so that the points in between

samples will be defined in the spatial domain.

A continuous boundary can be reconstructed from the windowed discrete frequency

domain function, Fs(ω)Rect
� Nω

2πT

�
1. For the boundary to be continuous, the corre-

sponding F(ω) must be non-periodic. This function,

F(ω)� Fs(ω)Rect

�
Nω
2πT

�
(3.17)

is formed by retaining only the portion of Fs(ω) centred around zero, to form F(ω)

when f (t) is band-limited and adequately sampled and to form an approximation to

F(ω) in the non-band-limited case.

Since f (t) is periodic, when adequately sampled to fulfil the Nyquist sampling crite-

rion, the following equation holds

f (t) =
1

2π

Z ∞

�∞
F(ω)e jωt dω =

1
N

N
2 �1

∑
u=�N

2

G(u)e
j2πut

N (3.18)

1Rect
�ω

Ω
�
�

8><
>:

1 jωj< Ω
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2

0 jωj> Ω
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This is because the integration of Dirac deltas becomes a summation of their areas.

It is thus possible, in the adequately sampled band-limited case, to derive f for any

value of t by using the Fourier descriptors.

(a) 1 pair (b) 2 pairs (c) 3 pairs (d) 7 pairs (e) 15 pairs

Figure 3.11: Reconstruction of a lemon boundary from Fourier descriptor pairs.

Figure 3.11 shows reconstructed lemon boundaries using various numbers of Fourier

descriptor pairs with N = 256 samples. The profile of the original object is shown

in colour in each case for purposes of comparison. It can be seen how the low-order

Fourier descriptors contain information about the gross shape of the object, and the

higher-order descriptors account for the final details.

(a) 1 pair (b) 2 pairs (c) 3 pairs (d) 7 pairs (e) 15 pairs

Figure 3.12: Reconstruction of a pear boundary from Fourier descriptor pairs.

Figure 3.12 shows a similar set of images formed from a reconstructed pear profile

shown in colour. The first pair of Fourier descriptors describe the ellipse

f (r) = G1[cos( 2πr
N )+ j sin( 2πr

N )]+G�1[cos( 2πr
N )� j sin( 2πr

N )]+G0 (3.19)

As r increases, the first term in Equation (3.19) can be visualised as a vector describing

a circle in an anti-clockwise direction about the origin. The radius of the circle is

determined by the magnitude of G1 and the starting angle is determined by the angle

of G1(0). The second term of the equation is similarly described by G�1, and would
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rotate clockwise with increasing r. The sum of all three terms describes an ellipse

with a centroid offset from the origin by G0. This can be seen in the example shown in

Figure 3.13. More complex shapes can be visualised in a similar manner. The vector

G2 would rotate at twice the frequency of G1.
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Figure 3.13: Formation of an ellipse from the first Fourier descriptor pair.

The Fourier descriptors have many useful properties. In practice they are calculated

by using the FFT implementation of the DFT on an array of co-ordinates in complex

number form. The DC value, G0, is the centroid of the object. By changing G0 and

then taking the inverse FFT of G, the object can quickly and easily be translated.

Since the Fourier transform is linear, multiplication by a constant in the frequency

domain will increase the area of the object by the square of the constant factor.

The magnitudes of all of the Fourier descriptors except G0 are invariant to rotations

and translations of the object. All rotation information is in the phase of the Fourier

descriptors. Rotation of the object about the origin by an anti-clockwise angle of θ
can therefore be implemented by multiplying every Fourier descriptor by e� jθ.

The magnitudes of the lower-order Fourier descriptors are often used for describing

the shape of objects. Lower-order Fourier descriptors are useful because they can

parameterize the object to good accuracy within a small vector, and because they are

invariant to rotations and translations of the object.
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3.6 The Hotelling transform

The Hotelling or Karhunen-Loève transform [40] is used to calculate the angle that

the major axis of an object within an image makes with a co-ordinate axis such as

the x-axis. This information is often used to align the object, so that its major axis is

parallel, for example, to the x-axis (see Figure 3.14).
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Figure 3.14: Rotation using the Hotelling transform: (a) the original object orienta-

tion; (b) after rotation through an angle of �θ.

The Hotelling transform is based upon the eigenvalue decomposition of the covariance

matrix of the pixel co-ordinates (xi;yi) of the object to be aligned.

This covariance matrix is written [40]

C =

"
C1 C2

C3 C4

#
(3.20)
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where

C1 =
1
N

N

∑
i=1

x2
i � x2 (3.21)

C2 =
1
N

N

∑
i=1

xiyi� xy (3.22)

C3 =
1
N

N

∑
i=1

xiyi� xy (3.23)

C4 =
1
N

N

∑
i=1

y2
i � y2 (3.24)

C1 is the variance of the x co-ordinates and C4 is the variance of the y co-ordinates. C2

and C3 are the covariances, which are always equal to one another in this context. For

an object that has its major axis aligned with the x-axis, C2 and C3 are zero.

The eigenvector corresponding to the larger eigenvalue of C gives the orientation of

the object’s major axis with respect to the x-axis. The larger eigenvalue is given by

λ1 =
(C1 +C4)+

p
(C1 +C4)2�4(C1C4�C2C3)

2
(3.25)

and its corresponding eigenvector is therefore

e1 =

"
1

λ1�C1
C2

#
(3.26)

The angle that the major axis of the object makes with the x-axis is

θ = arctan

�
λ1�C1

C2

�
(3.27)

An object can have its major axis aligned with the x-axis by rotating the object through

the angle �θ. This rotation can be carried out in a number of manners. For instance,

the equation "
xnew

ynew

#
=

"
cosθ �sinθ
sinθ cosθ

#"
xold

yold

#
(3.28)

will rotate an object, to align it with the x-axis, using the origin of the co-ordinate

system as the centre of rotation.

Figure 3.15 shows an example of using the Hotelling transform to align an object in

an image. The binary object in Figure 3.15(b), formed from the original image in

Figure 3.15(a), was used to determine that the major axis of the pear was at an angle
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(a) Original image

222.1
o

(b) Binary object (c) Aligned pear

Figure 3.15: Using the Hotelling transform to align a pear with the x-axis.

of 222:1Æ with respect to the x-axis. Figure 3.15(c) shows the image with the object

rotated so that it is aligned with the x-axis. With the object in such a position, its

length (for instance) can easily be measured.

If the object is a boundary defined by a list of co-ordinates in complex number form,

then the object can quickly be rotated by calculating the DFT of the points, multiplying

the resultant Fourier descriptors by e jθ and then calculating the inverse transform.

3.7 Convex hull

Figure 3.16: An example of a set of boundary points with the convex hull shown.

The convex hull of a set of co-ordinate points is analogous to the path of a rubber band

around a grid of nails positioned at each co-ordinate point. The path is defined by the

points which the rubber band touches. An example is shown in Figure 3.16.

To find the convex hull of a set of points, the first step is to locate the point with the
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Figure 3.17: Sorted points with convex hull points ringed.

maximum y co-ordinate. This is shown as point 1 in Figure 3.17. The remaining points

are then sorted according to the angle that they make at point 1 with a horizontal line

passing through point 1. Points for which a left turn involves making a smaller angle

to proceed to the next point in the sorted set than would a right turn are removed from

the set of points which define the convex hull. This process starts off with all points

as candidates. If a left turn is made, then the point is not considered any further and

the algorithm backtracks to reconsider the point’s predecessor. The steps to calculate

the convex hull in Figure 3.17 are shown in Table 3.1.

Step Previous Point Current Point Next Point Turn (< 180Æ) Current hull list

1 - 1 2 Right to 2 1, 2, 3, 4, 5, 6, 7, 8

2 1 2 3 Right to 3 1, 2, 3, 4, 5, 6, 7, 8

3 2 3 4 Right to 4 1, 2, 3, 4, 5, 6, 7, 8

4 3 4 5 Left to 5 1, 2, 3, 5, 6, 7, 8

5 2 3 5 Right to 5 1, 2, 3, 5, 6, 7, 8

6 3 5 6 Right to 6 1, 2, 3, 5, 6, 7, 8

7 5 6 7 Left to 7 1, 2, 3, 5, 7, 8

8 3 5 7 Left to 7 1, 2, 3, 7, 8

9 2 3 7 Right to 7 1, 2, 3, 7, 8

10 3 7 8 Right to 8 1, 2, 3, 7, 8

11 7 8 1 Right to 1 1, 2, 3, 7, 8

Table 3.1: Steps to calculate the convex hull in Figure 3.17.



Chapter 4

Function Approximation Methods

Once shape features have been extracted from the fruit profile images, they must be

combined in some way to form an estimate of volume. This chapter describes the

workings of the artificial neural networks (ANNs) that were used in this project to

combine shape features to form volume estimates for the corresponding pieces of

fruit. The testing methods used on ANNs and other function approximation methods

in this project are also explained. This includes the determination of errors and of the

associated confidence in the results. The results of the implementation of the methods

described in this chapter are presented in Chapter 7. Only a summary of the basic

issues which are relevant to this project are described in this chapter; the more general

field of function approximation is dealt with in far more completeness in texts such as

those by Bishop [3] and Haykin [13].

4.1 Introduction

In the context of this project, function approximation is the determination of an ad-

equately accurate mapping of one or more input variables to an output variable. In

general, a suitable form of mapping can be found only with a set of sample input-

output data points known as a training set. The mapping is usually modelled by a

function with adjustable parameters that are determined with the aid of the training

set. This process of adjusting the parameters is known as training or learning [3].

48
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Figure 4.1: Plot of orange weight versus volume with a linear regression line shown.

In one of its simplest forms, function approximation is the determination of a linear

(straight) regression line for a set of data points. For instance, Figure 4.1 shows a plot

of weight versus volume for 31 oranges. The regression line has been calculated (using

Equations (2.9) and (2.10) introduced in Chapter 2), and is shown in the plot. It is clear

from this graph that the regression line equation could be used to predict the volumes

of new oranges given their weight values. Implicit in the assumption that a linear

regression line should be used for predicting future volumes is a linear relationship

between weight and volume. This linear relationship is a model for the relationship

between weight and volume and is in this case reasonable, since one would expect that

the volume of a piece of fruit would be directly proportional to its weight, because

fruit density is usually almost constant within a batch (with any density variations

being small and unpredictable).

A model must be formed from knowledge of the problem or through an understanding

of the source of the data. For example, if it was known that orange density increased

with size because the peel (which is of a lower density than the rest of the fruit) formed

a smaller proportion than the remainder of the fruit in larger fruit, then the model could

be adjusted appropriately.

Consider the set of 10 data points in Figure 4.2. The points were computer-generated

using a pseudo-random number generator and are of the form y = ax3 +n, where n is

a noise term with a PDF of normally distributed values and zero mean. (Note that the

y= 0 axis is not shown on the plot and does not correspond to the base of the bounding
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Figure 4.2: A set of data points with (a) the linear regression line; (b) the curve y= ax3;

(c) an exact interpolation of the data points.

rectangle). The x values can be used to predict the y values because y is a function of x.

Figure 4.2(a) shows the linear regression line which could be used to predict y from x.

If one did not know how the x values and their corresponding y values were generated,

then a linear regression line would be a reasonable method of predicting future y values

from future x values. Although many functions to which linear regression could be

applied are not inherently linear, linear regression may nevertheless yield reasonable

results where the data comes from a small portion of a non-linear curve which is

approximately linear. This approximate linearity over small ranges is often observed

because of the smoothness of many real-world functions.

If extra information about the data is available then it is possible that a better model

than the linear model could be formed. Perhaps the x values correspond to the di-

ameters of oranges and the y values correspond to the weights of the oranges to be

predicted from the diameters. A model can be made for this situation, for example

by assuming that y = ax3 and then by finding the value of a that minimises the RMS

error1 on the set of data points. Such a curve is shown in Figure 4.2(b).

Often a model is not available for regression, but it is known that the relationships

between the variables are not linear. In this case, a function with more flexibility than

the straight line used in linear regression can be applied to the problem. For instance,
1The RMS error is a very commonly used cost function for minimisation, because it provides the

lowest expected variance on the error. Minimising the RMS error is equivalent to minimising the sum-

of-squares error. Other error functions are, however, sometimes more appropriate in some specific

situations [3]. In Appendix A, it is shown that in the case of volume estimation of fruit to estimate

fruit weights for the purposes of packing at a commercial packing house, minimising the RMS error

corresponds to a direct monetary saving.
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an nth order polynomial y = anxn +an�1xn�1 + : : :+a1x+a0 could be used to predict

the values of y from given values of x. The constants an; an�1; : : : ; a1; a0 would first

have to be optimised to minimise the RMS error on the data set. For any n data points,

a perfect fit to the data points is possible with a polynomial of order n�1 or greater.

Figure 4.2(c) shows an example of another function (not a polynomial in this case)

that is also flexible enough to interpolate each of the 10 data points exactly. Such a

function, although it gives zero error on the data set (or training set) is quite likely to

perform poorly when predicting y values from any new values of x. This is because

the function has poor ability to generalise due to its high flexibility (which arises

from a high number of parameters such as the 11 constants which must be optimised

in a 10th order polynomial). In other words, the function is modelling the specific

training set rather than the underlying input-output data relationship which created it.

It is this underlying relationship which must be modelled so as to reduce the errors in

predicting unseen cases of y from x. In order to do this, a regression function must be

flexible enough to model the underlying population, yet not so flexible that the specific

data points of the sampled training set are being modelled. The function shown in

Figure 4.2(a) could be seen as an example of a function which lacks the flexibility to

model the underlying cubic relationsip between x and y, in contrast with the function

shown in Figure 4.2(c) which is too flexible (not smooth enough) to provide good

generalisation. A function which looks like the one shown in Figure 4.2(b) would

appear to be a good compromise between flexibility and smoothness, and might be

expected to give the best results of the three functions when used on unseen data. It

is, however, difficult to predict the true performance of a function approximator in

advance; such a prediction would have to make assumptions about the smoothness of

the underlying generating function. The true performance of a function approximator

can only be determined when it is tested on unseen cases.

ANNs can be seen as a form of regression function which can model arbitrary contin-

uous functions where an explicit model relating the functional form of the output to

the inputs is not known. There are ways of limiting the number of parameters, so that

the ANN produces a smooth function which generalises and performs well on predict-

ing unseen data. ANNs also handle multiple inputs with ease, whereas multi-variable

polynomials rapidly become cumbersome as the number of variables increases.
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4.2 The structure of a multi-layer perceptron

ANNs have their historical roots in the modelling of the operation of real brains [4, 12],

but in this project they are used simply because they are a very effective form of

universal function approximator [13]. By thresholding the output of the ANN, as is

done in the segmentation stage of this project, the ANN can also serve as a classifier

as well as being used for regression.

The multi-layer perceptron (MLP) is a type of ANN [3, 13]. It is a network of neurons

or units which were initially developed to be roughly analogous to the neurons in an

organic brain [26]. These units are very simple, in the sense that each has an output

which is a relatively straightforward function of its inputs.
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Figure 4.3: A neuron or unit, the basic element of an MLP.

Figure 4.3 shows the structure of an MLP unit. The elements of the input vector

u = (u1; u2; : : : ; un), together with a bias value u0 that is usually fixed at u0 = 1, form

a weighted sum, using the corresponding unit weights, w = (w1;w2; : : : ;wn). This

weighted sum, a, serves as the input to a non-linear monotonic activation function, g.

The activation function is needed in order to add non-linearity to the network. Almost

any non-linear function works adequately as an activation function [11], but it helps,

for purposes of training the network, to have a differentiable function. The output of

the unit, g(a), can be written

g(a) = g

 
n

∑
i=0

wiui

!
= g(wTu) (4.1)

where wT is the transpose of the vector w.
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Figure 4.4: The structure of a single-output multi-layer perceptron network with a

single hidden layer.

These units can be combined to form an MLP, as shown in Figure 4.4 in which each

unit is represented by a circle. All of the units except for the output unit are termed

hidden units, or units in the hidden layer since their output, which forms the input

to the output unit, is not directly accessible. In this project, the MLPs always have a

single output unit and a single hidden layer of units, and the term ‘MLP’ will refer

to such MLPs; however, MLPs with multiple output units and multiple hidden layers

are possible and do have applications. A single-layer MLP is a universal function ap-

proximator that can approximate any continuous function to arbitrary accuracy, given

enough hidden units and if the weight values, w, are selected appropriately [3].

For an MLP with n inputs, m hidden units and hyperbolic tangent activation functions

g(a) = tanh(a)� ea� e�a

ea + e�a (4.2)

the outputs, z j, of each of the hidden units can be written

z j = tanh

 
n

∑
i=0

whidden; i j xi

!
(4.3)

where whidden; i j is the weight value for input i in hidden unit j and xi is the ith input of

an input vector x. An MLP need not have the same type of activation function in the

output unit as in the hidden layer units. MLPs used for regression often have linear

activation functions, such as g(a) = a, in the output unit. This is equivalent to passing
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the weighted sum of inputs directly to the output of the MLP. The output, y, of the

MLP can therefore be written

y =
m

∑
j=0

wout; j tanh

 
n

∑
i=0

whidden; i j xi

!
(4.4)

where wout; j is the weight value for input j in the output unit. Linear activation func-

tions in the output unit, together with hyperbolic tangent activation functions in the

hidden layer units, were used in the MLPs for this project. Empirically, it is often

found that such a combination gives rise to faster convergence of training algorithms

than other choices of activation functions [3].

4.3 Preprocessing of data

There are several reasons why it is desirable to preprocess the input data to change its

form and to reduce its dimensionality. In theory, the individual pixel values of a profile

image of a piece of fruit could be used as input to a function approximator. However,

due to the high dimensionality of the input space, this approach would require far too

many training set samples, and far too much time, for the effective training of the

function approximator. This problem is known as the curse of dimensionality [11].

Since one is forced to work with a limited quantity of training data, increasing the

dimensionality of the input space leads to the point where the mapping of data is very

sparse, providing a poor representative mapping [3]. For this reason, in the context of

the volume estimation problem, it is better to discard information and to represent the

profile images by an input vector of low dimensionality consisting of shape features

that describe the profile image of the fruit. Such an input vector can be used to train

a function approximator in a reasonable amount of time and can be expected to assist

the function approximator in providing a representative mapping to the desired output

(since the data is not sparsely distributed in the input vector space).

A further preprocessing stage consists of scaling the input data to zero mean and unit

standard deviation. This speeds up the learning process by ensuring that the input

data starts out the training process by triggering the activation functions in a relatively

sensitive region. If the input to the hyperbolic tangent activation function is very high,

its output becomes very close to one; likewise, if the input is very low (negative), its

output becomes close to minus one.
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4.4 Training the multi-layer perceptron

Training the MLP for regression amounts to the selection of the n�m weight values in

the hidden layer units and the m weight values in the output unit so that the error on y,

the MLP output and a function of the input vector x, is minimised. The cost function

for this optimisation problem is evaluated using a training set of input vectors, xk,

and corresponding target values, tk. The error on an MLP output or prediction, yk,

formed from inputs xk, is tk� yk. The training process attempts to minimise the sum-

of-squares error

EN =
N

∑
k=1

(tk� yk)
2 (4.5)

where N is the number of samples in the training set. There exist numerous optimisa-

tion techniques that can be used to determine the weight values. Since the MLP output

is an analytical function of its inputs (see Equation 4.4), it is possible to make use of

the gradient of the error as a function of the weight values for a particular input vector

x. The gradient information improves the effectiveness of optimisation of the weight

values and can be efficiently calculated by a process known as back-propagation [3].

The calculation of the gradient information begins by forward-propagating the input

vector through the MLP to determine the outputs of the various units. This is equiva-

lent to using the MLP in the usual manner to calculate y from x. With reference to the

basic unit shown in Figure 4.3, the partial derivative of the error with respect to the

weights of a unit can be written

∂E
∂wi

=
∂E
∂a

∂a
∂wi

(4.6)

This is often rewritten using the notation

δ � ∂E
∂a

(4.7)

where values of δ are termed errors [4]. Differentiating the summation

a =
n

∑
i=0

wiui (4.8)

gives
∂a
∂wi

= ui (4.9)
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Now, using these equations we can rewrite the partial derivative of the error with

respect to the ith weight of a unit as

∂E
∂wi

= δui (4.10)

The values of the partial derivatives corresponding to weights in the output unit can

easily be calculated. Since the activation function in the output unit for the MLPs used

in this project leaves the weighted sum unaffected (g(a) = a),

δout �
∂E

∂aout
=

∂E
∂y

(4.11)

and, because E = (t� y)2 for a given training example,

∂E
∂y

= 2(y� t) (4.12)

Using Equation (4.10) gives

∂E
∂wout; j

= 2(y� t)z j (4.13)

for the gradients corresponding to weights in the output unit. The value of z j (which

is the output of hidden unit j and also the jth input to the output unit) is calculated

during the forward-propagation stage.

In the case of the hidden units, the values for δhidden; j are found by implementing the

chain rule,

δhidden; j =
∂E
∂y

∂y
∂a j

(4.14)

The first factor in this product has already been calculated and the second factor can

be calculated as follows:

∂y
∂a j

=
∂(wout; j tanh(a j))

∂a j
(4.15)

= wout; j sech2(aj) (4.16)

Again using Equation (4.10) gives

∂E
∂whidden; i j

= 2(y� t)wout; j sech2(aj)xi (4.17)

for the gradients corresponding to weights in the hidden units. This stage of the cal-

culation is known as error back-propagation because δout must be propagated back

through the network in order to calculate the values of δhidden.
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The gradient information can be used as part of a learning algorithm to update the

network weights. One commonly-used learning algorithm is steepest descent [3]. The

steepest descent algorithm starts by initialising each weight to some random value.

The weight values are then iteratively updated by moving a small distance in the di-

rection of steepest descent on the error surface. At each step, the error gradient with

respect to the weights, ∇E, is calculated by summing the derivatives for each case in

the training set, to give a batch total of ∇EN . So the distance, ∆wτ, which must be

added to the weights after each step τ is

∆wτ =�η∇EN jwτ (4.18)

where η is the learning rate. Provided that the learning rate is sufficiently small, EN

can be expected to be reduced after each successive step of updating the weights.

There are many other more complex optimisation techniques, the derivations of which

can be found in the texts by Bishop [3] and Haykin [13]. Such techniques make use

of other variables to increase the speed of convergence and to improve the probability

of locating the global minimum of the error function. The optimisation technique that

was ultimately chosen for training the MLPs in this project was the quasi-Newton

method [3]. Newton-type methods use a quadratic approximation to the error surface

around the point of interest. Unlike the direction of the maximum negative gradient,

which is used to update the weight vector for the steepest descent method of learning,

the Newton direction, which is calculated using Newton-type methods, points directly

at the minimum of the error function. It turns out that the computation of the second

derivatives of the error function, which forms a matrix known as the Hessian that

is used to calculate the local quadratic approximation to the error surface, is highly

computationally expensive. For this reason, quasi-Newton methods which build up an

approximation to the Hessian matrix using first derivative information from the error

function are often used.

4.5 Comparison with some other predictor methods

In this section a few alternatives to the MLP structure are briefly discussed to motivate

the choice of the MLP architecture in this project.

Of the many ANN architectures other than the MLP, the radial-basis function network

(RBFN) is one of the most widely used [3, 13]. RBFNs have pre-assigned hidden
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units. The output weights can be calculated by solving a simple quadratic optimisation

problem [11]. So, RBFNs have the advantage that they are quick to train. The RBFN

hidden units use the distance between the inputs and a prototype vector followed by

transformation with a localised function [3], whereas an MLP has a more distributed

representation of a function in which many hidden units contribute to the output value

for a given set of inputs. This makes MLPs more difficult and time-consuming to train

than RBFNs, but, once trained, MLPs tend to generalise better, avoiding interpolation

of noisy data, and performing more adequately in regions of sparse data [11].

Greene [11] suggests an MLP structure where the hidden units have randomly as-

signed weights, and only the weights of the output unit need be trained. Such a method

reduces the training of the network to a simple quadratic optimisation problem, yet re-

tains many of the desirable generalisation properties of the classically-trained MLP.

After some investigation using the data sets from this project, this method was found

to be simple to code and very fast to train, yet it failed to match the predictive accuracy

of the MLP for volume estimation from shape features.

By keeping a data-base of all previous cases, it would be possible to match a new

boundary to the best fit of the boundaries in the database and output that volume. This

method would require far too much storage space and computational time, however,

because the new case would have to be fitted against all known cases. This would

be equivalent to using an ANN that has no ability to generalise. An approach where

the average of the K best fits of a new case to the existing cases within a data base is

known as the K-nearest neighbours approach [3].

The MLP and linear methods used in this project were thus selected after some inves-

tigation of other methods. The linear methods provide very fast and simple volume

estimation based on some simple reasoning about the approximate relationships be-

tween the shape features and the fruit volume. The MLP structure was chosen for its

relative simplicity and promising results after some initial experimentation.

4.6 Testing function approximators

Once the optimisation of the network weights is complete, the MLP function approx-

imator can be tested to determine the RMS error which it produces on results. A

set of N volume estimates, y = (y1; y2; : : : ; yN), with corresponding actual or target
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volumes, t = (t1; t2; : : : ; tN), has an RMS error, RMSE, calculated using

RMSE =

vuuut N
∑

i=1
(ti� yi)2

N
(4.19)

The RMS percentage error is also sometimes useful for interpreting results, and is

calculated using

RMS percentage error =

vuuut N
∑

i=1

�
ti�yi

ti

�2

N
�100% (4.20)

Note that although it is somewhat useful in interpreting system performance, in this

project the RMS percentage error is not the quantity that is minimised during the

training processes.

The MLP is usually tested on a set of data known as the test set, which should be

distinct from the training set used to optimise the network weights. The MLP is tested

on data that is separate from the training set because testing the MLP on the training set

data may exaggerate the performance of the MLP, since the MLP may have learned

the specific patterns of the training set rather than the underlying functions which

generated them.

It is often desirable to train an MLP with as large a training set as possible, since

a larger training set is a better representation of the true nature of the population of

input-output combinations. However, this may leave few unseen test cases for an

accurate calculation of the expected RMS error. This is especially important where

data are difficult to obtain, such as is the case in this project where measuring the

volumes of fruit for target values is very time consuming. In cases where data are very

easy to obtain, the time taken to train the MLP is the constraining factor, and the size

of the training set may have to be reduced accordingly. In such cases, a large amount

of unseen data would be readily available for use as a test set.

In this project, a technique known as jackknifing was used to evaluate the RMS error

associated with the MLP and other function approximator outputs. Jackknifing is

a technique which is employed to make the best use of a relatively small data set for

testing and training. The method works by iteratively removing one case from the data

set for use as a test set and using the remaining data as a training set. The procedure

is repeated so that each case in the data set has a turn at being tested on a function
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approximator (either an MLP or some other type of function approximator) that has

been trained on the remaining data. The squared error results are averaged to give the

expected mean-squared error that the tested function approximator would produce on

sets of unseen data. The square root of the mean-squared error gives the RMS error,

which is conveniently in the same units as the output of the function approximator

(cubic centimetres in the case of volume estimation).

The main disadvantage of jackknifing is that it is highly computationally intensive,

because the function approximator must be retrained for each new test case. Often,

jackknifing is implemented by selecting groups of data, one at a time for use as a test

set, instead of only selecting a single case. This reduces the computational intensity

required for the jackknifing process, yet still makes effective use of the available data

provided that the groups of data are small with respect to the size of the total data

set. In this project, jackknifing was implemented by removing the group of cases

corresponding to one fruit, and training on the remaining data. This was done because

each piece of fruit had been photographed many times, resulting in separate cases of

data corresponding to the same piece fruit. The group of cases corresponding to the

removed fruit was used for testing. This process was repeated so that all of the data

corresponding to each fruit was removed exactly once for testing. By doing this, the

function approximator was being tested on data corresponding to a fruit that it had

not ‘seen’ during training. Removing one case at a time, as opposed to removing

the group of cases corresponding to one fruit at a time, would have had the function

approximator trained on data corresponding to the same fruit that the test case data

corresponded to (data from different images of the same fruit would have been in both

the training set and in the test set). This would have been undesirable, because the

function approximator should be tested on data that is in no way likely to be more

related to the training data than a sample picked at random from the population.

The jackknifing procedure used in this project produces n sets of mean-squared errors,

where n is the number of fruit in the data set. Each of the n mean-squared errors is

the mean of m squared errors, where m is the number of sets of function approximator

inputs corresponding to each fruit. In this project there are cases of m = 24 where

features from one image of the fruit is used as input to the function approximator,

m = 12 where features from two images are used, m = 6 where features from four

images are used and m = 1 in the case where features from all twenty four images

of the fruit are used. The expected long-term mean-squared error of the function
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approximator, µSE , can be calculated by taking the mean of the n mean-squared errors.

This is the same as the mean of all of the n�m squared-errors (because of the linearity

introduced by working with the mean-squared errors as opposed to the root-mean-

squared errors), but calculating the mean in the former manner allows one to attach an

associated confidence to the calculated mean-squared error as a measure of the likely

performance of the function approximator over many unseen cases.

One would have higher confidence in a mean-squared error result that was used to pre-

dict the performance of a function approximator if it were formed from n�m squared-

error results from n�m different fruit than if it was formed from just n squared-error

results from n different fruit (given that m > 1). The case in this project is slightly

more complex. There are n�m squared errors coming from only n fruit. This is be-

cause each of the n fruit was used more than once by photographing the same fruit at

different orientations. Therefore we know that we can be more confident in our calcu-

lated mean-squared error than in the case where n squared errors from n fruit are used,

because we have n fruit, but more than one squared error from each; and we know that

we can be less confident than the case where n�m squared errors from n�m fruit are

used, because although we have n�m squared errors, the squared errors came from

only n different fruit.

A confidence statistic for the mean of the n mean-squared errors, MSE, can be formed

by calculating the sample standard deviation of the n mean-squared errors. The sample

standard deviation, s, is calculated using [22]

s =

vuuut n
∑

i=1
(MSEi�MSE)2

n�1
(4.21)

where MSE is an n-element vector, each element being the mean-squared error of the

m squared errors associated with images from the nth fruit. A confidence interval for

MSE, which is the expected mean-squared error of the function approximator given

the n�m squared errors from n different fruit, can be formed using the (1�α)100%

confidence interval formula [22]

MSE� tα=2
sp
n
< µSE < MSE + tα=2

sp
n

(4.22)

where tα=2 is obtained from a lookup table. For the 95% (α = 0:05) confidence inter-

val, the values of tα=2 relevant to this project are:
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tα=2 = 1.960 for n = 31 in the case of oranges

tα=2 = 1.960 for n = 64 in the case of pears

tα=2 = 2.074 for n = 23 in the case of lemons

tα=2 = 2.093 for n = 20 in the case of potatoes

Equation (4.22), and others which use the t statistic, are derived using the assump-

tion of normally distributed values of MSE. However, it has been shown empirically

that the statistics are often reliable even if drawn from a non-normal distribution [22].

Although one would expect a distribution of squared errors to be non-normally dis-

tributed, here one is usually dealing with sets of the means of 24 of such squared

errors, requiring only that the spread of these mean-squared errors from fruit to fruit

be roughly normally distributed for the confidence interval to be valid.

From Equation (4.22) we can observe that as the number of fruit, n, is increased, the

confidence interval becomes narrower and we can be more certain that the expected

mean-squared error, MSE, represents the true mean of the population of all squared

errors, µSE . Thus, as n approaches infinity, MSE approaches µSE . We can also expect

the confidence interval to become narrower as m, the number of squared errors per

fruit becomes larger. This is because increasing m reduces the standard deviation of

MSE, s: for small m, s incorporates squared errors due to differences in both fruit and

orientation (as well as any experimental inconsistencies such as the extent to which

the fruit does not sit snugly in the cup); but as m becomes large, MSE becomes a better

estimate of the true mean-squared error for a particular fruit (the mean of all squared

errors from all possible orientations of the fruit), and s begins to vary only because of

differences in the spread of possible squared errors from fruit to fruit. As m approaches

infinity, s approaches a limit where it describes only the variability in spread of squared

error from fruit to fruit rather than any variability due to orientation. This confirms

and quantifies the intuition that we may be more confident in our estimate of µSE if we

use squared errors from a data set containing multiple images of the same fruit instead

of a single image per fruit, even although the same number of actual fruit is used.

The mean and standard deviation of the mean-squared errors from each jackknifing

test set group also provide a useful way of testing the significance of the improvement

of one function approximation method over another. For instance, we may have a

function f1(x1) which approximates fruit volumes from a vector of profile image shape

features, x1, and another function f2(x2) which provides a different method of volume

estimation of the same fruit volumes from a different set of shape features, x2. Suppose
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we suspect that f2(x2) gives a lower mean MSE from the jackknifing results than

f1(x1), because it is inherently a better method, rather than the lower mean being

accredited to chance. This may be assumed because the input vector x2 contains

more information than x1 or perhaps f2 is a more effective functional combination

of the input vector elements. The probability that such a hypothesis is correct can

be estimated by assuming the MSEs obtained from the results of the jackknifing are

normally distributed. The sample standard deviations, s1 and s2, of the MSEs are

estimated from the n1 samples of the mean-squared errors, MSE1, generated by f1 and

from the n2 samples of the mean-squared errors, MSE2, generated by f2 respectively.

The hypothesis to be tested is that µ1 < µ2 where µ1 is the true mean of the MSEs

generated by f1 and µ2 is the true mean of the MSEs generated by f2. A t-test statistic

can be written [22]:

t =
MSE1�MSE2q

(n1�1)s2
1+(n2�1)s2

2

s
n1n2(n1+n2�2)

n1 +n2
(4.23)

from which the probability, p, that µ1 < µ2 can be found for the values of n1 and n2

which occur in this project (the number of degrees of freedom n1 + n2� 2 should be

greater than 30 for a good approximation [22]) using

p =
1p
2π

Z t

�∞
e
�u2

2 du (4.24)

which is evaluated using a lookup table, since no closed-form analytical solution for

the integral exists [22]. We can now say with probability p that f2 is a superior function

(in terms of lower RMS error) to f1.



Chapter 5

Data Acquisition

The data acquisition stage of this project consisted of two parts: measuring the actual

volumes of the pieces of fruit and then photographing them. The actual volumes of the

fruit were measured to serve as target volumes for training function approximators to

estimate fruit volumes from shape features extracted from profile images of the fruit.

The fruit were photographed to acquire these digital profile images, which are similar

to the images used by packing houses for colour sorting and blemish detection, and

from which the shape features could later be extracted.

Four fruit types were chosen to investigate the performance that one could expect from

different volume estimation methods on a range of different fruit. The orange and

the potato were chosen since they represent a highly symmetrical fruit and a highly

irregularly-shaped fruit respectively. Volume estimation of these fruit has been per-

formed before and is recorded in published literature [23, 21]. The results of volume

estimation on these fruit can thus be evaluated with reference to the existing methods

described in the literature. In addition to oranges and potatoes, pears and lemons were

also used in this project. Pears and lemons are both roughly cylindrically symmetrical

fruit, the pear having a more distinctive side-view and the lemon being closer to an

ellipsoid.

64
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5.1 Volume measurement

The obvious answer to the problem of measuring the volume of a piece of fruit would

be to submerge the fruit in a beaker of water. Two difficulties are encountered when

attempting to measure the volume of a piece of fruit by submerging the fruit in a

beaker of water and noting the displacement of the water. The first of these is that the

fruit floats in the water and must be forcibly submerged by sinking it with a thin rigid

piece of wire. Secondly, even if the fruit is successfully submerged with the wire, or if

a liquid of lower density than the fruit is used (so that the fruit sinks in the liquid), the

resolution to which one can measure the volume of displaced liquid is severely limited

by the diameter of the beaker (which must be large enough so that the fruit can fit into

the beaker). In the general case where the fruit can fit into the top of the beaker, even

quite a large change in volume will correspond to a small change in the height of the

liquid, so the volume change can be read off the side of the beaker only with rather

limited accuracy.

A eureka can is an apparatus used to measure the volume of objects by Archimedes’

Principle (displacement of liquid). The eureka can, which is essentially a beaker with

a spillway spout, is filled with water until it overflows. The object whose volume is to

be measured is then submerged in the eureka can, and the water which is displaced by

the object so that it flows out of the spout is collected in a measuring cylinder. From

this, the volume of the object can be determined accurately, since it is equal to the

volume of displaced water that is collected in the measuring cylinder. A eureka can

was built for this project, and methylated spirits (which is less dense than fruit) was

used in place of water so that the fruit sank. Unfortunately, it was found that the liquid

continued to drip out of the eureka can spout for many minutes after the fruit had sunk

to the bottom. This severely hampered the taking of accurate measurements (at least

within any reasonable period of time), and for this reason the eureka can method of

volume measurement was abandoned.

Most of the other proposed methods posed other difficulties. For instance, it was sug-

gested that the fruit should be weighed first underwater (with the weighing mechanism

underwater too) and then weighed again out of the water. The difference between these

two readings would yield the buoyancy force due to the displaced water, which could

then be used to calculate the volume of displaced water. This method is theoretically

sound, but it is far from practical, especially when one considers that a weighing de-
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vice which functions both under water and in air must be used and that the water would

have to be replaced with a liquid of lower density in order to have the fruit sink. It was

also suggested that the fruit first be photographed and then chopped into small pieces

which could be used to displace water in a long, thin measuring cylinder. This method

was rejected because the fruit pieces would absorb some of the water osmotically and

end up displacing less than the volume of the original fruit.

Marking

Fruit

Clamp

Seal

Figure 5.1: The pycnometer that was built for the purpose of measuring individual

fruit volume (with a pear inside).

To avoid the problems mentioned above, the volumetric determination apparatus which

is shown in Figure 5.1 was built and used to measure the individual volumes of fruit

to an accuracy of better than 0.5%. It was later discovered that such a device is known

as a pycnometer and that it is most commonly used to the measure specific gravity

of soil in the study of soil mechanics [35]. Such pycnometers are, however, usually

only about one tenth of the size of the pycnometer built for use in this project. The

pycnometer used in this project has a wide opening at the base into which the fruit can

be placed. The opening can then be clamped and sealed closed. The pycnometer was

constructed from a glass jar with a clamp-type sealable lid and a glass funnel. A small

marking was made on the top tube section (see Figure 5.1) so that the pycnometer

could be filled accurately and repeatedly to the same volume. A 1cm change in the

height of the water in the tube section corresponds to only a 0:8cm3 or 0.8ml change

in the volume of water in the pycnometer. Apart from yielding this accuracy, the thin

tube section also solves the problem of the fruit floating in the water, as the tube is far

too narrow for the fruit to float to the water’s surface.
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Figure 5.2: Using the pycnometer to measure fruit volume.

To use the pycnometer for volume measurement, a balance was first used to find the

mass, M1, of the apparatus filled with water to the marking on the tube section. In

this project, an electronic balance accurate to one tenth of a gram was used. Next,

the mass, M2, of the fruit was measured using the balance. The fruit was then placed

inside the pycnometer and the lid with a rubber seal was clamped shut. The apparatus

was filled with water up to the marking, and the total mass, M3, was measured. Fruit

volume, V , is then given by,

Vf ruit =
M1 +M2�M3

ρwater
(5.1)

where ρwater is the density of the water used. Whilst it was realised that water density

varies with both purity and temperature, the water used in this project at laboratory

temperatures was pure, and had unit density to four significant figures. The numerator

of the equation, M1 +M2�M3, is the mass of the water displaced by the fruit. The

volume of this water is obtained by dividing by the density of the water.

This procedure is made clearer by the example shown in Figure 5.2. By using the

numbers shown in the figure and Equation (5.1), the fruit’s volume is calculated to be

200:3cm3 :

Vf ruit =
1536:5+189:0�1525:2

1:000
= 200:3cm3 (5.2)

The primary source of error on the volume measurement is any lack in consistency

in clamping the base of the pycnometer closed due to the slight lack of repeatability

in the compression of the rubber seal in the pycnometer’s base. The consistency of
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the pycnometer readings was tested by repeatedly measuring the volume of the same

piece of fruit. Ten readings over the space of several hours gave a standard deviation

of 0:3cm3. It is difficult to obtain fruit-sized objects of precisely-known volume for

testing the pycnometer’s measurement accuracy. However, the pycnometer volume

measurement of a 141:8cm3 ball, used in this project for image size calibration, agreed

with the volume of the ball, determined using micrometer callipers, to 0:2cm3.

The fruit used in this project was purchased from a trader who sells fruit and vegetables

in bulk quantities. When purchased from this particular trader, the fruit had only been

sorted to a limited extent, so one could obtain a reasonably diverse data set, which

might typify the fruit to be sorted in a packing house, for each of the fruit types. The

volumes of 31 oranges, 64 pears, 23 lemons and 20 potatoes were measured using the

pycnometer. This measurement process averaged around five minutes per fruit, and

took place over several days.

5.2 Photographing the fruit

Figure 5.3: Mirror chamber and camera.

After its volume had been accurately measured, each piece of fruit was photographed

in the mirror chamber as shown in Figure 5.3. The mirror chamber was built to sim-

ulate a multiple camera set-up by obtaining multiple views of each fruit from one
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photograph. Six photographs were taken of each fruit, with the fruit placed by hand

in a random orientation within the cup for each photograph. The cup had an inner di-

ameter of 45mm, which was large enough to allow the fruit to sit snugly in position at

different orientations, yet small enough not to obscure the fruit object boundary in any

of the images. It was important that the fruit sat snugly in the cup, since any variation

in the projected area of the fruit due to the fruit sitting either too far forward or too far

back in the cup would translate into variation in the volume estimates.

An Olympus Camedia C1400L digital camera was used, with flash mode selected so

as to enhance the contrast between the fruit and the background. The chamber was

painted with matt black poster paint to limit reflection from the flash. The camera was

mounted on a tripod which was rigidly clamped to the table to prevent any movement

from occurring during or between the acquisition of the photographs. The mirror

chamber was also rigidly fixed to the table. The resolution of the images ranged from

about 2.2 pixels per millimetre for the actual fruit to about 1.8 pixels per millimetre

for the reflected image in the rear mirror.

45º

Fruit in cup

Camera

Left
reflection

Left
mirror

Right
mirror

Rear
mirror

Right
reflection

Upper
reflection

45º

(a) Top view

45º

Rear mirror Camera

Fruit in cup

Reflection

45º

(b) Side view

Figure 5.4: Top view and side view of the mirror chamber and camera.
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Each of the three mirrors was mounted perpendicularly to the floor, with the left and

right mirrors each at 45Æ to the rear mirror. The camera was positioned so that its

optical axis was at 45Æ to both the rear mirror and the floor, in a plane perpendicular

to both the rear mirror and the floor (see Figure 5.4). Such an arrangement maximises

the angles between the fruit image boundaries without having any of the boundaries

cutting through the cup. Thus, at sufficient distance from the fruit, the single camera

simulates a multiple camera set-up of two pairs of cameras each with its optical axis

at 90Æ to the other, with the planes formed by the optical axes of both cameras of each

pair also at 90Æ to one another, all looking down on the fruit at an angle of 45Æ to the

floor. This set-up is shown in Figure 5.5. Note that the images formed from reflections

in the mirror chamber have to be flipped and scaled in order for the mirror chamber to

be a simulation of the set-up in Figure 5.5.

Figure 5.5: Four cameras looking down at the fruit.

Left reflection

Upper reflection

Right reflection

Camera

Actual object

Figure 5.6: Computer-generated graphic of the mirror chamber with coloured ball.
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Actual object

Upper reflection

Right reflectionLeft reflection

Figure 5.7: Top view of the coloured ball in the mirror chamber.

The diagrams in Figures 5.6 and 5.7 help to visualise the layout of the mirror chamber

and the orientations of the images of fruit placed inside the chamber. Figure 5.6 is

a computer-generated graphic of an eight-coloured ball that is placed in a cup and

reflected in three mirrors, with the camera looking down on the set-up at an angle of

45Æ to the floor. Figure 5.7 shows the top view (see Figure 5.8) of the ball placed in the

cup. The ball is divided into eight differently-coloured octants to help to demonstrate

the appearance of the reflections from the camera’s point of view. The three reflected

images are also illustrated in Figure 5.7, although it should be noted that they would

not be visible in this way from an actual top view because the reflective surfaces of

the mirrors cannot be seen from the top.

Top view

Camera’s view

Bottom view

Reflection Mirror Actual object

Figure 5.8: Side view of the coloured ball in the mirror chamber.
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Figure 5.9 shows the four sub-images as seen by the camera (see Figure 5.8). It is

useful to view this figure together with Figure 5.7: the camera is looking down at the

mirror chamber at an angle of 45Æ whereas Figure 5.7 is directly from above. The

boundaries of the pair of sub-images formed from the actual object and the upper re-

flection are in planes which are perpendicular to one another. Similarly, the boundaries

of the pair of sub-images formed from the left reflection and the right reflection are

in planes which are perpendicular to one another. These two pairs of planes are at an

angle of 45Æ to one another.

Actual object

Upper reflection

Right reflectionLeft reflection

Figure 5.9: Camera’s view of the ball and reflections.

Figure 5.10 shows the bottom view of the ball in the mirror chamber. The grey section

represents the part of the ball which is not seen by the camera in any of the four views.

Note that none of the four ball boundaries seen by the camera run through this grey

section. The part of the ball that is obscured by the cup holder must lie within this

section so that the ball boundaries as seen by the camera are never obscured by part

of the cup. Thus, the cup must have a small enough diameter to satisfy this constraint,

yet a large enough diameter so that the fruit sits snugly within it.

Figure 5.10: Bottom view of the ball with grey hidden region.
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The assumption that the camera is sufficiently far from the fruit is essentially an as-

sumption that the effects of perspective can be ignored. The distance from the camera

to the fruit in the set-up for acquiring fruit images was about 800mm. The implica-

tions, in terms of perspective, can be understood by considering the diagram shown in

Figure 5.11. The eye is at a distance d from the centre of a sphere of radius r. The

r

d
abA

B

CD

Figure 5.11: The effects of perspective at finite distance from a sphere.

length a is the diameter of the profile circle seen at infinity; it is equal to the actual

diameter of the sphere. The length b is the diameter of the profile circle, and is the

apparent diameter of the sphere as seen by the eye. The ratio of b to a is given by the

equation
b
a
=

p
d2� r2

d
(5.3)

which can easily be derived by noting that triangle ABC and triangle ADB are similar.

In the case of the camera photographing a spherical piece of fruit in the mirror cham-

ber, the value r might typically be about 75mm (corresponding to a volume of around

221cm3) and the distance from the camera to the centre of the fruit is about 800mm.

This results in the apparent diameter of the fruit, b, being 99.6% of the true diameter,

a. Admittedly, different shape features would have different resultant errors in assum-

ing that the profile image as seen by the camera was the same as the profile image

that would be seen from infinity, but the given example does help to illustrate that ig-

noring perspective effects is unlikely to result in significant detrimental effects on the

results of any calculations based on this assumption. This is especially true because

the volume estimation methods developed in this project do not explicitly assume the

absence of the effect of projection; the assumption was only made to simplify the

thinking involved in developing some of the methods. Since the methods are based

on statistical estimation rather than measurement, any small yet consistent change in

a shape feature throughout the data set, as a consequence of projective effects, will be

of no significance, since the change will be the same for all of the profile images.
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Fruit type Count Images per fruit Total images

Orange 31 24 744

Pear 64 24 1536

Lemon 23 24 552

Potato 20 24 480

Table 5.1: Number of images acquired for each fruit.

The oranges, pears, lemons and potatoes used in this project were each photographed

six times at random orientations in the mirror chamber, as described above. Table 5.1

shows the resultant number of pictures acquired for each of the fruit types.

Fruit type V [cm3] STD(V ) [cm3]

Orange 237.8 52.6

Pear 193.6 7.8

Lemon 224.6 60.0

Potato 239.8 48.5

Table 5.2: Means and standard deviations of fruit volumes in the four data sets.

Table 5.2 shows the means, V , and standard deviations, STD(V ), of the volumes de-

rived from pycnometer measurements of all of the fruit samples of each of the four

fruit types. As can be seen from this table, the pear data set has a much lower spread

of volumes than the other three data sets.



Chapter 6

Preprocessing, Segmentation and

Feature Extraction

This chapter describes the processes implemented on all of the raw images of fruit that

were acquired with the digital camera. These processes convert the digital images into

a set of numbers, or features, which can then be used to estimate the volumes of the

corresponding pieces of fruit.

Firstly, several preprocessing stages are necessary to locate the four pieces of fruit

within each of the original images and then to form new images containing each indi-

vidual piece of fruit separately. The new images are very similar in scale and resolu-

tion to the images used commercially for colour and blemish sorting.

A scaling factor is next determined for each of the four mirror chamber views. The

scaling factors are used to bring the fruit profile boundaries to the same scale.

The methods used for combining the three colour bands to form grey-scale images

are then explained. The grey-scale images are necessary because they are used as an

intermediate stage in forming binary images, in which the fruit may easily be separated

from their backgrounds.

Before features can be measured from the pear images, the stalk section must be re-

moved from each image. The reasons for doing this and the methods used are ex-

plained later in this chapter.

75
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The segmentation to identify the fruit object within the profile image in this project is

not necessarily the same as the processes used in existing commercial systems. The

specifics of the segmentation process used differ from system to system [38]. The pur-

pose of the segmentation stage of this project is to isolate the experimental images so

that function approximators based on features obtained from well-segmented images

can be designed and later meaningfully tested.

The fruit boundaries identified from the resulting binary fruit images are then used

to extract shape features for each image. This process of selecting and measuring

features is described in the final section of this chapter.

6.1 Preprocessing of the original images

The first stage in the computer processing of the original 1280� 1024 pixel images

from the digital camera was to form separate image files for the four pieces of fruit

within each of the original images from the camera. This was necessary since locating

the fruit within the large image would be very computationally expensive. For this

reason, each of the large images was cropped to form four smaller images of the

relevant portions for future processing.

Original image

Reduced size
Threshold of

band combination

Fruit located in
original image

Fruit labelled by position

Left

Main

Right

Upper

Figure 6.1: Locating the four fruit images from the digital photograph.

The process of forming separate image files for each fruit is summarised in Figure 6.1.

Firstly a small 256� 205 pixel reduced resolution image was formed as a resized

version of the original image. Rather than using the original images, smaller resized

images were processed to locate the fruit objects because this greatly reduced the

computational time required to process the entire set of images. From these resized

images, grey-scale images were formed from the sum of the red and green bands less

twice the blue band. The new images, P, were thus each formed using the linear
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combination

P(x;y) = R(x;y)+G(x;y)�2B(x;y) (6.1)

where R, G and B are the red, green and blue bands of the original image respectively.

This method of combining the bands is relatively fast to compute and tends to highlight

the fruit (which, being yellow/brown/orange in colour, have high red and green values

and low blue values for each of the fruit types used in this project). It was important

that the method should be relatively fast on account of the size of the task: 834 images

of oranges, pears, lemons and potatoes, each 1280� 1024 pixels, had to be cropped

into 3336 smaller images.

Next, the grey-scale images were thresholded to form binary images, as shown in the

third picture in Figure 6.1. For each fruit type, the threshold value was simply found

by inspection (with reference to several image histograms), as it was felt that more

elaborate threshold locating methods [14] would be unnecessarily time consuming.

All that was required at this stage was the rough location of the fruit objects within the

large image. The objects (connected regions) in these binary images formed the set of

initial candidates for the locations of the fruit objects. The four largest binary objects

were identified as the approximate locations of the four fruit for each image. Several

much smaller binary objects were sometimes present on the binary images, but these

had usually formed as a result of specks of dust in the mirror chamber.

A corresponding rectangular region for each fruit within the original image was then

determined. This was done by multiplying the boundary co-ordinates of the four bi-

nary objects by a scaling factor. An additional 50 pixels was added to the lengths

and widths of each rectangle to ensure that the entire fruit was contained. The images

within these rectangular regions were then copied from the original image. These re-

gions were saved to disk to form the four image files for each of the original images.

The x and y co-ordinates of the centroids of the binary fruit objects were used to label

the four fruit image files, to allow later determination of whether the image came from

the left, right or upper mirror, or if it were the main view of the fruit.

6.2 Size calibration

The fruit images were calibrated for size by using images of an orange sphere with a

consistent diameter of 64.7mm (measured with micrometer callipers), the volume of
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which was confirmed with the pycnometer. During the data capture stages for all of

the fruit types, a photograph of the sphere was taken after every ten fruit photographs.

This was done for each fruit type to ensure that the relative dimensions of the four

fruit images per photograph were well-known, even if the data capture was taking

place over a period of several days. In this way variations in the geometry between the

data capture runs of the different fruit types could be taken into account (especially

since the apparatus was reassembled for each data capture run for a particular fruit

type).

Figure 6.2: Mirror chamber with size calibration sphere.

An example of one of the calibration images is shown in Figure 6.2. The number

of pixels (area, A) in the resultant circular objects were counted for each of the four

views. The circular objects were identified by thresholding the red bands, and the

threshold value was easily found by inspection of the red band histograms. The results

for all of the calibration photographs were averaged.

Run
Left mirror view Right mirror view Upper mirror view Main view

A STD(A) Mult. A STD(A) Mult. A ST D(A) Mult. A STD(A) Mult.

Orange 12773.3 77.2 1.193 13126.3 55.3 1.177 12634.5 79.1 1.200 18193.0 34.4 1.000

Pear 11729.3 18.1 1.165 11245.7 26.7 1.190 10994.0 21.8 1.204 15931.3 30.4 1.000

Lemon 12747.3 28.7 1.194 12981.3 14.2 1.183 12538.7 55.2 1.204 18175.0 34.0 1.000

Potato 12612.5 139.3 1.199 13061.0 99.0 1.179 12476.5 115.3 1.206 18139.0 60.8 1.000

Table 6.1: Mean area, A, standard deviation, STD(A), and corresponding distance

multiplier, Mult., for objects in calibration images.
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This information is shown for each data capture run, identified by the name of the

fruit, in Table 6.1. From these average areas, a distance multiplier was calculated to

scale any distance in the mirror sub-images to an equivalent distance in the main view

sub-image. The formula for doing this calibration is

Multiplierview =

s
Aview

Amain view
(6.2)

6.3 Combining the colour bands

The purpose of the segmentation stage is to identify and isolate the fruit objects within

the images. The required result is a binary image with ‘ones’ labelling the pixels

corresponding to fruit within the image and with ‘zeros’ corresponding to background

sections. The binary images were formed from grey-scale images which were in turn

formed from the original RGB fruit images. A binary image was formed for each of

the fruit images in the four data sets (orange, pear, lemon and potato).

In combining the three colour bands to form the grey-scale image, it was very desir-

able for the fruit sections of the images to consist of higher intensity values than the

background. This was necessary to allow the conversion of the grey-scale image into

a binary image which would accurately distinguish foreground from background. The

rudimentary method described above in Equation (6.1) is quite effective for quickly

combining the RGB bands so that the fruit object can be located roughly within the

image. For a more accurate identification of the fruit object, however, a more general

(non-linear) combination of the bands must be made.

Multi-layer perceptron (MLP) neural networks were used to form non-linear combi-

nations of the three colour bands. This was done because MLPs with a small number

of nodes in the hidden layer are able to produce smooth yet not necessarily linear (and

thus more flexible) functions of multiple inputs. With a small number of nodes in the

hidden layer, and a large training set, there is little danger of the MLPs being over-

trained, as they simply would not have the flexibility to become so. Given the already

quite satisfactory results using a simple linear combination of the colour bands, it is

unlikely that an MLP would need much more flexibility than a linear combination of

bands for accurate labelling of fruit image pixels as background or as foreground.
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Four MLPs were developed, one for each of the four fruit types. The MLPs were

designed to take three inputs, the red, green and blue values for a pixel, and to output

one value, the grey-level value, as a function of the three input values. These grey-

level output values were then to be thresholded, resulting in a binary image.

(a) (b)

Figure 6.3: Manual identification of foreground and background showing (a) the orig-

inal, and (b) the mask image.

To train the MLPs, eight binary image masks were formed for each fruit type. This

was done by manually distinguishing the foreground from the background pixels for

each of the selected fruit images, judging by eye whether each pixel considered was

part of the fruit or part of the black background of the mirror chamber. These training

images were selected by picking two fruit images at random for each of the four mirror

chamber views (main, left, right and upper views) for each fruit type. Figure 6.3(a)

shows a picture of an orange image selected for training an MLP and its corresponding

manually-segmented mask in Figure 6.3(b). This orange is used as an illustrative

example for the rest of this section.

In order to have the MLPs concentrate on the important regions of segmentation,

namely the regions close to the boundary between the fruit and the background (since

it is this boundary which will ultimately describe the fruit shape), these regions in par-

ticular were used to train the MLPs. Misclassified pixels that were not connected to

the boundary could later easily be corrected by filling-in or deleting regions. To select

the image regions for training the MLPs, binary dilation and erosion of the original

manually-segmented mask was used.
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(a) Background training mask (b) Foreground training mask

(c) Background training pixels (d) Foreground training pixels

Figure 6.4: Mask images indicating the regions of Figure 6.3(a) to be used for target

values in training as (a) the background and (b) the foreground; and showing the pixels

used in training an MLP on recognition of (c) the background and (d) the foreground.

The mask region indicating the background region to be used was formed by dilating

the original mask with a disk-shaped structuring element with a diameter of 15 pixels,

and then subtracting the original mask from this binary image. This can be written

mathematically as

B(x;y) = M(x;y)�M(x;y)�S(x;y) (6.3)

where B is the masked region identifying the portion of background to be used in

training, M is the manually-segmented mask image and S is the disk-shaped structur-
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ing element with a diameter of 15 pixels. Figure 6.4(a) shows the mask indicating

the region of Figure 6.3(a) to be used for forming examples of background pixels for

training the MLP. Figure 6.4(c) shows those background pixels explicitly against a

diffuse version of the image for reference.

Similarly, the mask region indicating the foreground region to be used was formed

by eroding the original mask using the disk-shaped structuring element of 15-pixel

diameter, and then subtracting this binary image from the original mask, so that

F(x;y) = M(x;y)	S(x;y)�M(x;y) (6.4)

where F is the binary image which identifies the foreground region to be used for

training. Figure 6.4(b) shows the mask that specifies the region of Figure 6.3(a) to be

used for forming examples of foreground pixels for training the MLP. Figure 6.4(d)

shows those foreground pixels explicitly, again against a diffuse version of the image.

The structuring element used in the dilation and erosion of the mask was chosen to

have a diameter of 15 pixels since it was felt that a smaller structuring element would

unduly bias the MLP towards any manually misclassified pixels very close to the fruit

object boundary (it is, of course, only close to the fruit object boundary that one would

expect manually determined pixels to be misclassified).

Figure 6.5: Plot of red, green and blue values for the training pixels selected from the

orange image shown in Figure 6.3.

From the regions selected for background and foreground examples, 10 000 sample

sets of RGB values (pixels) were randomly selected to be used as input data for train-
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ing. The full masked region was not used because this would have greatly increased

the time required to train the MLPs. The set of foreground RGB input vectors were

each given a corresponding target value of +1; target values of -1 were used for the

background. This provided a threshold value of zero, so that pixels which gave a

positively-valued MLP output could be classified as foreground, and those giving a

negatively-valued output could be classified as background.

Figure 6.5 shows a plot of the training set of RGB values extracted from the orange

image shown in Figure 6.3(a). The plot gives an idea of the three-dimensional surface

in RGB space that the MLP needs to use to divide the foreground and background

values. Plots for pears, lemons and potatoes showed similar types of shapes, indicating

that the same MLP structures (yet not of course weights, because the fruits are of

different colours) could be used for all four fruit types.

(a) (b)

Figure 6.6: (a) The normalised MLP output for Figure 6.3(a); and (b) the thresholded

binary image of (a).

The MLPs used had four hidden units with hyperbolic tangent activation functions and

were each trained for 100 cycles using the quasi-Newton method to adjust the weight

values. Figure 6.6(a) shows the result of using the trained MLP to calculate the grey-

scale values of the combined band image from an input RGB image. The pixel values

have been normalised to fall within the (0,255) range for display purposes. The grey-

scale image (without normalisation) can be thresholded at zero to yield the binary

image shown in Figure 6.6(b).
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(a) (b)

Figure 6.7: (a) The final binary image of the orange; (b) pseudo-colour image formed

from original image and final binary image to show MLP segmentation accuracy.

The thresholded image may contain misclassified regions away from the boundary. In

some cases this could be due to specks of dust within the mirror chamber; in others it is

because some bright sections near the middle of the fruit are misclassified since pixels

of such RGB values were not included in the training set. The bright sections are

caused by the camera flash. The misclassified regions were quickly removed by firstly

selecting the largest background region as the only background region (by setting the

pixel values in all smaller-sized background regions to ‘ones’), and then from this new

binary image selecting the largest foreground region as the only foreground region (by

setting the pixel values in all smaller-sized foreground regions to ‘zeros’). The result

of the removal of such unwanted regions is shown in Figure 6.7(a). These binary

images form the final stage in the identification of fruit pixels within the fruit images.

In order to quantify the error on the MLP-based pixel classifier, a measure of error,

such as the proportion of misclassified pixels, must be formed. However, determining

which pixels had been misclassified would require the use of a manually-segmented

image as the absolute arbiter of whether a particular pixel lies in the background

or foreground. Since it was felt that the proportion of misclassified pixels in the

manually-segmented image was comparable to the proportion of misclassified pix-

els in the image formed by the MLP, a quantitative evaluation of the error was not
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attempted. Instead, the results were checked visually by means of pseudo-colour im-

ages such as the one shown in Figure 6.7(b). The pseudo-colour images were created

by showing the red-band of the original image in the region indicated by the binary

image to be foreground and showing the green-band in the background region. With

such pseudo-colour images, it is easy to check whether or not the binary image indi-

cates the fruit object pixels to be classified in a way that would be deemed correct by

a human. It is also important to note that any errors in locating the absolute boundary

of the fruit, to the extent that they are consistent from image to image, are relatively

inconsequential in the statistical estimation of fruit volume (as opposed to calculating

volume from exact real-world measurements). For instance, if dark brown pixels at

the base of the fruit are misclassified as background pixels, it will not have an im-

portant effect on the final volume estimate, because the dark brown pixels will have

been misclassified for all of the images, effectively changing the size and shape of the

identified fruit objects in the same manner. Consistent treatment of images can be ex-

pected from MLPs with small numbers of hidden units as the functions represented by

the MLPs are slow-varying and insensitive to most small changes in the input vectors.

6.4 Removal of the pear stalks

A segmentation stage was necessary to remove the stalk from the profile images of the

pears. The stalk has a negligible contribution to the fruit volume (typically constituting

less than 0.2% of the volume of pears) and would complicate the feature extraction

process as it significantly alters the shape of the profile images.

Original image Skeletonised image Body pixels
Additional body
pixels replaced Stalk identified

Figure 6.8: Pla and Juste’s thinning-based method of stalk detection.
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Figure 6.9: Close-up of stalk meeting body with thinning-based segmentation.

Pla and Juste [27] give a thinning-based approach to fruit stem identification which

they describe as a modified thinning method used to characterise fruit stems from fruit

profile images. The process is summarised in Figure 6.8. The first step is to form

the skeletonised image [32] of the fruit profile. Each iteration of the skeletonisation

algorithm removes a layer of pixels on the object boundary, so long as the removal

does not cause the object to break apart. N iterations of the skeletonisation algorithm

are applied to the fruit image, with N being a number dependent on the expected

thickness of the stalks in the images. In the example shown in Figure 6.8, N = 6.

From the skeletonised object, body pixels are identified. Body pixels are defined as

pixels that would leave the object connected if removed. After the body pixels have

been identified, the pixels removed in each iteration of the skeletonisation process are

added back to the body, provided that they touch the body. The stalk is then defined

as that portion of the original object that is not body.

The skeletonisation-based algorithm was found to be slow and to produce an unde-

sirable small protrusion of the fruit body into the stalk object. An illustration of this

can be seen in Figure 6.9. An algorithm based on binary morphological opening (de-

scribed in Section 3.3) was developed as an alternative to the thinning-based method

in an attempt to eliminate the undesirable protrusion of the fruit body into the stalk.

Figure 6.10 summarises the steps in this method. The difference image was formed

by subtracting the original binary image from the same binary image opened with a

circular disk structuring element that had 5% of the area of the original object. A

structuring element of this size was found to have a diameter larger than the width of

the stalks yet small enough to have little effect on the body of the fruit. The difference
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Original image Opened image Difference image
Large objects

selected Stalk identified

Figure 6.10: Binary morphology-based method of stalk detection.

Figure 6.11: Close-up of stalk meeting body with morphology-based segmentation.

image was region-labelled, and regions of area larger than 10 pixels were identified

as stalk and removed from the original image, leaving only the body of the fruit. The

results of this method were superior to those of the thinning-based algorithm, as is

illustrated in Figure 6.11.

6.5 Selection of the feature set

A feature set was developed so as to provide a pool of features from which to draw

for all of the volume estimation methods to be evaluated. The features consist partly

of standard image analysis features and partly of features developed specifically for

the solution to the volume estimation problem. Some of the features are redundant in

the sense that they are functions of the other features, but these redundant features do

have the potential to outperform the features that they are derived from when linear

regression methods are used.
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All of the features are relatively simple and quick to extract from the digital images.

The motivation for the features to be rapidly extractable is that some fruit sorting

systems require as many as ten images to be processed per second [38].

Unless otherwise specified, the features were selected because they were believed to

show potential for giving an indication of the orientation of the fruit or of K =VA�
3
2 .

Such qualities are necessary in order to work together with a measure of profile image

size to produce a volume estimate (see Chapter 2).

The fourteen features which were measured from each of the fruit profile boundaries

of each of the four fruit types are listed below.

6.5.1 Area

The area of a binary object is found by counting the number of pixels in the binary

object. The area of an object is a relatively noise-immune measure of object size,

because every pixel in the object contributes towards the measurement.

After calculating the area of the profile object, the remaining features were calculated

from a profile boundary (as described in Section 3.4) which was normalised to unit

area. This was achieved by dividing the boundary co-ordinate points by the square

root of the area. Using profile boundaries that were normalised to standard size, the

features other than area were guaranteed to measure information about shape rather

than information about size.

6.5.2 Perimeter

The perimeter of a boundary defined by a list of co-ordinates is the sum of the dis-

tances from each co-ordinate to the next. The perimeter measurement can become

distorted by the fractal nature of some boundaries (fine boundary detail may exagger-

ate the size of the measurement). However, assuming relatively smooth boundaries,

the perimeter is a possibly desirable feature on account of its simplicity and because

of the speed with which it may be extracted from a profile boundary.
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6.5.3 Aspect ratio

The aspect ratio of an object is the ratio of its calliper width to its calliper length.

Because the object’s major axis will in general be at a random orientation, θ, with

respect to the co-ordinate axes, (x;y), its calliper dimensions are calculated by first

establishing the value of θ by means of the Hotelling transform. Once θ is known,

each point (x;y) on the object’s boundary may be converted into a rotated frame (x0;y0)

through the transformation

x0(θ) = +xcos(θ)+ ysin(θ) (6.5)

y0(θ) = �xsin(θ)+ ycos(θ) (6.6)

The difference between the maximum and minimum co-ordinate values of x0 forms the

object’s length, while the difference between the maximum and minimum co-ordinate

values of y0 constitutes its width. Then

aspect ratio =
width
length

(6.7)

Figure 6.12 illustrates measuring the width and length of an object in this way.
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Figure 6.12: Measurement of object width and length.
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6.5.4 Fourier ellipse sum

The Fourier ellipse sum was a feature developed especially for (implicitly) identifying

pear orientation in this project. This feature gives an indication of the extent to which

a profile view is elliptical and in so doing gives an indication of the extent to which a

fruit such as the pear is being viewed side on. Since pears, when viewed from either

the top or from the bottom, have essentially elliptical profiles, the Fourier descriptors

of the boundary, other than G�1, G0 and G1, are low-valued for pears seen end-on. A

side view of a pear is a more complex shape than a circle or an ellipse, and therefore

has at least some Fourier descriptors other than G�1, G0 and G1 that are of significant

magnitude to account for this increase in complexity. The Fourier ellipse sum is a

fraction formed from G�1 and G1 in the numerator and the sum of all of the Fourier

descriptors other than G�1, G0 and G1 in the denominator. Thus,

Fourier ellipse sum =
jG1j+ jG�1j

N0

∑
i=2

(jGij+ jG�ij)
(6.8)

where N0 is the highest order of Fourier descriptor that is ever expected to contribute

significantly. In this project the value used was N 0 = 16. G0 is not included in the

equation because it indicates nothing more than the location of the object’s centroid

relative to the origin of some co-ordinate system, and this is not relevant to the shape

of the boundary.

To demonstrate the Fourier ellipse sum, Figure 6.13 shows four profiles of a cylindri-

cally symmetrical pear-like object, viewed at angles of 0Æ, 30Æ, 60Æ and 90Æ to the side

view. The three-dimensional object was computer-generated for the purpose of this il-

lustration, and code was written to extract and sample its profile boundary at differing

orientations. A plot of the Fourier descriptor magnitudes of each boundary is shown

below each computer-generated profile. The vertical axis of all of the plots is to the

same scale. Note how the magnitudes of the higher-order Fourier descriptors drop as

the pear-like object is rotated from a side view towards the bottom view. The first

negative Fourier descriptor is comparatively large in every case because it describes

the main circle of the boundary (see Section 3.5). Although in the case of a simple

closed boundary, the square of the first Fourier descriptor (the larger of G�1 and G1)

is roughly proportional to the area of the object (as can be seen in Figure 6.13 where

the objects are each scaled to have unit area and G�1, the largest Fourier descriptor,

appears to be roughly equal in each case), it is not necessarily exactly proportional
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(a) Fourier ellipse sum = 3:40 (b) Fourier ellipse sum = 4:08

(c) Fourier ellipse sum = 16:12 (d) Fourier ellipse sum = 20:41

Figure 6.13: Computer generated profile images of (a) upright; (b) rotated 30Æ; (c)

rotated 60Æ; (d) rotated 90Æ pear shapes with corresponding plots of Fourier descriptor

magnitudes to illustrate the Fourier ellipse sum feature.
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to the area of the object1 (which is normalised to unity for all of the boundaries for

measurement of all of the features other than area). The value of the Fourier ellipse

sum, which can be used to give an indication of orientation for fruit with elliptical top

and bottom views and more complex side views, is shown together with each of the

profiles in Figure 6.13.

6.5.5 Fourier circle sum

The Fourier circle sum is an adaptation of the Fourier ellipse sum that was designed

mainly to give an indication of lemon orientation. Since lemons appear roughly ellip-

tical when viewed from the side and circular when viewed from the top, only the larger

of G�1 and G1 was excluded from the denominator and used to form the numerator.

The equation for the Fourier circle sum is

Fourier circle sum =
max(jG1j; jG�1j)

N0

∑
i=1

(jGij+ jG�ij)�max(jG1j; jG�1j)
(6.9)

It may be noted that as a profile boundary becomes more circular, the denominator of

this fraction tends to zero and the Fourier circle sum tends to infinity.

A lemon side view such as the one shown in Figure 6.14(a) has a low-valued Fourier

circle sum both because of its elliptical-like shape and because of the bumps on the

stem and calyx ends of the fruit, whereas the roughly circular profile view of the top

or bottom of a lemon, such as is shown in Figure 6.14(b), has no Fourier descriptors of

significant magnitude other than the larger of G�1 and G1, and thus has a high-valued

Fourier circle sum.

6.5.6 Mean diameter

The mean diameter was measured by Miller [23] to estimate the volume of oranges.

Since Miller’s method was to be evaluated on the data set of oranges, it was decided
1This fact was easily shown empirically by creating two objects of equal area and different shape.

The first Fourier descriptor magnitudes of the two objects were observed to be not necessarily equal.

However, the first Fourier descriptor is sometimes used as a convenient divisor for normalising shapes

to standard size (in effect requiring the first Fourier descriptor of the shapes to have a magnitude of

unity) [10]
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(a) Fourier circle sum = 3:02 (b) Fourier circle sum = 8:84

Figure 6.14: (a) roughly side-on view of a lemon; (b) roughly end-on view of a lemon.

to include the feature in the pool of features from which to draw for each of the four

fruit types. As explained in Chapter 2, the mean diameter is the average of eight di-

ameter measurements (calliper style measurements) at successive incremental angles

of 22:5Æ.

6.5.7 Roundness

An object’s roundness [40] is the ratio of its area to its maximum diameter:

roundness =
4 �area

π �maximum diameter
(6.10)

Since the objects were scaled to unit area, this measurement is simply inversely pro-

portional to the maximum diameter of the object. The maximum diameter was es-

timated by using the maximum of the eight diameters measured to obtain the mean

diameter feature described above.

The circular-like top and bottom view profile images of lemons and of pears may be

expected to have a relatively low maximum diameter. This results in a high roundness

value for such profiles.
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6.5.8 Convexity

The convexity of an object is the ratio of its actual perimeter to its convex perimeter

[32]. The convex perimeter is calculated from the convex hull of the object by deriv-

ing the convex hull as described in Section 3.7, and then by summing the distances

between the points along the convex hull boundary.

convexity =
perimeter

convex perimeter
(6.11)

An object with high convexity has one or more ‘bays’ around its perimeter, whereas

an object whose convexity equals unity has a convex hull which conforms exactly to

its outer perimeter.

6.5.9 Solidity

Similar to the convexity of an object, but in the higher dimension of area, is the solidity

of an object [32]. The solidity of an object is the ratio of its area to its convex area

(the area of its convex hull).

solidity =
area

convex area
(6.12)

6.5.10 Extent

The extent of an object is the ratio of the object’s area to the area of its bounding

rectangle.

extent =
area

area o f bounding rectangle
(6.13)

The length and width used to calculate the area of the bounding rectangle are the same

calliper length and width used to form the aspect ratio (see Figure 6.12).

6.5.11 Energy of curvature

The energy of curvature [40] of an object boundary is an indicator of the average

amount of curvature in the object boundary. The curvature of a boundary describes

changes in direction and is defined in terms of the second derivative of the co-ordinates.
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For points xi and yi on the object boundary, the curvature at that position is defined

numerically as [40]

Ci =
q

(2xi� xi�1� xi+1)2 +(2yi� yi�1� yi+1)2 (6.14)

The average value of the square of this curvature, normalised to the boundary length

P, gives the energy of curvature:

energy o f curvature =
1
P

N

∑
i=1

C2
i (6.15)

where N is the number of boundary points and the x- and y-indices should be under-

stood to wrap around the Nth boundary point in the summation.

6.5.12 Mean distance

The mean distance feature is the mean of the distances from each boundary point to

the centroid of the object:

mean distance =
1
N

N

∑
i=1

q
(xi� xcentroid)2 +(yi� ycentroid)2 (6.16)

6.5.13 Variance of distance

Similarly, the variance of distance is the variance of the distances from each boundary

point to the centroid of the object:

variance o f distance=
1
N

N

∑
i=1

�q
(xi� xcentroid)2 +(yi� ycentroid)2�mean distance

�2

(6.17)

A circle would have zero variance of distance, whereas a very elongated ellipse would

return a high value for this feature.

6.5.14 Circularity

The circularity is the dimensionless ratio of the square of perimeter to area:

circularity =
perimeter 2

area
(6.18)
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Although it is a function of perimeter, which is already one of the pool of features,

and of area, which is normalised to unity, circularity is a commonly-used measure in

image processing [40]; and a non-linear transform of an existing feature, although it

adds no further information, does have the potential to out-perform the original feature

when using linear methods.

6.6 Feature computational complexity
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Figure 6.15: Mean number of floating point operations for computing shape features.

Figure 6.15 shows the average number of floating point operations that were required

for the calculation of each of the shape features described above. Elementary functions

such as addition, subtraction, multiplication or division of a pair of real numbers cor-

respond to a single floating point operation (flop). The number of flops was counted

using the MATLAB software in which all of the routines in this project were written.
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Running on a 200MHz Pentium II processor on a Windows 95 platform, a flop typ-

ically corresponds to about 1:4µs which means that many of the routines take longer

than 100ms. However, in an industrial context with faster processors and with dedi-

cated compiled software (as opposed to the interpreted code which was written for the

investigations of this project), it is apparent from these numbers that implementations

of many of the feature extraction routines could offer feasibly rapid volume estima-

tion methods. It may be noted that the number of flops required for the computation

of the fourteen shape features considered varies from a minimum of about 30 000 for

the calculation of area to a maximum of about 500 000 for the determination of the

Fourier ellipse sum of a single fruit profile.

Although it is not the goal of this project to optimise the speed of the feature extraction

process, this information is of use for rough comparisons of the likely times of extrac-

tion of the shape features. It is the extraction of these features which will add the most

significant overhead to existing fruit sorting systems that already implement segmen-

tation. The speed of extraction of a feature can be taken into account when selecting

the subset of features to be used for a particular function approximation method.



Chapter 7

Volume Estimation from Features

This chapter presents and discusses the results of the volume estimation methods de-

veloped in this project. Firstly, the methods of Miller and Marchant are revisited, and

their performance results are determined in terms of RMS error by applying them to

data sets of profile images. These performances are then compared with those of some

alternative methods that were developed in this project. Next, the performances and

associated confidences in the linear methods developed are presented and discussed.

It is then shown how the interpretation of the results can be improved by using a tech-

nique of volume redistribution on the existing data sets prior to the implementation

of the volume estimation methods. The results of volume estimation using the aver-

age of several estimations after volume redistribution are also presented here. Finally,

multi-layer perceptron methods are introduced and these are compared with the lin-

ear methods for volume estimations based on features from both single and multiple

images. The results obtained indicate that volume estimation with RMS errors of less

than 10cm3 (and often considerably less) is certainly possible if employed on fruit

types that have some degree of symmetry. The tables of all of the results presented in

this chapter are repeated for convenience of comparison in Appendix B.

7.1 Testing Miller’s method for oranges

Miller’s method [23] of estimating orange volume from profile images, as described

in Chapter 2, was tested on the data set of oranges. The method consists of averaging

eight diameters taken at incremental angles of 22:5Æ from the profile image of the

98
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orange. This average diameter was used to estimate the volume of the orange by

approximating the shape of the orange to that of a sphere. A training set of oranges

was used to determine the appropriate scaling factor.

After applying the jackknifing process on the data set of 24� 31 = 744 images of

31 oranges, 31 mean-squared errors (MSEs), each calculated from the volume esti-

mations of 24 images of each fruit, were obtained. These MSEs were obtained by

removing from the data the features associated with the profile images of one orange,

and then using the remaining features and corresponding target values as a training set.

The volume estimation function established by the training stage was used to produce

volume estimates from the profile images associated with the removed fruit. This pro-

cess was repeated 31 times with the profile images corresponding to each fruit being

removed on one occasion each.

The results of using Miller’s method for volume estimation on the data set of oranges,

calculated using the methods introduced in Chapter 4, were as follows:

RMS percentage error: 5.3%

RMS error (RMSE): 12:5cm3

95% confidence interval: 9:7cm3
< RMSE < 14:7cm3

Mean of MSEs: 155:1cm6

Standard deviation of MSEs: 171:9cm6

The RMS percentage error is a useful statistic for a quick interpretation of the results.

Nevertheless, it is important to note that this statistic cannot directly be derived from

the RMS error (RMSE). The RMSE tends to be larger in fruit of larger volume, while

the RMS percentage error does not. However, it is the MSE (and thus the RMSE)

which is minimised by the function approximators used in this project, and not the

RMS percentage error. So, although the RMS percentage error is closely linked to

the RMSE, it should be seen as the quicker, rather than the better interpretation of the

performance of the function approximator.

The 95% confidence interval indicates that we can be 95% sure that Miller’s method

would produce an RMSE in the 9:7cm3 to 14:7cm3 range in the long run (after estimat-

ing the volumes of many oranges from the same population using Miller’s method).

Another method of calculating the orange volume, also using the approximation that

oranges are spherical, was tested. Instead of using an estimate of the diameter of
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the orange in the profile image, the area, A, of the orange in the profile image was

used. Assuming sphericity, and less importantly that the effects of projection can be

neglected, the volume, V , of the orange can be calculated from the circular area, A, of

its profile image using

V =
4

3
p

π
A

3
2 (7.1)

which can be rewritten

V ∝ A
3
2 (7.2)

and the appropriate scaling factor can be found using a training set of profile images

and corresponding target volumes.

This method produced the following results on the data set of oranges:

RMS percentage error: 3.7%

RMS error (RMSE): 8:7cm3

95% confidence interval: 7:6cm3
< RMSE < 9:7cm3

Mean of MSEs: 75:3cm6

Standard deviation of MSEs: 51:1cm6

As can be seen from these results, this method provides better estimates than Miller’s

method. The certainty that this method is better than Miller’s method can be estimated

using the t statistic introduced in Chapter 4:

t =
MSE1�MSE2q

(n1�1)s2
1 +(n2�1)s2

2

s
n1n2(n1 +n2�2)

n1 +n2
(7.3)

=
155:1�75:3p

(31�1)171:92+(31�1)51:12

r
31 �31(31+31�2)

31+31
(7.4)

= 2:478 (7.5)

where the n1 = 31 elements of MSE1 are the mean-squared errors from jackknife

testing Miller’s method and the n2 = 31 elements of MSE2 are the mean-squared errors

from jackknife testing the alternative method. The sample standard deviations, s1 and

s2, are the sample standard deviations of MSE1 and MSE2 respectively. Using a lookup

table, the t = 2:478 statistic with n1 + n2� 2 = 60 degrees of freedom corresponds

to a 99:3% chance that the alternative method produces better results than Miller’s

method. This means that we can be 99:3% certain that the fact that the alternative
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method produced a lower mean RMS error than Miller’s method on the data set is not

due to chance, and that it would continue to produce lower mean RMS errors in the

long run if implemented or tested on new data.

The better results from the alternative method can be attributed to the fact that the

method is more immune to noise than Miller’s method. By averaging eight diameters,

Miller moves in the direction of removing the effects of noise. However, using the

area of the orange profile image incorporates information about the entire object and

is less sensitive to any local variations in the boundary of the fruit profile than Miller’s

method.

The alternative method has an added advantage over Miller’s method in that the ex-

traction of the area feature is quicker and less complex than the extraction of the mean

diameter feature required for Miller’s method.

7.2 Testing Marchant’s method for potatoes

As described in Chapter 2, Marchant [21] implicitly estimated potato volume in a

machine vision sorting system by measuring the lengths and areas of profile images.

The method used by Marchant was to divide the square of the area by the length of the

profile image, and then to use an appropriate scaling factor determined by a training

set of potatoes. Marchant’s method gave the following results upon jackknife testing,

using the data set of 24�20 = 480 images of 20 potatoes created for this project:

RMS percentage error: 12.3%

RMS error (RMSE): 30:7cm3

95% confidence interval: 21:1cm3
< RMSE < 37:9cm3

Mean of MSEs: 941:2cm6

Standard deviation of MSEs: 1061:9cm6

Marchant’s method can be compared with a simpler method that uses only an area

feature. This simplification is motivated by the fact that potatoes are so irregularly-

shaped that there is unlikely to be any identifiable general relationship between the

potato volumes and any of the profile features identified for volume estimation (apart,

possibly, from the area). Making the assumption that area is approximately linearly
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related to volume on the relevant portion of the volume-area curve resulted in a sim-

ple method which assumed potato volume to be proportional to potato profile image

area. The scaling factor was determined using a training set of potato images and

corresponding target volumes, giving the following results:

RMS percentage error: 12.3%

RMS error (RMSE): 31:3cm3

95% confidence interval: 20:1cm3
< RMSE < 38:9cm3

Mean of MSEs: 976:3cm6

Standard deviation of MSEs: 1152:3cm6

Although the resultant RMS errors were very slightly greater than those obtained using

Marchant’s more complex method, the t statistic shows that there is only a 54:0%

probability that the difference between the means is not due to chance. The very small

improvement in RMSE therefore suggests that the extraction of the length feature

in addition to the area feature could be seen as an overkill. Marchant relied on the

mechanics of the conveyor system to align the potatoes for measurement of length,

and in this project the potato images were aligned for measurement of length using

the Hotelling transform. In both cases, the extra computational time and complexity

provides minimal returns in terms of lower RMSE.

7.3 Linear regression methods

As seen in the previous section, a very simple volume estimate can be made using the

area of the fruit profile image to estimate volume. However, this effectively neglects

the fact that the shape and area of the fruit profile images may vary depending on

the orientation of the fruit and on differences in the shape (as opposed to just size)

of one fruit from another. This is particularly true in roughly cylindrically symmetri-

cal fruit such as pears and lemons. One would assume that, for a largely spherically

symmetrical fruit such as the orange, using the area feature alone would give a rea-

sonable volume estimate, since orange profiles differ little in shape either from fruit to

fruit or between different orientations; and that for more complex fruit such as pears

this would be a good first approximation, which could be improved by considering

additional shape features.
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Although the relationship between profile area and volume is not linear, the range

of orange profile images and corresponding volumes is small enough to lie on what

could be considered an almost linear portion of a nonlinear function. This can be
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Figure 7.1: Scatter plot of volume versus area for the data set of orange images, show-

ing the V = KA
3
2 curve for ideal spheres.

seen from observing a plot of profile image area versus volume for oranges as shown

in Figure 7.1. In this scatter plot, the areas (in pixels) of the 744 orange images are

shown plotted against their corresponding volumes. The 31 horizontal sets of 24 dots

correspond to the 31 oranges whose volumes were measured. The spread of these

horizontal lines is an indication of the extent to which the oranges are not spherical,

and of how the profile area varies according to the orientation of the fruit with respect

to the camera. Figure 7.1 also shows an almost straight section of the V = KA
3
2 curve,

upon which all of the data points would be expected to lie if the oranges were perfectly

spherical and if the camera were at infinity.

Standard linear regression was used to predict volume from area measurements. The

results are shown in Table 7.1 where n is the number of fruit and corresponding num-

ber of MSEs, RMS%E is the square root of the mean of the squared percentage errors,

RMSE is the square root of the mean of the MSEs, LO95%CI and UP95%CI are the

lower and the upper bounds of the 95% confidence interval for RMSE respectively,

MSE is the mean of the n MSEs and STD(MSE) is the sample standard deviation of

the n MSEs, all from the results of the jackknife testing. The use of the mean volume
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Estimation

Method
Statistic

Orange Pear Lemon Potato

(n = 31) (n = 64) (n = 23) (n = 20)

Mean

volume

RMS%E [%] 23.2 4.1 27.6 18.9

RMSE [cm3] 51.7 7.7 58.6 47.3

LO95%CI [cm3] 40.7 5.6 47.4 19.0

UP95%CI [cm3] 60.7 9.4 68.0 64.1

MSE [cm6] 2674.1 59.6 3438.0 2236.6

STD(MSE) [cm6] 2881.4 114.7 2749.1 4005.5

Area

RMS%E [%] 3.7 3.7 8.4 12.3

RMSE [cm3] 8.6 7.0 18.5 31.3

LO95%CI [cm3] 7.6 5.5 16.5 20.9

UP95%CI [cm3] 9.5 8.2 20.3 38.9

MSE [cm6] 73.6 49.0 342.6 976.3

STD(MSE) [cm6] 46.5 76.1 161.1 1152.3

Area
3
2

RMS%E [%] 3.7 3.7 8.2 12.1

RMSE [cm3] 8.7 7.0 18.4 30.7

LO95%CI [cm3] 7.6 5.5 16.2 21.1

UP95%CI [cm3] 9.7 8.2 20.3 37.9

MSE [cm6] 75.3 49.1 338.0 939.6

STD(MSE) [cm6] 51.1 76.8 173.3 1057.4

Table 7.1: Errors on volume estimates using mean volume, area and area
3
2 .

of the training set as a predictor was also tested, and the results are shown in the first

rows of Table 7.1. This predictor makes no use of the profile images, and bases its

prediction entirely on the a priori knowledge of the distribution of volumes from the

training set. A high error on the volume prediction using the mean volume simply in-

dicates that there is a large spread of fruit volumes; likewise, a small error indicates a

small spread. This highlights the fact that direct comparisons cannot be made between

fruit types, since the data sets of the fruit types consist of different volume distribu-

tions. From this table, it is only meaningful to look for improvements in the columns

(due to more elaborate volume estimation methods) for the particular fruit type with

its particular distribution. Later, a normalisation process is presented which allows

one to compare the suitability of volume estimation processes between the columns,

for fruit of different intrinsic shapes and volume distributions.
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In the case of the pear, the volume spread is so narrow that there is hardly any ev-

idence of improvement from the mean volume predictor when an area predictor is

used. However, for the other fruit sets, which have wider distributions of volumes,

Table 7.1 shows a definite improvement in the volume estimates. The use of area
3
2 in

place of area as a predictor shows little improvement, because (as mentioned before)

the relevant portion of the area-volume curve is approximately linear.

A simple linear regression technique can be used to improve the volume estimates by

taking the shape of the profile image into account. To do this the method uses the

equation

V = KA
3
2 (7.6)

) K =
V

A
3
2

(7.7)

A shape feature is used to predict K and thus implicitly to take the orientation of the

fruit into account. This is because the same fruit expose different profile areas at dif-

ferent orientations. Different fruit types have inherently different shapes, so different

shape features are better predictors of K for different fruit types.

Table 7.2 shows the absolute value of the correlation coefficient of K and the various

measured shape features calculated over all of the available fruit images for each fruit

type. These correlation coefficients were used to select the best predictors of K for

each fruit type. The best linear predictors of K for the different fruit types were thus:

Oranges: Mean diameter

Pears: Mean diameter

Lemons: Aspect ratio

Potatoes: Convexity

As might be expected, the correlation coefficients corresponding to the potatoes and

to the oranges are low, indicating that prediction of K is unlikely to improve a volume

estimate for the fruit. This is because oranges are approximately spherical and do not

differ in profile between different orientations. Even if the orientation of the oranges

could be predicted, it would be of little use, since the exposed profile area of an orange

does not systematically differ with orientation. Although the potatoes expose very

different profile areas at different orientations, this is largely unpredictable because

potatoes are very irregularly-shaped fruit.
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Shape Feature
Correlation coefficient

Orange Pear Lemon Potato

Perimeter 0.348 0.559 0.394 0.212

Aspect Ratio 0.119 0.572 0.827 0.114

Fourier ellipse sum 0.299 0.604 0.586 0.127

Fourier circle sum 0.318 0.662 0.775 0.012

Mean diameter 0.378 0.680 0.753 0.083

Roundness 0.291 0.639 0.826 0.113

Convexity 0.337 0.119 0.071 0.309

Solidity 0.371 0.585 0.540 0.063

Extent 0.220 0.579 0.594 0.022

Energy of curvature 0.367 0.383 0.347 0.181

Mean distance 0.002 0.525 0.667 0.178

Variance of distance 0.156 0.651 0.718 0.075

Circularity 0.345 0.557 0.392 0.207

Table 7.2: Correlation coefficient of K and shape features for different fruit types. The

best correlations for each fruit type are shown in bold.

The pears and lemons, on the other hand, are both regularly-shaped approximately

cylindrically symmetrical fruit. This makes prediction of K from shape features more

feasible than with oranges and potatoes. Figure 7.2 shows plots of three shape features

versus K for lemons. The correlation and usefulness of these features as predictors of

K can be seen from these plots. The plots show that although a linear regression line

could be fitted to the data points to predict K, there is some scope in making use of

non-linear methods (MLPs) to make better predictions of K by taking into account the

underlying non-linearity of these plots.

Although pears have a more distinctive variation in shape with orientation than lemons,

the differences in projected profile areas for different orientations are less in the case

of pears than they are for lemons. For this reason, a better prediction of K is possible

for lemons than is possible for pears. Note that the values in Table 7.2 can be com-

pared meaningfully across the different fruit types. This is because K is invariant to

the distribution of volumes, because it is a measure of shape.
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Aspect ratio

K

(a)

Roundness

K

(b)

Fourier circle sum

K

(c)

Figure 7.2: Plots of (a) aspect ratio; (b) roundness; (c) Fourier circle sum features

versus K for lemons.

From Table 7.2, we can also note that the Fourier ellipse sum and Fourier circle sum

features, which are shape features developed specifically for this task, performed rea-

sonably, yet were outperformed by simpler standard image processing features. The

Fourier ellipse sum was outperformed by the Fourier circle sum in the case of lemons,

yet still showed reasonable correlation. This suggests that although the change from a

circular profile to an increasingly less circular elliptical profile is an important indica-

tor of the amount of area that a fruit is projecting, the change in boundary bumpiness

(as indicated by the Fourier ellipse sum) due to the bumps at the stem and calyx end

of the lemon also indicate the amount of projected area to an extent.

Ironically, the mean diameter feature, which was somewhat opportunistically included

in the set of measured features as a byproduct of Miller’s method, turned out to be a

good predictor of K for oranges, pears and lemons. This does make sense if one

considers the fact that an ellipse will have a greater mean diameter than a circle of the

same area. So, a fruit which is manifesting a large K value in an elliptical side view

would have a corresponding high mean diameter feature, compared with the low K

value manifested in a circular top view which would have a corresponding low mean

diameter feature.

The errors obtained for each of the fruit data sets when using area and the best shape

feature to predict K are shown in Table 7.3. The volume estimates were formed using

Equation (7.6). These results can be compared with the results shown in Table 7.1,

which used even simpler area-based methods to estimate volume. The lemon data set

shows the most dramatic improvement, the RMSE dropping from 18:5cm3 in the case

of the area-based predictor to 11:9cm3 with the inclusion of the K-estimator. Using
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Estimation

Method
Statistic

Orange Pear Lemon Potato

(n = 31) (n = 64) (n = 23) (n = 20)

Area with

K-estimator

RMS%E [%] 3.4 5.4 5.0 16.2

RMSE [cm3] 8.4 10.3 11.9 40.5

LO95%CI [cm3] 7.2 9.5 9.1 24.0

UP95%CI [cm3] 9.3 11.1 14.2 52.0

MSE [cm6] 69.7 106.8 141.3 1638.4

STD(MSE) [cm6] 49.5 67.1 137.3 2273.0

Table 7.3: Errors on volume estimates using the best predictor of K for each fruit.

the MSE and STD(MSE) to form a t-statistic (t = 4:56) shows that we can be well

over 99.9% certain that the K-estimator method produces a lower RMSE.

It is interesting to note that, in the case of pears, using a K predictor increases the

error even though from Table 7.2 it can be seen that there is a reasonable correlation

between K and mean diameter. This increase of error is because of the small spread

in volumes of the pears in the data set, rather than having anything to do with the

intrinsic shape of pears. In the next section, it is explained how the volumes can be

redistributed to obtain more meaningful interpretations of volume estimation methods

and to achieve a direct comparison of errors between different fruit types.

7.4 Redistributing volumes for purposes of error com-

parison

The issues in understanding the effect that the volume distribution of the fruit has on

the performance of a volume predictor were discussed in Section 2.3. In this section,

a method of altering the data, so that more meaningful comparisons can be made, is

now developed.

All of the shape features apart from area are invariant to size, since they were measured

from profile images normalised to unit area. Since none of the shape features shows

any significant correlation with volume (as opposed to K), and since the effects of

projection are small, any set of features from a profile image of a corresponding piece

of fruit can be easily mapped to a new set of features corresponding to the same piece
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of fruit at the same orientation, but with a different volume. Under this transformation,

all of the features apart from area, A, remain unchanged. To change a known fruit

volume, Vold , to a required new volume, Vnew, the known area, Aold , is updated to a

new area feature, Anew, using

Anew = Aold

�
Vnew

Vold

� 2
3

(7.8)

By specifying a new set of volumes, it is possible to obtain a very good approximation

to what a data set of features from a fruit type with a specific volume distribution

would be.

Using Equation (7.8) to calculate new area values, and leaving the remaining original

features unchanged, a simulated data set for each of the four fruit types was formed.

The new volume values were obtained by randomly sampling a normally distributed

PDF of mean 200cm3 and standard deviation 50cm3. Such a distribution is typical of

one that might exist in a batch of oranges or pears sorted in a packing house [33]. The

actual volumes of the redistributed volume data sets differed between fruit types be-

cause the numbers of fruit for each data set differed. The effects of chance differences

in actual volume distribution amongst the four redistributed data sets was reduced by

selecting a sample set of the PDF having an actual mean and sample standard deviation

matching those of the original PDF to less than 0.1%.

The volume estimation results of using linear methods to estimate fruit volume from

a single image on the original data (Orig.) are summarised in Table 7.4 together with

the results on the redistributed data (Redist.). Note that for the area with K-estimator

method, the RMS percentage errors of the redistributed volume data sets are often

close to those of the original data sets. This is because the a priori knowledge of the

volume distribution gained from the training set becomes of less importance as more

information from the profile images is utilised.

The inclusion of a K-estimator provides noticeable improvements in the RMS error in

the case of the lemons and the pears. In the case of the pears, the volume redistribu-

tion is necessary to illustrate this. This is because, as stated in the previous section, the

original data set with its tight volume distribution actually shows a decrease in perfor-

mance when a K-estimator is included in addition to the area feature. In the case of the

original data set, the area feature is a better predictor of K than any other shape feature:

the correlation coefficient of area as a predictor of K is 0.872. As the volumes of the

population of fruit become spread out, area becomes uncorrelated with K, while the
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Estimation

Method
Statistic

Orange (n = 31) Pear (n = 64) Lemon (n = 23) Potato (n = 20)

Orig. Redist. Orig. Redist. Orig. Redist. Orig. Redist.

Mean

volume

RMS%E [%] 23.2 30.4 4.1 33.5 27.6 34.3 18.9 30.7

RMSE [cm3] 51.7 49.4 7.7 49.7 58.6 48.9 47.3 48.7

LO95%CI [cm3] 40.7 32.7 5.6 40.3 47.4 29.2 19.0 35.6

UP95%CI [cm3] 60.7 61.6 9.4 57.6 68.0 62.6 64.1 58.9

MSE [cm6] 2674.1 2435.5 59.6 2469.3 3438.0 2386.6 2236.6 2370.6

STD(MSE) [cm6] 2881.4 3876.1 114.7 3456.9 2749.1 3754.1 4005.5 2353.9

Area

RMS%E [%] 3.7 4.0 3.7 7.2 8.4 8.5 12.3 14.3

RMSE [cm3] 8.6 8.0 7.0 14.8 18.5 16.3 31.3 27.0

LO95%CI [cm3] 7.6 6.8 5.5 13.0 16.5 14.5 20.9 24.0

UP95%CI [cm3] 9.5 9.1 8.2 16.5 20.3 17.9 38.9 29.7

MSE [cm6] 73.6 64.5 49.0 220.3 342.6 265.2 976.3 727.9

STD(MSE) [cm6] 46.5 52. 6 76.1 207.0 161.1 129.5 1152.3 328.2

Area
3
2

RMS%E [%] 3.7 3.8 3.7 7.0 8.2 9.6 12.1 14.3

RMSE [cm3] 8.7 7.7 7.0 14.2 18.4 16.7 30.7 27.3

LO95%CI [cm3] 7.6 6.6 5.5 12.8 16.2 15.2 21.1 23.8

UP95%CI [cm3] 9.7 8.6 8.2 15.5 20.3 18.2 37.9 30.4

MSE [cm6] 75.3 59.1 49.1 202.7 338.0 280.0 939.6 744.1

STD(MSE) [cm6] 51.1 44.1 76.8 155.7 173.3 116.9 1057.4 378.7

Area with

K-estimator

RMS%E [%] 3.4 3.4 5.4 5.4 5.0 5.0 16.2 16.2

RMSE [cm3] 8.4 7.1 10.3 10.9 11.9 10.2 40.5 35.3

LO95%CI [cm3] 7.2 6.1 9.5 9.9 9.1 8.5 24.0 12.4

UP95%CI [cm3] 9.3 7.9 11.1 11.8 14.2 11.6 52.0 48.3

MSE [cm6] 69.7 50.0 106.8 117.8 141.3 103.0 1638.4 1243.7

STD(MSE) [cm6] 49.5 36.0 67.1 83.0 137.3 72.6 2273.0 2329.1

Table 7.4: Errors on volume estimates with original and redistributed data sets.

remaining shape features, which are invariant to volume, have unchanged correlation

coefficients. This means that if one is estimating the volumes of a set of pears known

not to vary much in volume, then each pear’s volume will be very close to the mean

volume of all of the pears, and there is no need for a machine vision volume estimator.

However, for more widely distributed volumes, such as the redistributed volume dis-

tribution, the K-estimator is of use, reducing the RMSE from 14:8cm3 (area predictor)

to 10:9cm3 (area with K-estimator) in the case of the redistributed volumes.

From Table 7.4, comparisons can be made between the four fruit types. Oranges

produce the lowest RMSE of 7:1cm3 (area with K-estimator), due to their simple

shape. Potatoes produce the highest RMSE of 35:3cm3 (area with K-estimator) due

to their irregular shape. Lemons and pears, however, show the biggest improvement

from the area method to the area with K-estimator method, since a good prediction of

K can be made for these fruit from shape features.
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Methods which use increasingly more of the relevant information from the profile

images (such as the inclusion of a K-estimator in addition to area) become increasingly

robust towards differing volume distributions: in other words, the volume distributions

do not affect the RMSE as much as when this information is not utilised. This means

that the area with K-estimator method is expected to perform similarly regardless of

the volume distribution.

Estimation

Method
Statistic

Orange (n = 31) Pear (n = 64) Lemon (n = 23) Potato (n = 20)

Orig. Redist. Orig. Redist. Orig. Redist. Orig. Redist.

2 images

from mirrors

at 90Æ

RMS%E [%] 2.2 2.2 3.4 3.4 3.9 3.9 9.8 9.8

RMSE [cm3] 5.6 4.5 6.6 7.0 9.1 7.8 24.9 22.1

LO95%CI [cm3] 4.6 3.9 5.8 6.1 6.4 6.1 12.7 3.9

UP95%CI [cm3] 6.4 5.0 7.3 7.8 11.1 9.2 32.9 31.0

MSE [cm6] 31.0 20.3 43.3 48.9 82.8 60.6 620.4 488.3

STD(MSE) [cm6] 28.4 13.6 37.9 45.9 95.6 54.7 980.8 1011.4

All 4 mirror

chamber

images

RMS%E [%] 1.5 1.5 2.4 2.4 3.6 3.6 6.3 6.3

RMSE [cm3] 4.0 3.2 4.7 5.1 8.4 7.2 16.1 14.5

LO95%CI [cm3] 3.1 2.6 3.7 4.1 5.7 5.3 3.0 0.0

UP95%CI [cm3] 4.8 3.6 5.4 5.9 10.5 8.6 22.6 21.6

MSE [cm6] 16.1 10.0 21.6 25.5 70.7 51.1 259.7 208.9

STD(MSE) [cm6] 18.9 9.0 31.2 36.2 89.7 52.4 535.0 548.6

All 24

images of

the fruit

RMS%E [%] 0.9 1.1 1.8 1.9 3.3 3.2 4.0 4.5

RMSE [cm3] 2.2 2.3 3.4 3.9 7.3 6.3 10.4 10.1

LO95%CI [cm3] 1.4 1.5 2.3 2.8 5.2 6.0 4.6 2.4

UP95%CI [cm3] 2.8 2.8 4.3 4.8 9.0 7.8 14.0 14.0

MSE [cm6] 4.9 5.1 11.6 15.4 53.5 39.2 108.5 101.4

STD(MSE) [cm6] 8.3 8.0 26.7 31.4 61.6 51.0 187.0 204.2

Table 7.5: Errors on volume estimates from multiple images using the average of area

with K-estimator volume estimation results.

Table 7.5 shows the results of averaging the volume estimates from multiple images of

the same fruit. The first rows in the table shows the results of averaging the area with

K-estimator volume predictions from two perpendicular views of the fruit. Improved

estimates are obtained for all of the fruit types. The improvements can largely be

attributed to the fact that volume over-estimates due to viewing a large profile image of

the fruit (such as the one shown in Figure 7.3(a)) are often compensated by a volume-

underestimate in the small profile image of the fruit in the perpendicular view (such

as the one shown in Figure 7.3(b)).

Although averaging the volume estimates is a convenient way of combining them, it

is not necessarily the optimal method of doing so. Consider, for example, a fruit that

is roughly cylindrically symmetrical, and which has a larger side view profile than top

view profile. A pair of perpendicular views of this fruit could consist of two side views
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(a) (b)

Figure 7.3: Two perpendicular views of a potato.

(two large profile objects) or a top view and a side view (one small and one large profile

object), but not two top views (two small profile objects). This observation indicates

that simple averaging is not necessarily the best method of combining the estimates

and that it is likely that a method which takes the statistical relationships between

the perpendicular views into account would give better results. Such a method is

implemented implicitly by using an MLP, and is discussed in the next section.

As Table 7.5 shows, the averaging of the four mirror chamber image estimates (main,

upper, left and right) yields an improvement on both the estimates from single and

from perpendicular-pair images. Again, averaging the estimates is a convenient, linear

method of combining the estimates, yet not necessarily optimal, and an MLP method

that uses the same feature input information as the method used to produce the results

in Table 7.5 is presented in the next section.

The results of averaging the estimates for all of the 24 images of each fruit are also

shown in Table 7.5. The 24 images consist of the six sets of four images from the

mirror chamber for each fruit. The results are presented here mainly for interest,

as it is unlikely that a fruit sorting system would produce so many images of each

fruit. Here it is interesting to note that the mean of 24 volume estimates of a potato is

necessary to reduce the RMS error (10:1cm3) to roughly that which is obtained from

a single image of a lemon (10:2cm3). An MLP which uses the same feature input

information was not developed because the ratio of inputs to available data samples

was far too high to produce meaningful results.
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7.5 Multi-layer perceptron regression methods

Multi-layer perceptrons (MLPs) were used to investigate a better combination of a

single K-estimator and area to predict volume for each of the fruit types. Although

the best K-estimator for each fruit type was selected from the pool of shape features

using a linear method (the linear correlation coefficient), it was decided to use the

same shape features for each fruit type as input to the MLPs. This was done mainly

for purposes of comparison, to investigate whether or not the non-linear MLP combi-

nations of the same inputs would result in significantly better volume estimates than

the linear methods. Figure 7.2 shows that it is likely that some non-linear relation-

ships do exist between at least some variables. Unlike the linear methods, MLPs can

produce non-linear mappings and can thus reduce the volume estimation error to the

extent that a non-linear relationship exists between the selected features and the target

volume in the fruit type. Another advantage of using both the K-predictor feature and

area as inputs to the MLP to predict volume, instead of just using the K-predictor as

an input and then using V = KA
3
2 to predict volume, is that the MLPs do not have to

adhere to the assumptions made in the V = KA
3
2 equation (such as the assumption that

the camera is at infinity).

Apart from exhaustively testing the combination of every single shape feature with

area as an input to the MLP, there is no way of guaranteeing that the feature which is

the best linear predictor of K is also, together with area as an input, the best predictor

of volume in an MLP. The exhaustive testing was not carried out because it would have

been far too time-consuming, and so only the shape features used as K-predictors for

the linear methods were used at this stage with the MLPs. Nevertheless, some inves-

tigations of likely feature combinations that were carried out yielded no remarkable

reduction in error.

The MLPs designed to estimate fruit volume from one shape feature with area using

single images had 15 hidden units and were trained for 100 cycles using the quasi-

Newton method. These values were determined empirically, and it was found that the

MLP was insensitive to the exact values of the number of hidden layers and number

of training cycles.

Table 7.6 shows the results of using an MLP with area and one shape feature as inputs.

This table can be compared with the last row of Table 7.4, where the same features

were linearly combined to produce volume estimates. The MLP volume estimates
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Estimation

Method Statistic

Orange (n = 31) Pear (n = 64) Lemon (n = 23) Potato (n = 20)

Orig. Redist. Orig. Redist. Orig. Redist. Orig. Redist.

Area and

shape feature

RMS%E [%] 3.3 3.5 3.6 6.1 4.5 4.9 11.8 10.4

RMSE [cm3] 7.9 6.8 6.7 10.7 9.9 9.4 29.8 26.4

LO95%CI [cm3] 6.8 6.1 5.2 9.7 8.1 8.0 20.8 17.8

UP95%CI [cm3] 8.9 7.5 7.9 11.7 11.3 10.6 36.7 32.8

MSE [cm6] 62.8 46.8 44.6 115.3 97.1 88.3 888.8 697.0

STD(MSE) [cm6] 48.6 26.7 71.4 90.7 71.8 57.8 972.0 810.2

Table 7.6: Errors on volume estimates from single images using area with an implicit

K-estimator as MLP inputs.

show some small improvements on the linear method using the same inputs. For in-

stance, the RMSE on lemons dropped from 10:2cm3 to 9:4cm3. Using the t-statistic

on the pairs of MSE and STD(MSE) indicates that one can be 77:6% sure of an im-

provement in performance if the MLP is used in place of the linear method for these

lemons. This indicates that more data would be required before we could be more

confident in this result (say 95% certain). However, because the difference in error

between the two methods is so small, it also indicates that the model used in the lin-

ear method (V = KA
3
2 ) is a reasonable model that compares favourably with a more

flexible method (the MLP).

Various other input combinations were experimented with for the MLP using inputs

from a single image. Several methods of determining which features to add to the

function approximator as extra inputs were investigated. Observing plots of the indi-

vidual volume errors against the various shape features showed little correlation. Ob-

serving the profile images corresponding to the particularly high and low errors also

revealed no particular pattern. Furthermore, no increase in the number of shape feature

inputs was found to show any significant improvement on the RMS error. This is be-

cause the shape features are often highly correlated with one another, or contain noise.

Principle component analysis [3] was experimented with to form linear combinations

of the features, but the best linear combinations did not outperform the best features

taken singly, and required the calculation of all of the features, which would be far too

time-consuming in an implemented system. The ‘law of diminishing returns’ might

be said to apply to volume estimation from shape features: the more features that are

added, the lower the improvement on the RMS error. The improvements that might

occur when three or more features are used as inputs to the MLP would require much

larger training sets to be shown to exist than those that were available in this project.
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Even if small improvements in the RMSE could be shown to exist, they would be of

little practical use, since they would require the extraction of further shape features,

which would be time consuming and would add complexity to the system.

The performance of MLPs on input from more than one image was tested. As ex-

plained in Chapter 2, if this data is treated together it seems likely that a better volume

estimate would be produced than by averaging the volume estimates from multiple

pictures, each treated separately.

Estimation

Method
Statistic

Orange (n = 31) Pear (n = 64) Lemon (n = 23) Potato (n = 20)

Orig. Redist. Orig. Redist. Orig. Redist. Orig. Redist.

2 randomly

selected

images

RMS%E [%] 2.3 2.6 3.1 3.8 3.7 3.5 11.2 14.6

RMSE [cm3] 5.5 5.1 5.9 7.6 7.6 6.6 29.4 23.8

LO95%CI [cm3] 4.8 4.6 4.8 6.8 6.7 5.8 17.8 15.9

UP95%CI [cm3] 6.2 5.6 6.9 8.4 8.5 7.4 37.6 29.6

MSE [cm6] 30.3 25.9 35.0 58.4 57.9 43.6 865.8 565.9

STD(MSE) [cm6] 21.1 14.6 50.9 52.0 31.3 24.3 1172.4 668.3

2 images

from mirrors

at 90Æ

RMS%E [%] 2.1 2.3 2.5 3.2 2.4 2.4 8.7 9.2

RMSE [cm3] 4.8 4.5 4.8 6.4 5.4 4.8 21.6 20.5

LO95%CI [cm3] 4.2 3.9 4.2 5.7 4.3 3.9 16.3 13.4

UP95%CI [cm3] 5.3 4.9 5.4 7.1 6.2 5.6 25.8 25.8

MSE [cm6] 23.0 19.8 23.3 41.3 28.7 23.5 465.0 421.5

STD(MSE) [cm6] 15.4 12.4 24.7 37.9 23.7 19.1 429.2 518.3

4 randomly

selected

images

RMS%E [%] 1.8 2.2 2.6 2.9 3.3 3.3 9.1 9.5

RMSE [cm3] 4.2 4.1 5.0 5.8 7.1 6.8 23.9 21.2

LO95%CI [cm3] 3.6 3.7 4.1 5.0 5.9 4.0 14.9 14.6

UP95%CI [cm3] 4.7 4.5 5.7 6.5 8.1 8.8 30.3 26.3

MSE [cm6] 17.5 17.0 24.6 33.4 49.9 46.8 569.4 451.3

STD(MSE) [cm6] 13.1 8.7 32.5 36.2 34.5 70.6 742.2 507.9

All 4 mirror

chamber

images

RMS%E [%] 1.3 1.7 1.9 2.0 1.6 1.7 5.3 5.6

RMSE [cm3] 2.9 3.2 3.7 4.1 3.2 3.6 14.1 12.6

LO95%CI [cm3] 2.5 2.7 2.9 3.2 2.7 2.0 8.2 2.2

UP95%CI [cm3] 3.3 3.5 4.3 4.8 3.7 4.8 18.2 17.6

MSE [cm6] 8.5 10.0 13.7 16.5 10.5 13.2 198.9 158.2

STD(MSE) [cm6] 6.2 7.4 21.0 26.3 7.9 21.8 280.1 327.2

Table 7.7: Errors on volume estimates from multiple images using area with an im-

plicit K-estimator from each image as MLP inputs.

Table 7.7 shows the results of two 4-input MLPs, each taking area and the best K-

estimator feature from two images. This was done firstly with pairs of images of the

fruit chosen at random from the 24 available images of each fruit and secondly with

pairs of perpendicular images of the fruit. The results of two 8-input MLPs, each

taking area and the best K-estimator feature from four images, are presented in the

third and fourth set of rows in Table 7.7. Again, this was implemented firstly with

the four images of the fruit chosen at random, and secondly by using the four mirror
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chamber images of the fruit so as to simulate a four camera system with a fixed camera

geometry.

The MLPs used in this section had 50 sets of hidden units and were trained for 150

cycles. As before, these values were determined empirically and the MLPs were in-

sensitive to the exact values of these parameters. The increase in the required number

of hidden units is attributed to the increased complexity of the problem.

The sets of random images were used to show that the structured orientation of the im-

ages would produce better results than the random sets of images. As can be seen from

Table 7.7, and as would be expected, the sets of images at consistent angles outper-

formed the sets of randomly-chosen images. For example, in the case of the lemons,

a reduction in RMSE from 6:8cm3, in the case of four randomly chosen images, to

3:6cm3, in the case of using the four images from the mirror chamber, is achieved.

Comparing these results with the average of the volume estimates used in the case

of the linear methods (see Table 7.5), suggests that it is advantageous to combine the

shape features from multiple images in parallel (using an MLP). For example, in the

case of volumetric estimation of lemons using four images from the mirror chamber,

there is an improvement in the RMSE from 7:2cm3 using the linear methods to 3:6cm3

using the MLP-based methods. The t-statistic (t = 3:203) shows that in this case one

can be more than 99.9% confident that there is a real improvement in using the MLP-

based estimate.



Chapter 8

Conclusions

This project has involved the development and testing of algorithms that produce vol-

ume estimates of fruit from digital profile images of the fruit which are similar to those

used in many commercial fruit sorting environments for colour sorting and blemish

detection. The methods developed in the project are of a statistical nature, and are

general in the sense that they do not rely on the mechanics of the conveyor system

to align the fruit in any particular orientation. The fruit are assumed to be randomly

oriented with respect to the camera. Since the methods used in this project rely on

training for the setting of parameters, they are adaptable for use with many existing

fruit sorting systems.

An experimental set-up was built to simulate the images that would be obtained in

single- and multiple-camera fruit sorting systems. This took the form of a mirror

chamber and a camera mounted upon a tripod. Data sets of orange, pear, lemon and

potato images were captured photographically. These fruit were chosen so as to cover

a range of different fruit shapes and to compare methods with those in published lit-

erature. Multiple images were obtained for each fruit, both to investigate multiple

image volume estimations and to improve the confidence in the expected RMS errors

produced by the methods. Target volumes were measured for all of the fruit that were

photographed. This was a time consuming process, yet could be achieved accurately

through the use of a purpose-built pycnometer.

Multi-layer-perceptron-based segmentation methods were developed and implemented

on the fruit images, to mimic the segmentation processes which occur for colour sort-

ing in a commercial fruit sorting environment, and to determine the fruit profile bound-

117
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aries from the digital images. A set of shape features was then measured for each of

the digital images. These shape features functioned as a pool from which to select

features to be combined to form a volume estimate of the corresponding piece of fruit.

Both linear techniques and artificial neural network methods, using both single and

multiple images for volume estimation were tested on the four fruit types. The meth-

ods each incorporated a function of a small number of rapidly-extractable shape fea-

tures, so that volume estimation could be implemented in conjunction with the existing

image processing procedures used for colour and blemish sorting, and with little in-

crease in computational time. It was confirmed that the shape as well as the size of

the fruit profile is often of importance in estimating the volume of the corresponding

piece of fruit.

A jackknifing procedure was used to ensure the best realistic estimation of expected

RMS error and of the associated confidence in this result for each volume estimation

method. A volume redistribution technique was implemented so that meaningful com-

parisons could be made across the fruit types, on a volume distribution typical of that

found in a batch of fruit at a commercial packing house.

Using linear methods and features from a single image, an RMS error of 7:1cm3 was

calculated to be expected of a system using such a method on a batch of oranges

with a typical distribution of volumes (a mean of 200cm3 and a standard deviation

of 50cm3). This means that, assuming a normal distribution of errors, about 68% of

the oranges (corresponding to one standard deviation) can be expected to have their

volumes estimated with an error of less than 7:1cm3 (which is about the same volume

as a heaped teaspoon of sugar). The low RMS errors achieved with oranges, even

with a single feature from a single image, can be attributed to their simple, almost

spherical shape. This volume estimate can be improved upon by using an artificial

neural network to combine shape features from multiple images. Using this method

with a single set of four images from four well-separated cameras looking down on

the fruit is expected, for example, to give an RMS error of 3:2cm3.

In the case of the pears, after redistributing the volumes it was calculated that an RMS

error of 10:9cm3 could be expected if a linear method is used to combine area and

mean diameter measurements from a single image (even although a large portion of

the fruit is hidden due to the random orientation of the fruit). This is a noticeable

improvement on the volume estimation using only area from a single image, which

can be expected to produce an error of 14:8cm3. This indicates that the shape of the
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profile image is useful in predicting pear volume. The pear data set, at 64 fruit and

1536 images, was the largest for any of the four fruit types investigated in this project

and correspondingly produces the highest confidence in the expected RMS errors. An

RMS error of 4:1cm3 can be expected from an 8-input multi-layer perceptron (MLP)

using two inputs from each of four images obtained from four cameras looking down

on the fruit, as suggested by the mirror chamber geometry.

Similarly to the pears, the lemons produced an expected RMS error of 10:2cm3 when

using linear methods to combine area and aspect ratio features from a single profile

image, compared with an expected 16:3cm3 RMS error when using area alone. The

shape of the lemon profile is thus useful in estimating the volume of the corresponding

lemon. The expected RMS error can be brought down to 3:6cm3 using an 8-input MLP

with features from all four images of a well-spaced four-camera set-up.

Potato volume estimation gave the worst performance of the four fruit types investi-

gated, due to the potatoes’ irregular and inconsistent shapes. A single image with an

area measurement resulted in an RMS error of 27:0cm3. However, this error could be

reduced by using multiple images. The error was reduced to 12:6cm3 using a 4-image

MLP system and to 10:1cm3 when using the mean of the linear estimates for all 24 im-

ages of each of the potatoes. Due both to the irregularity in shape of the potato and to

the relatively small data set, the potato results have the lowest associated confidence.

The choice of which volume estimation method to implement is largely dependent on

the camera system and on the images which are already available at a packing line. If

a simple one-camera, one-image system is in use, then simple linear methods can be

employed to estimate volume almost as effectively as the MLP methods. If multiple

camera systems are being used, or if the fruit is systematically rolled between pho-

tographs by a conveyor system, then the more complex MLP methods can be brought

into play to combine the extra information so as to produce a system with a lower

RMS error.

Once trained on a sample of the fruit, the volume estimation methods will give rapid

volume estimates which can be used either in conjunction with a weighing mechanism

to identify candidate fruit pieces for rejection due to low density and probable damage,

or to monitor the performance of the weighing mechanism (to check that it does not

become stuck). If the volume estimation is used to estimate fruit weight, then this

information can be used to pack the fruit cost-effectively into boxes (as described in

Appendix A) or to sort the fruit into consistent batches.



Appendix A

Selecting Weight Thresholds for

Packing Fruit

This appendix describes an optimisation algorithm that was developed for reducing

monetary loss in the packing of fruit into boxes which are sold at a fixed labelled

weight. The test results of the algorithm not only show how commercial packing

houses can reduce their losses through the use of mathematical and numerical meth-

ods, but also show how the RMS error on a weight measurement, which may be deter-

mined from a volume estimate, translates directly into a monetary cost in the context

of packing the fruit into boxes.

A.1 Statement of the packing problem

At the end of a packing line, fruit is packed into boxes which are to be sold by weight.

When a company called Bridge Fruit packs Valencia oranges, which is the example

cited throughout this appendix [33], each box is labelled and sold as a 14.5kg box.

Since each box is sold at the same weight, boxes with larger fruit require a lower count

of fruit than boxes with smaller fruit. There are six different categories of 14.5kg box,

as shown in Table A.1. The different categories of box contain different numbers or

counts of fruit. At the end of the packing line, the fruit is packed into a box of a certain

count according to the weight category into which it falls. For instance, according to

Table A.1, a 140g orange would be placed in a 97 count box, since its weight is in

the 138g – 164g range. Using this system of packing, a 97 count box could weigh

120
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Count Weight category thresholds currently in use

116 < 138g

97 138g – 164g

84 164g – 200g

69 200g – 248g

56 248g – 287g

48 > 287g

Table A.1: Box counts and currently-used Bridge Fruit weight category thresholds for

Valencia oranges.

anything from 97�138g = 13:386kg to 97�164g = 15:908kg, but is, in fact, most

likely to weigh just over 14.5kg. If a box weighs less than 14.5kg, then it cannot be

sold and it must be repacked at a cost that has been estimated to be R4.35 per box

[33]. If a box weighs more than 14.5kg, then fruit that could have been sold at a

rate of R2.07 per kilogram is being given away for nothing. The threshold weights

that divide the weight categories should be chosen carefully so as to minimise the

expected cost per box due to the penalties incurred by over- and under-packing boxes.

The optimisation problem is thus the selection of these threshold weights in order to

minimise the expected average cost per box.

A.2 Defining the cost function

In general, the expected cost per box, cexpected , is a function of the n�1 weight cate-

gory thresholds, t1; t2; : : : ; tn�1, which separate the n categories: it is the average cost

per box due to over-packing and under-packing that is expected to be incurred in the

long run. For purposes of calculation, the lower threshold bound, t0, is fixed at zero,

and the upper threshold bound, tn, is fixed at infinity. The weight range for count

category i is thus specified by the range from ti�1 to ti. The probability density func-

tion (PDF) of the fruit weights in every category can be estimated from m samples

that have been randomly selected from the population of fruit weights. Each of the n

weight categories has a corresponding number of fruit per box, and these numbers are

denoted as the counts, N1;N2; : : : ;Nn. The other constants for the problem are the cost

per box of under-packing, C, the loss per kilogram of fruit for over-packing, L, and

the labelled weight at which the boxes are to be sold, W .
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The expected cost per box is the sum of the expected average costs for each category

or box type, c1;c2; : : : ;cn, weighted by the probabilities P1;P2; : : : ;Pn, of occurrence

of the corresponding box type:

cexpected(t1; t2; : : : ; tn) =
n

∑
i=1

Pici (A.1)

The probabilities, P1;P2; : : : ;Pn, are found by considering a representative sampling

of m fruit pieces taken from the population of available fruit. Each probability, Pi,

expresses the chance that a given box of this fruit (when all the fruit is packed) contains

fruit pieces of weight category i (as defined by the threshold weights t1; t2; : : : ; tn). If

the sample of m fruit pieces comprises M1;M2; : : : ;Mn fruit pieces for the n categories,

the number of boxes, B, required to pack each category is given by

Bi =
Mi

Ni
(A.2)

and, from this, the category box probability can be written as

Pi =
Bi

n
∑
j=1

B j

(A.3)

In order to calculate the expected cost, ci, of packing a box of a particular category,

it is necessary to calculate the PDF of the weight of the packed box, pbox; i . The

PDF of weight for a box of category i is the convolution of Ni PDFs of weight for

fruit in category i, p f ruit; i . The central limit theorem [20] states that, as Ni becomes

larger, pbox; i will tend towards being normally distributed, regardless of the shape of

the distribution, p f ruit; i . Since the convolved fruit weight PDFs (corresponding to

each fruit in the box) are independent of one another, the box weight PDF can be

determined to a very good approximation by assuming a normal distribution of mean

µi and variance σ2
i , where

µi = Ni�Mean o f weight samples in ti�1 to ti range (A.4)

and

σ2
i = Ni�Variance o f weight samples in ti�1 to ti range (A.5)

It is therefore not necessary to know the actual PDF, p f ruit; i , in order to calculate

a very good approximation to pbox; i ; in fact only the mean (µi) and variance (σ2
i ) of

pbox; i need be known [20]. The mean and variance are both best estimated by the mean
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and variance of the weight samples which fall within category i. The PDF, pbox; i , for a

particular category i defined by a set of thresholds, t1; t2; : : : ; tn, is then given virtually

exactly by

pbox; i =
1p

2πσi
e
�

(x�µi)
2

2σ2
i (A.6)
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Figure A.1: An example of a category PDF of (a) fruit weights; (b) box weights.

Figure A.1(a) shows an example of p f ruit; i for a 97-count category that happens to

have weights in a 133g to 164g range. Figure A.1(b) shows an example in which

pbox; i is formed by convolving the PDF in Figure A.1(a) with itself 97 times. Note

that even though p f ruit; i has steep sides, pbox; i is normally distributed to a very good

approximation.

The box weight PDF, pbox; i , is used to calculate the expected average over-packing

costs, cover; i , and under-packing costs, cunder; i , for boxes of each weight category, i.

Then, the expected average cost per box within category i is

ci = cunder; i + cover; i (A.7)

The probable under-packing costs are calculated by integrating the product of the cost

of under-packing and the box weight PDF in category i.

cunder; i =
Z W

�∞
Cpbox; i dx (A.8)

= C�Q

�
W �µi

σi

�
(A.9)
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where

Q(x) =
1p
2π

Z x

�∞
e
�u2

2 du (A.10)

Q(x) cannot be integrated in closed form [22], and is instead evaluated using a look-up

table. In general, for a normal distribution of mean, m, and standard deviation, s,

1p
2πs

Z x

�∞
e
�(u�m)2

2s2 du = Q

�
x�m

s

�
(A.11)

and so, for the right-hand tail of a distribution with zero mean

1p
2πs

Z ∞

x
e
�u2

2s2 du = 1�Q
�x

s

�
(A.12)

The over-packing cost, y, for a box of weight x is given by the equation

y =

(
0 : x �W

(x�W )L : x >W
(A.13)

The probable over-packing costs are calculated by integrating the product of the over-

packing cost and box weight PDF:

cover; i =
Z ∞

W
ypbox; i dx (A.14)

This integral is simpler to evaluate if y0 and p0box; i are formed by shifting the functions

y and pbox; i a distance µi along the x-axis so that p0box; i has zero mean:

y0 =

(
0 : x �W �µi

(x� (W �µi))L : x >W �µi
(A.15)

and

p0box; i =
1p

2πσi
e
�

x2

2σ2
i (A.16)

so that

cover; i =
Z ∞

W�µi

y0p0box; i dx (A.17)

The integral can now be evaluated by inspection and with the use of a Q(x) term (see

Equation (A.12)):
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cover; i =

∞Z

W�µi

(x� (W �µi))L
e
�

x2

2σ2
i

p
2πσi

dx (A.18)

=

∞Z

W�µi

 
Lp

2πσi
xe
�

x2

2σ2
i � (W �µi)Lp

2πσi
e
�

x2

2σ2
i

!
dx (A.19)

=
Lp

2πσi

∞Z

W�µi

xe
�

x2

2σ2
i dx� (W �µi)L

∞Z

W�µi

e
�

x2

2σ2
i

p
2πσi

dx (A.20)

=

"
�Lσip

2π
e
�

x2

2σ2
i

#∞

W�µi

� (W �µi)L

�
1�Q

�
W �µi

σi

��
(A.21)

=
Lσip

2π
e
�

(W�µi)
2

2σ2
i � (W �µi)L

�
1�Q

�
W �µi

σi

��
(A.22)
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Figure A.2: An example of (a) a cost function, and (b) a probable cost distribution for

a particular weight category.

Figure A.2(a) shows an example of cost as a function of box weight based upon the

same typical figures mentioned in Section A.1. The probable average cost per box

can be found by integrating the area under the curve shown in Figure A.2(b). Equa-

tion (A.8) is the under-packing cost portion of this integral and Equation (A.17) is the

over-packing cost portion. This example was derived by using the product of the cost

curve in Figure A.2(a) and the box weight PDF shown in Figure A.1(b).
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A.3 Testing the cost function

Given a set of m samples of fruit weight values, the cost function can also be estimated

by simulating the box packing using these values. To do this, the sample weights

are each assigned to one of the i categories based upon the threshold weight values.

Groups of fruit weights corresponding to the counts in each category are then summed

to give box weights. The excess fruit weights are discarded and the box weight costs

are then determined by using a cost function such as the one shown in Figure A.2(a).

Finally, the average cost per box is calculated.

Compared with the largely analytical method described in Section A.2, the simulation

method has a poor ability to generalise for realistic values of m, resulting in greater

error in the expected average cost. This is because it only makes use of the specific

sample weight values, whereas the analytical method makes use of the variance to

estimate the box weight PDFs. As m becomes large, the two methods converge on the

same cost.

To test the validity of the cost function, an artificial set of 100 000 normally distributed

fruit weights with a mean of 180g and standard deviation of 40g was generated using

a pseudo-random number generator.

The simulated average box weight costs were compared with the costs calculated us-

ing Equation (A.1) for various sets of thresholds, using the parameters for Valencia

oranges as described in Section A.1. The mean absolute difference between the two

sets of results was less than R0.01.

Assuming the threshold solutions derived from these 100 000 samples to be the actual

solutions, sampling again with m = 1000 samples now gave mean errors of R0.07

and R0.12 for the analytical method and the simulation method respectively. Using

m = 10 000 samples gave mean errors of R0.02 for the analytical method and R0.03

for the simulation method.

The extent to which the two costs agree for large values of m reflects the extent to

which the assumption of normally distributed box weights (by the central limit theo-

rem) is valid.
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A.4 Minimising the cost function

Once the cost function, cexpected , can be evaluated for any set of threshold weight

values, t1; t2; : : : ; tn, a set of threshold weight values which provide a low cost may be

found.

It was decided to use an optimisation technique known as Population Based Incre-

mental Learning (PBIL) [2] to select such a set of threshold weights. After setting

up a random number generator with an initially-uniform PDF over the space of the

function to be optimised, PBIL repeatedly spawns generations of populations of can-

didate solutions, adjusting the PDF slightly in each generation so as to favour the best

candidate of the population. This is explained in greater detail below. PBIL has been

shown to be a simple yet widely effective function optimisation strategy [2]. Further-

more, the PBIL algorithm can restrict the solution vector to consist of integers, which

is useful since the threshold weights on the packing line can in practice only be set as

integer weight values in grams [33].

As the cost function is a summation of integrals, it may be expected to be intrinsically

smooth and slow-varying. Such functions do not usually pose any difficulty for op-

timisation algorithms, because they do not present the problem of dealing with steep

‘cliffs’ or ‘spikes’. In addition to this, the search space contains only 25�6 = 230

candidate solutions (this is explained below), and therefore could almost be searched

exhaustively for the best solution. These two points suggest that it would be best to

use a simple-to-code algorithm, such as the basic PBIL, rather than any more elaborate

PBIL variant or other optimisation technique, which would in either case be unlikely

to show any further improvement on the basic PBIL results.

PBIL encodes candidate solutions (weight thresholds in this case) as binary strings.

The threshold weights were encoded by storing the differences between thresholds

as binary strings. The first threshold was offset from a value of 111g (which was

the smallest of the thousand sample weights for Valencia oranges). Each of the five

differences was then encoded with six bits. For example, the bit string [011011 011010

100100 110000 100111] corresponds to the set of thresholds [138g 164g 200g 248g

287g], as illustrated below:
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Binary number Decimal number Threshold weight

011011 27 111 + 27 = 138

011010 26 138 + 26 = 164

100100 36 164 + 36 = 200

110000 48 200 + 48 = 248

100111 39 248 + 39 = 287

In PBIL, a population of candidate solutions is created by sampling a probability vec-

tor. Each element in the probability vector corresponds to the probability that a bit in a

candidate solution will be ‘one’. Each element in the probability vector is sampled by

creating a pseudo-random number chosen from a uniform distribution on the interval

(0,1). If the probability vector element is greater than the random number, then the

corresponding bit in the candidate solution is set to ‘one’; otherwise it is set to‘zero’.

The probability vector has each of its elements initially set to 0.5.

A generation of, say, 100 candidate solutions is produced from the probability vector.

Each candidate solution is evaluated with the cost function and the best candidate

solution is selected to be used in the updating of the probability vector.

If the probability of generating a ‘one’ in bit position i is probabilityi, and if the

ith position in the solution vector towards which the probability vector is moved is

vector[i], then the probability vector may be updated after each generation using [2]

probabilityi = (probabilityi� (1�LR))+(LR� vector[i]) (A.23)

where LR is a parameter known as the learning rate.

In order to maintain diversity in the population, and to reduce the likelihood of prema-

ture convergence, a small proportion (the mutation rate, MR) of the probability vector

elements are randomly updated towards ‘one’ or ‘zero’ with equal probability. This

is done at the end of each generation, using the same method as described in Equa-

tion (A.23). It is debatable whether the mutation rate parameter (which is fundamental

to creating diversity in the genetic algorithms from which PBIL is derived) is strictly

necessary to the operation of the PBIL algorithm. However, it was used in this project

for the sake of working with a standard and pre-existing optimisation method [2].

PBIL repeatedly generates populations of candidates and updates the probability vec-

tor until the same best solution is generated several (say five) times in a row. The best
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solution produced by PBIL has been found to yield very satisfactory minimisations of

the cost function.

A.5 Optimising thresholds for Valencia oranges

Valencia orange data was obtained for testing the threshold optimisation from Mr Stan-

ford [33] of Bridge Fruit, which is a commercial packing house in the Western Cape.

At this packing line, the oranges are packed into six different weight categories, the

counts and currently-used thresholds of which are shown in Table A.1. The constants

L, C and W were given as:

Under-packing cost: L = R4.35 per box

Over-packing cost: C = R2.07 per kg

Labelled box weight: W = 14.5kg
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Figure A.3: Histogram of 1000 Valencia orange weights.

For each candidate, category means and variances were estimated from 1000 orange

weights, taken as a sample. A histogram of the 1000 orange weights used is shown in

Figure A.3. The histogram gives an impression of what the PDF of the orange weights

would look like.

Equation (A.1) gave an average cost of R1.48 per box using the thresholds currently

in use by Bridge Fruit, namely [138g 164g 200g 248g 287g]. This means that Bridge

Fruit are incurring an extra average cost of R1.48 for every box that they pack by using

these thresholds.

PBIL, with a population of 200 candidate solutions per generation, a learning rate

of LR = 0:015 and a mutation rate of MR = 0:020, gave an average cost per box of
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R0.72. The solution set of threshold weights was [138g 166g 189g 250g 279g]. This

result was reached after 346 generations of PBIL. These threshold weights are likely

to produce lower costs than the thresholds currently in use by Bridge Fruit. Although

there is an unspecified uncertainty associated with the R0.72 cost, R0.72 is the most

likely cost given the m = 1000 fruit weight samples. A larger sample of weights could

increase or decrease this cost estimate, and would have a lower uncertainty associated

with it.
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Figure A.4: Best solution in each PBIL generation.

Figure A.4 shows a graph depicting the cost corresponding to the best solution for

each generation of the PBIL optimisation. The noisy region on the left of the graph

corresponds to the initially random search through the solution space. As one moves

to the right, the more significant bits become determined with progressively greater

certainty and the range of the search is reduced.

A.6 Taking weight error into account

The cost function described in Section A.2 makes the assumption that the error on the

weighing device is negligible. Any significant error on the weighing device would

have the effect of changing the PDF of the measured fruit weights and, more impor-

tantly, of increasing the variance and ultimately the packing cost.
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Figure A.5: An example showing (a) an error function for a weighing mechanism, and

(b) the actual PDF of a category with the original PDF shown dashed.

Figure A.5(a) shows an example of an error distribution function with RMS error or

standard deviation of 3.2g (the weighing mechanism used by Miller [23] for weighing

oranges had such an RMS error). The error is assumed to be normally distributed.

Since the error distribution PDF is independent of the original PDF, the actual PDF

of the box weights can be found by convolving the original PDF (see example in

Figure A.1(a)) with the error distribution PDF (such as the example in Figure A.5(a)).

Figure A.5(b) shows the result of this convolution. Note how this PDF (drawn as

a solid line) has a greater variance than the original PDF (drawn as a dotted line).

The new PDF has greater spread since some of the fruit weights may fall outside the

category due to measurement error. In the example case in Figure A.5(b), 7.3% of the

weights actually fall outside the range defined by the thresholds.

To implement PBIL taking the RMS error on the fruit weights into account, it is neces-

sary to calculate the variance of the new fruit weight PDF, so that the variance, σ2
i , on

the box weight PDFs for each category, i, can be determined. Since both the original

PDF, and the error distribution PDF can only be estimated from sample values, the

variance is again calculated using sample values. Sample error distribution values can

be obtained when a weighing mechanism or machine vision weight-from-volume es-

timate is tested for accuracy. The actual fruit weight PDF variance is not a function of

the variances of the original PDF and the error function PDF, but is dependent on the

shapes of these two distributions. To estimate the variance of the actual fruit weight

PDF for the cost function, each weight sample has a randomly selected error distri-
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bution sample subtracted from it. This subtraction simulates the error on the weight

determination method.

A simple machine vision fruit volume estimator might produce an RMS error of

7:1cm3 for oranges (as shown in Table 7.4). A histogram of the distribution of vol-

ume errors for such a system using the data gathered in this dissertation is shown in

Figure A.6(a). A weight estimate can be obtained by multiplying the volume esti-

mate by the mean density of the fruit. During the acquisition stage of this project,

oranges were found to have a mean density of 0:928g=cm3 (with a standard deviation

of 0:026g=cm3). An RMS error of 8.7g was obtained when predicting weight from

estimated volume. A histogram of the distribution of the weight errors is shown in

Figure A.6(b).
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Figure A.6: Histogram of error distribution for (a) orange volume estimation, and (b)

orange weight estimation.

To demonstrate the effect of a weight error on the costs of under- or over-packing,

PBIL was re-run on the Valencia orange data, this time taking the derived weight error

distribution into account. With the PBIL parameters unchanged, a cost of R0.80 was

obtained after 310 generations.

Although there are many issues concerning the packing problem that have not been

addressed in this appendix (such as the practical issues involved in obtaining a random

weight sample from a population of fruit to be packed), it is interesting to note that

the results of this appendix indicate that Bridge Fruit could reduce their packing costs

from an expected R1.48 per box to an expected R0.72 per box by optimising weight

threshold values. It is also interesting to note that this cost would only rise to R0.80
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per box (which is still substantially lower than the present R1.48 per box) if a simple

weight-from-volume estimator was used to estimate the orange weights from existing

digital images of the fruit instead of through the use of an accurate and expensive

mechanical weighing device.



Appendix B

Volume Estimation Results Tables

For convenience, the results of the volume estimation methods developed in this

project are repeated here. This includes error and associated confidence statistics for

each of the volume estimation methods. The results are presented for each fruit type,

both with the volume distribution of the original data set and with the redistributed

volumes (mean of 200cm3 and standard deviation of 50cm3) for direct comparison of

different fruit types and for a better indication of the performance to be expected of

different estimation methods used on a typical packing house volume distribution.

Table B.1 gives the results of the linear volume estimation methods, while Table B.2

gives the results of multi-layer perceptron volume estimation methods as described in

the body of this dissertation.

134
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Estimation

Method
Statistic

Orange (n = 31) Pear (n = 64) Lemon (n = 23) Potato (n = 20)

Orig. Redist. Orig. Redist. Orig. Redist. Orig. Redist.

Mean

volume

RMS%E [%] 23.2 30.4 4.1 33.5 27.6 34.3 18.9 30.7

RMSE [cm3] 51.7 49.4 7.7 49.7 58.6 48.9 47.3 48.7

LO95%CI [cm3] 40.7 32.7 5.6 40.3 47.4 29.2 19.0 35.6

UP95%CI [cm3] 60.7 61.6 9.4 57.6 68.0 62.6 64.1 58.9

MSE [cm6] 2674.1 2435.5 59.6 2469.3 3438.0 2386.6 2236.6 2370.6

STD(MSE) [cm6] 2881.4 3876.1 114.7 3456.9 2749.1 3754.1 4005.5 2353.9

Area

RMS%E [%] 3.7 4.0 3.7 7.2 8.4 8.5 12.3 14.3

RMSE [cm3] 8.6 8.0 7.0 14.8 18.5 16.3 31.3 27.0

LO95%CI [cm3] 7.6 6.8 5.5 13.0 16.5 14.5 20.9 24.0

UP95%CI [cm3] 9.5 9.1 8.2 16.5 20.3 17.9 38.9 29.7

MSE [cm6] 73.6 64.5 49.0 220.3 342.6 265.2 976.3 727.9

STD(MSE) [cm6] 46.5 52. 6 76.1 207.0 161.1 129.5 1152.3 328.2

Area
3
2

RMS%E [%] 3.7 3.8 3.7 7.0 8.2 9.6 12.1 14.3

RMSE [cm3] 8.7 7.7 7.0 14.2 18.4 16.7 30.7 27.3

LO95%CI [cm3] 7.6 6.6 5.5 12.8 16.2 15.2 21.1 23.8

UP95%CI [cm3] 9.7 8.6 8.2 15.5 20.3 18.2 37.9 30.4

MSE [cm6] 75.3 59.1 49.1 202.7 338.0 280.0 939.6 744.1

STD(MSE) [cm6] 51.1 44.1 76.8 155.7 173.3 116.9 1057.4 378.7

Area with

K-estimator

RMS%E [%] 3.4 3.4 5.4 5.4 5.0 5.0 16.2 16.2

RMSE [cm3] 8.4 7.1 10.3 10.9 11.9 10.2 40.5 35.3

LO95%CI [cm3] 7.2 6.1 9.5 9.9 9.1 8.5 24.0 12.4

UP95%CI [cm3] 9.3 7.9 11.1 11.8 14.2 11.6 52.0 48.3

MSE [cm6] 69.7 50.0 106.8 117.8 141.3 103.0 1638.4 1243.7

STD(MSE) [cm6] 49.5 36.0 67.1 83.0 137.3 72.6 2273.0 2329.1

2 images

from mirrors

at 90Æ

RMS%E [%] 2.2 2.2 3.4 3.4 3.9 3.9 9.8 9.8

RMSE [cm3] 5.6 4.5 6.6 7.0 9.1 7.8 24.9 22.1

LO95%CI [cm3] 4.6 3.9 5.8 6.1 6.4 6.1 12.7 3.9

UP95%CI [cm3] 6.4 5.0 7.3 7.8 11.1 9.2 32.9 31.0

MSE [cm6] 31.0 20.3 43.3 48.9 82.8 60.6 620.4 488.3

STD(MSE) [cm6] 28.4 13.6 37.9 45.9 95.6 54.7 980.8 1011.4

All 4 mirror

chamber

images

RMS%E [%] 1.5 1.5 2.4 2.4 3.6 3.6 6.3 6.3

RMSE [cm3] 4.0 3.2 4.7 5.1 8.4 7.2 16.1 14.5

LO95%CI [cm3] 3.1 2.6 3.7 4.1 5.7 5.3 3.0 0.0

UP95%CI [cm3] 4.8 3.6 5.4 5.9 10.5 8.6 22.6 21.6

MSE [cm6] 16.1 10.0 21.6 25.5 70.7 51.1 259.7 208.9

STD(MSE) [cm6] 18.9 9.0 31.2 36.2 89.7 52.4 535.0 548.6

All 24

images of

the fruit

RMS%E [%] 0.9 1.1 1.8 1.9 3.3 3.2 4.0 4.5

RMSE [cm3] 2.2 2.3 3.4 3.9 7.3 6.3 10.4 10.1

LO95%CI [cm3] 1.4 1.5 2.3 2.8 5.2 6.0 4.6 2.4

UP95%CI [cm3] 2.8 2.8 4.3 4.8 9.0 7.8 14.0 14.0

MSE [cm6] 4.9 5.1 11.6 15.4 53.5 39.2 108.5 101.4

STD(MSE) [cm6] 8.3 8.0 26.7 31.4 61.6 51.0 187.0 204.2

Table B.1: Errors on volume estimates using linear regression methods.
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Estimation

Method
Statistic

Orange (n = 31) Pear (n = 64) Lemon (n = 23) Potato (n = 20)

Orig. Redist. Orig. Redist. Orig. Redist. Orig. Redist.

Area and

shape feature

RMS%E [%] 3.3 3.5 3.6 6.1 4.5 4.9 11.8 10.4

RMSE [cm3] 7.9 6.8 6.7 10.7 9.9 9.4 29.8 26.4

LO95%CI [cm3] 6.8 6.1 5.2 9.7 8.1 8.0 20.8 17.8

UP95%CI [cm3] 8.9 7.5 7.9 11.7 11.3 10.6 36.7 32.8

MSE [cm6] 62.8 46.8 44.6 115.3 97.1 88.3 888.8 697.0

STD(MSE) [cm6] 48.6 26.7 71.4 90.7 71.8 57.8 972.0 810.2

2 randomly

selected

images

RMS%E [%] 2.3 2.6 3.1 3.8 3.7 3.5 11.2 14.6

RMSE [cm3] 5.5 5.1 5.9 7.6 7.6 6.6 29.4 23.8

LO95%CI [cm3] 4.8 4.6 4.8 6.8 6.7 5.8 17.8 15.9

UP95%CI [cm3] 6.2 5.6 6.9 8.4 8.5 7.4 37.6 29.6

MSE [cm6] 30.3 25.9 35.0 58.4 57.9 43.6 865.8 565.9

STD(MSE) [cm6] 21.1 14.6 50.9 52.0 31.3 24.3 1172.4 668.3

2 images

from mirrors

at 90Æ

RMS%E [%] 2.1 2.3 2.5 3.2 2.4 2.4 8.7 9.2

RMSE [cm3] 4.8 4.5 4.8 6.4 5.4 4.8 21.6 20.5

LO95%CI [cm3] 4.2 3.9 4.2 5.7 4.3 3.9 16.3 13.4

UP95%CI [cm3] 5.3 4.9 5.4 7.1 6.2 5.6 25.8 25.8

MSE [cm6] 23.0 19.8 23.3 41.3 28.7 23.5 465.0 421.5

STD(MSE) [cm6] 15.4 12.4 24.7 37.9 23.7 19.1 429.2 518.3

4 randomly

selected

images

RMS%E [%] 1.8 2.2 2.6 2.9 3.3 3.3 9.1 9.5

RMSE [cm3] 4.2 4.1 5.0 5.8 7.1 6.8 23.9 21.2

LO95%CI [cm3] 3.6 3.7 4.1 5.0 5.9 4.0 14.9 14.6

UP95%CI [cm3] 4.7 4.5 5.7 6.5 8.1 8.8 30.3 26.3

MSE [cm6] 17.5 17.0 24.6 33.4 49.9 46.8 569.4 451.3

STD(MSE) [cm6] 13.1 8.7 32.5 36.2 34.5 70.6 742.2 507.9

All 4 mirror

chamber

images

RMS%E [%] 1.3 1.7 1.9 2.0 1.6 1.7 5.3 5.6

RMSE [cm3] 2.9 3.2 3.7 4.1 3.2 3.6 14.1 12.6

LO95%CI [cm3] 2.5 2.7 2.9 3.2 2.7 2.0 8.2 2.2

UP95%CI [cm3] 3.3 3.5 4.3 4.8 3.7 4.8 18.2 17.6

MSE [cm6] 8.5 10.0 13.7 16.5 10.5 13.2 198.9 158.2

STD(MSE) [cm6] 6.2 7.4 21.0 26.3 7.9 21.8 280.1 327.2

Table B.2: Errors on volume estimates using MLP function approximation.
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