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Abstract
A calibration procedure for accurately determining the pose and
internal parameters of several cameras is described. Multiple
simultaneously-captured sets of images of a calibration object in
different poses are used by the calibration procedure. Coded tar-
get patterns, which serve as control points, are distributed over
the surface of the calibration object. The observed positions of
these targets within the images can be automatically determined
by means of code band patterns. The positions of the targets across
the multiple images are then used to infer the camera parameters,
as well as the 3D geometrical structure of the targets on the cal-
ibration object (thus avoiding the expense of a calibration object
with accurately known 3D structure). Results for a three-camera
system show RMS (root-mean-square) deviations of less than five
microns of the inferred positions of 54 control points, distributed
on the surface of a 50 mm cube, from their expected positions on
a flat surface. The RMS difference between the positions of 1423
observed control points and the positions predicted by a 330 pa-
rameter model of the camera system and calibration object was
0.09 pixels.

1 Introduction
Most commonly used calibration procedures described in the com-
puter vision literature rely on a calibration object with control
points whose 3D coordinates are known with a high degree of ac-
curacy [8, 5]. Control points are typically positioned on two or
three faces of a cube-shaped frame so that they are well distributed
in all three dimensions. Since the 3D coordinates of the control
points are known, it is possible to infer camera pose (relative to
the calibration object’s reference frame) and internal parameters
from the 2D positions of the imaged control points measured from
within a single image. For accurate results (i.e. results in which
the actual locations of imaged points are very close to the locations
predicted by the inferred camera parameters), the 3D positions of
the control points must be known accurately. Having the 3D po-
sitions measured accurately by a metrology laboratory is a costly
procedure [10].

Recently, methods that rely on multiple images of a planar cal-
ibration object in different poses have become popular. The pop-
ularity of these planar methods is mainly because it is easy and
inexpensive to obtain a relatively accurate planar calibration ob-
ject. This can be done by using a laser printer to print a pattern
and then affixing it to a flat object such as a piece of glass. By
increasing the number of images of the planar calibration object
in different poses, it is also possible to reduce the effect of image
noise on the accuracy of the inferred camera parameters.

Freeware implementations of both single image calibration us-
ing non-coplanar control points and multiple image calibration us-
ing coplanar control points are available�. The planar calibration

�Reg Willson’s C implementation of Tsai’s algorithm [8] (see http://www.

method provides an estimate of the camera pose with respect to
each calibration object pose. In order to determine the relative
poses of two or more cameras, each pose of the calibration ob-
ject must be viewed by all of the cameras. Each calibration object
pose provides an estimate of the relative poses of the cameras. The
planar calibration method is therefore useful in providing accurate
estimates of the internal parameters of a camera (assuming that
the 3D coordinates of the control points are accurately known),
but does not provide a means for using all available observations
(2D locations of imaged-control points) to estimate relative cam-
era poses using all observations. The relative camera pose that is
used to model the imaging process must either be selected from
one of the relative pose estimates, or all of the pose estimates may
be combined using a singular value decomposition approach. The
pose and internal parameter estimates may also be used as a start-
ing point for an optimisation procedure that minimises the repro-
jection residual across all observations. It is also possible to refine
the estimates of the 3D coordinates of the control points (which
are limited to the accuracy of the laser printer used to print the
pattern, and to a lesser extent by the flatness of the pattern on the
glass backing) by including the 3D coordinates as parameters in
the minimisation process. This refinement is particularly impor-
tant when calibrating camera systems for measuring small objects,
since the magnitude of the errors associated with the 3D coordi-
nates of the control points (due to inaccuracies in the laser printing
process) may be significant with respect to the size of the measured
objects. A major drawback of the planar calibration system that is
followed by a simultaneous optimisation of all parameters, is that
all of the control points must be visible in all of the images. This
is often difficult to arrange for a multi-camera setup.

The calibration procedure described in this paper makes use of
multiple poses of a polyhedral calibration object with coded tar-
gets as control points on the object’s faces. The coded targets
allow the positions of the control points in each image to be auto-
matically measured to sub-pixel accuracy, i.e. human intervention
is not required in order to identify corresponding control points
across multiple images. The procedure uses the approximately
known 3D structure of the calibration object and the 2D positions
of control points across multiple images to form an initial approx-
imate solution to the calibration parameters. This is done by form-
ing an estimate of the focal length of each camera using Tsai’s
method and using singular value decomposition to combine pose
estimates obtained using a recently developed globally convergent
pose estimation algorithm. The initial approximate solution is then
used as a starting point for a bundle adjustment procedure that

cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html)
and Jean-Yves Bouguet’s MATLAB implementation based on Zhang’s al-
gorithms [11] (see http://www.vision.caltech.edu/bouguetj/
calib_doc/index.html) are both popular. Bouguet’s implementation has
also been ported to C and incorporated into the Intel’s OpenCV library (see
http://sourceforge.net/projects/opencvlibrary/).



computes calibration parameters that are jointly optimal across all
observed imaged control points. The calibration parameters con-
sist of accurate estimates of camera focal lengths, principal points
and first order radial lens distortion coefficients as well as camera
poses and 3D coordinates of control points.

The calibration procedure thus provides accurate estimates of
internal and pose parameters without requiring the accurate prior
knowledge of the 3D structure of the calibration object that is
needed for calibration procedures such as Tsai’s. This is achieved
by making use of multiple poses of the calibration object so that
the 3D structure can be inferred from the positions of correspond-
ing control points across multiple images. The effects of measure-
ment error of the 2D positions of the imaged control points on the
computed calibration parameters can be reduced by increasing the
number of poses of the calibration object that is used. Unlike the
planar calibration methods, all control points need not be visible
in all views.

As a side-effect of the calibration procedure, the 3D structure
of the calibration object is accurately determined. The calibra-
tion procedure could therefore be useful for purposes other than
determining the camera parameters; the method may be used to
accurately determine the 3D coordinates of control points on a
calibration object. A single camera may subsequently be rapidly
calibrated with a single image using the calibration object and a
method such as Tsai’s that relies on accurate prior knowledge of
the 3D structure of the calibration object.

The design of the coded targets and the image processing pro-
cedures used to locate and identify the imaged control points is
described in Section 2 of this paper. Section 3 describes a routine
that provides additional robustness to the entire calibration proce-
dure by rejecting identified control points that may have been mis-
classified by the target location and identification routine. This is
done by rejecting targets that do not conform to the approximately
known 3D structure of the calibration object. Section 4 describes
how the calibration parameters are estimated by forming an initial
estimate based on both the observed 2D positions of the imaged
control points and the approximately known 3D structure of the
calibration object. It is also described how this estimate is refined
using a bundle adjustment procedure that takes the circular shape
of the targets into account. This is followed by an explanation of
how scale is enforced by means of Procrustes analysis. Section 5
describes an experiment that was performed to measure the perfor-
mance of the calibration procedure. Section 6 provides a summary
of the paper and conclusions.

2 Coded Targets
In order for the calibration process to be automated, imaged con-
trol points must be automatically located and identified within im-
ages. These control points are the centres of coded targets, that are
patterns on the faces of a polyhedral calibration object. Two cal-
ibration objects are shown in Figure 1. In this section, the design
of the circular coded targets and the image processing algorithms
used to locate and identify images of coded targets are described.

2.1 Target Design

Ahn et al. [1] provide a short overview of ten different coded target
pattern designs that have been used for automating 3D measure-
ment processes. They also describe their own coded target design
that is based on a central circular target surrounded by a pattern
of smaller dots that encode the identity of the circular target. The
coded target design described here is similar to some of the ex-
isting designs in that each target consists of a circle surrounded
by a code band. However, unlike the designs described in the lit-

(a) (b)

Figure 1: Two calibration objects with coded targets: (a) a cube with 54 targets and
9-bit code bands, (b) an icosahedron with 60 targets and 10-bit code bands.

erature, no start-, stop-, or parity-bits are used. This is because
noise is likely to be distributed relatively evenly over the region
surrounding the imaged target, rather than being localised.

A target must be designed so that the positions of images of a
3D control point can be measured across multiple images to sub-
pixel accuracy. The centre of the target serves as the control point.

Circular targets were used, because circles are imaged as el-
lipses: ellipses can be automatically detected with relative ease
from within images. The centre of an image of a circle is a very
good approximation to the image of the centre of the circle [2].
This is the case unless the size of the circle is large with respect
to the distance to the camera (as is shown in Figure 2(a)). Each
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Figure 2: Diagrams showing (a) a perspective projection of a clock, illustrating the
difference between the centre of an imaged-circle (plus sign) and the image of a centre
of a circle (black dot); (b) the layout of the target and code band pattern; and (c) an
example of the code 0010101112 with the bit values overlaid in grey.

circular target (black dot) on the calibration object is surrounded
by a unique code band pattern that is used to identify the target.
Figure 2(b) shows the structure of a coded target. The central dot
is surrounded by a code band with bit positions at equally spaced
angular intervals. Each of the bit positions can be either black or
left empty (white).

Each bit pattern has a number associated with it. To decode
the pattern, the binary code is read anticlockwise. Each bit is
considered to be the first bit in turn. This means that for a k-bit
code, there are k binary numbers to be considered. The number
corresponding to the code pattern is the lowest of these k num-
bers. For instance, the 9-bit code shown in Figure 2(c) corresponds
to the binary sequences 001010111, 010101110, 101011100,
010111001, 101110010, 011100101, 111001010, 110010101,
100101011 (black or inked regions represent ‘1’s and white or
empty regions represent ‘0’s). Of these nine binary numbers,
001010111, has the lowest value (0010101112 � 8710), so this
code pattern is labelled as number 87. Note that not all positive
integers correspond to code patterns. The minimum of all possi-
ble rotationally shifted binary codes is simply used as a number to
identify the code pattern.



2.2 Identifying and Locating Targets

The identification process aims to identify connected regions of
pixels that represent the boundaries of the elliptical imaged tar-
gets. This is done by identifying edge pixels within the image and
then classifying connected regions of edge pixels as either target
or non-target regions.

Firstly, Canny edge detection is applied to the image. Edge
pixels are then labelled in groups of connected components, each
to be classified as either target or non-target groups.

Candidate target regions (connected components) are consid-
ered for rejection with a cascade-type classifier that measures in-
creasingly complex features. Using this method, obvious non-
targets are quickly rejected without the computational expense of
measuring more complex features.

Features of the candidate regions are measured in the following
order:

1. Number of pixels: If the number of pixels in a region is too
high or too low, the region is rejected, and no further features
are measured.

2. Distance to image boundary: If the region is too close to
the boundary of the image, the code band will not be entirely
visible. Regions that are close to the image boundary are
rejected.

3. Euler number: Regions must have a single hole.

4. Fit of best fit ellipse: An ellipse is fitted to the coordinates
of the pixels in the candidate region. If the sum of squared
distances from the coordinates of the pixels in the candidate
regions to the fitted ellipse is too great, then the region is
rejected.

5. Contrast: The foreground region within the fitted ellipse
must be sufficiently darker than the surrounding background.

6. Fit of best fit code: The error in the fit of the best fit bit
pattern must be sufficiently low for the region to be classified
as a target.

Ellipse fitting is performed using the method of Fitzgibbon et
al. [4]. The method is computationally efficient, and unlike other
available algebraic methods, an ellipse is fitted, rather than a gen-
eral conic.

183A B C D E

Figure 3: Coded target 183 (0101101112 � 18310) with fitted ellipse (labelled E),
ellipse on which background pixel intensity is observed (labelled D), the inner and
outer boundaries of the code band (labelled C and A), and the ellipse on which the
code band pixel intensities are observed (labelled B).

Figure 3 shows an example of an ellipse (labelled E) that has
been fitted to the edge pixels of the image of a circular coded tar-
get. Since the geometry of the coded target is known, ellipses that

define the inner and outer boundaries of the code band (labelled
C and A), the centre of the code band (labelled B) and midway
between the code band and target (labelled D), can be computed.
This is because the geometry of the region surrounding the im-
aged dot is an approximately affine transformation of the physical
planar region surrounding the dot on the surface of the calibration
object. The approximation holds because the depth of the region
is small with respect to the distance to the camera centre.

The median value of all pixels that lie on the ellipse midway
between the code band and target is used to define the background
pixel intensity value. The median value of all pixels in the region
that is bounded by the target edge pixels is used to define the fore-
ground pixel intensity value. These values are used to determine
the contrast (difference between foreground and background val-
ues) and for determining the the best fit code on the code band.

The corresponding code for each candidate target is computed
by minimising a function of one variable. The intensity values
of all pixels lying on the ellipse that runs through the centre of
the code band are determined. The coordinates of these pixels are
normalised so that each intensity value corresponds to a position
on a unit circle, rather than on an ellipse. Starting at an angle of θ,
the unit circle is divided into k bit segments (for a k-bit code), each
with an angular extent of 360Æ�k. The mean intensity value corre-
sponding to each bit segment is used to determine whether the bit
segment is a‘1’ or a ‘0’. The mean of foreground and background
pixel values is used as a threshold. The error associated with a
given value of θ is the sum of squared differences between the ob-
served intensity values and the background value (in the case of bit
segments designated as ‘0’) or the foreground value (in the case of
bit segments designated as ‘1’). This error is minimised (in order
to determine the value of θ to use) using the MATLAB fminbnd
function which is based on Golden Section search and parabolic
interpolation [3].

Rather than using the centre of the fitted ellipse as the centre
of the imaged target, the intensity weighted centroid is used. This
method is typically the more accurate method of determining the
centre of the imaged target [7]. Since foreground pixels are black,
the inverse of the original grey-scale image must be used. Pixels
corresponding to edge pixels and pixels surrounded by the edge
pixels specify the regions to consider in this computation.

3 Rejecting False Positives

The known dimensions of the polyhedral calibration object (e.g.
50 mm cube or 20 mm icosahedron) can be used together with
the known 2D positions of the control points on each face to de-
termine the approximate 3D structure of the control points. Us-
ing this approximately known 3D structure, image points that
have been incorrectly labelled as coded targets can be eliminated.
This is achieved using the RANSAC (random sample consensus)
paradigm.

A typical image of a calibration object may contain 25 targets
that have been identified and located within the image. These
targets have usually been correctly identified by the routines de-
scribed in the previous section, but occasionally a target is incor-
rectly labelled, or a non-target region is falsely classified as a tar-
get. (Targets may also be missed by the location and identification
routines so that a target is misclassified as a non-target: the only
consequence of this is that there are effectively fewer visible tar-
gets in the image for the subsequent calibration routines.)

The RANSAC procedure selects a random sample of seven of
the target points within an image and uses their approximately
known geometrical structure (3D coordinates) and observed image
locations (2D coordinates) to estimate the positions of the projec-



tions of the remaining world points using Tsai’s method [8]. The
distance between the projected world points and the corresponding
observed image coordinates is computed, and points are labelled
as outliers if the distance is greater than some empirically deter-
mined threshold (say 5 pixels).

The procedure is repeated many times (say 1000 times) with
a different random subset of seven points being chosen on each
occasion. Of all the random selections, the camera parameters
that result in the smallest number of outliers are selected and are
used to identify targets to be eliminated.

4 Parameter Estimation
A vector of calibration parameters consisting of the camera in-
ternal parameters (focal lengths, principal points and a first order
radial lens distortion parameters), camera poses, calibration object
poses and 3D control point positions is used to store all of the pa-
rameters for the model of the imaging process. The vector v is
given by

v � � f1� u0�1� v0�1� κ1�1� f2� u0�2� v0�2� κ1�2� � � � � fn� u0�n� v0�n� κn�1�

tcam�x�1� tcam�y�1� tcam�z�1� αcam�1� βcam�1� γcam�1� � � � � tcam�x�n�

tcam�y�n� tcam�z�n� αcam�n� βcam�n� γcam�n� tobj�x�2� tobj�y�2�

tobj�z�2� αobj�2� βobj�2� γobj�2� � � � � tobj�x�m� tobj�y�m� tobj�z�m�

αobj�m� βobj�m� γobj�m� X1� Y1� Z1� X2� Y2� Z2� � � � � Xr� Yr� Zr�
T

where f , u0, v0 and κ1 describe the internal parameters of cameras
1 to n; tcam�x, tcam�y, tcam�z, αcam (yaw angle), βcam (pitch angle)
and γcam (roll angle) describe the poses of cameras 1 to n; tobj�x,
tobj�y, tobj�z, αobj, βobj and γobj describe calibration object poses 2
to m (the first calibration object pose defines the global reference
frame, so no parameters need be stored); and X , Y , and Z describe
the 3D coordinates of the control points 1 to r in the reference
frame of the first calibration object pose.

A vector v must be found, so that the sum of squared differences
between the imaged control points predicted by the model defined
by v and the observed positions of the imaged control points across
all images is minimised. Determination of the starting point v0 is
crucial; without a suitable starting point, the minimisation routine
may converge on a local minimum that is far from the global min-
imum. A well-chosen starting point also reduces the running time
of the minimisation routine.

4.1 Determining a Starting Point

In order to form a starting point which can later be refined by an
optimisation routine, estimates of the camera poses and internal
parameters must be made. These estimates are made by assuming
that the approximate 3D structure of the control points is known.

Provided that sufficient control points are visible, Tsai’s
method, or the DLT (direct linear transform) could be used to esti-
mate the camera internal parameters and camera pose with respect
to the calibration object. For an n-camera system in which m cali-
bration object poses are considered, this approach would result in
m estimates for each of the internal camera parameters, and nm
relative poses from which multiple camera and calibration object
poses could be derived.

In principle, it would be possible to use only the n images corre-
sponding to the first calibration object pose to estimate the internal
parameters of the n cameras, and the m images corresponding to
the first camera to estimate the poses of the calibration object with
respect to its first pose. However, this approach only makes use
of a very small proportion of the available information and may

produce a starting point that is too far from the optimal solution
for convergence to occur.

Better methods combine the parameter estimates from the dif-
ferent images to obtain parameter estimates with a smaller degree
of uncertainty than any of the individual parameter estimates.

There is far greater uncertainty associated with estimating the
Z-coordinate (depth) of the control points in a certain image than
the X- and Y -coordinates if the internal parameters of the camera
are unknown. This is because changes in both the Z-coordinate
and the focal length of the camera affect the scale of the object
within the image. The only means for distinguishing the effects
of the Z-coordinate from those of the focal length is the perspec-
tive distortion within the image. Often the effects of perspective
distortion are small and are corrupted by noise, so the estimated
f and Z values deviate greatly from their true values, whereas the
ratio f�Z is relatively accurate. To prevent large deviations in the Z
values from inducing a large degree of disagreement between pose
estimates computed from different images, the focal length is kept
fixed in estimating pose. By enforcing the focal length values,
a better estimate of pose can be obtained than by using the pose
parameters estimated by Tsai’s method. Tsai’s method is applied
to each of the images that contain a sufficient number of visible
control points. This means that up to m estimates are available
for each of the n focal lengths. The median of the focal length
estimates is used as the starting point focal length value for each
camera.

The pose estimation algorithm of Lu et al. [6] is used to estimate
the object poses. Firstly, the internal camera parameters are used
to determine the normalised image coordinates of the observed
control points. The normalised image coordinates are the X- and
Y -coordinates of the position of corresponding rays in the Z � 1
plane. The radial distortion coefficients and principal points cor-
responding to the median focal length values are used to undistort
the image coordinates. The pose estimation algorithm is then ap-
plied to the observed control points corresponding to each image
and, in conjunction with the knowledge of the approximate 3D
structure of the control points, the pose of the calibration object
(with respect to the pose of the camera) is estimated.

There are up to n estimates of the relative pose between the first
object pose (which is used as a global reference frame) and each of
the remaining m�1 object poses. To obtain a single pose estimate
from the available estimates, the mean of the available translation
vectors is used. The rotation component of the single pose esti-
mate was determined by forming the singular value decomposition
of the available rotation matrices:

1
n

n

∑
i�1

�i � ���T (1)

The average rotation matrix �average was then formed by substitut-
ing the matrix � with the 3�3 identity matrix �:

�average � ���T (2)

This ensures that �average is orthonormal.
With an estimate of each calibration object pose with respect to

the first object pose, it is possible to obtain up to m estimates of
the pose of each camera. These pose estimates are combined to
obtain a single pose estimate for each of the n cameras using the
method described above.

A vector v0 containing starting values for all of the calibration
parameters is formed. The median focal lengths and correspond-
ing principal point and distortion parameters are used for the in-
ternal parameters; translation vectors and Euler angles describing



pose are extracted from the pose matrix estimates for both the cam-
era and the calibration object poses; and the approximately known
3D coordinates of the control points are used for the 3D structure
of the control points on the calibration object.

At this stage, the RMS reprojection residuals are computed for
the sets of control points corresponding to each calibration object
pose. This is done using the starting values of the parameters. If
any of the RMS reprojection residuals are above an empirically
determined threshold, then the observations corresponding to the
object pose are removed from the optimisation procedure. This
step provides additional robustness to the calibration process by
preventing a small number of poses with poor parameter estimates
from affecting the convergence of the remaining parameters.

4.2 Bundle Adjustment

The Levenberg-Marquardt method is used to determine the jointly
optimal calibration parameters by minimising the sum of squared
differences between the observed image coordinates and those pre-
dicted by the model of the imaging process. The vector v0 is used
as a starting point.

In order to obtain accurate results, the imaged centre of the cir-
cular target is not assumed to be the same as the centre of the
imaged circular target (see Figure 2(a)). Rather, the observations
are compared with the predictions of a modelling process in which
circles are projected onto the image planes and the centres of the
resultant ellipses are used. The undistorted sensor coordinates of
the ellipse centres �xc�yc�

T are determined using:

λ

�
� xc

yc

1

�
�� ����1�T f3 (3)

where � is the matrix to convert world coordinates to undistorted
sensor coordinates,

��

�
h1 h2 P0
0 0 1

�
(4)

where h1 and h2 and are two orthogonal 3D vectors that span the
plane on which the circle lies and P0 is the centre of the circle,

��

�
� � 1�r2 0 0

0 �1�r2 0
0 0 1

�
� (5)

where r is the radius of the circle, and f3 is the transpose of the last
row of �. A derivation of Equation (3) is given by Heikkilä [5].

Once the undistorted sensor coordinates of the ellipse centres
have been computed, the image coordinates can be determined us-
ing the standard equations used in Tsai’s model of the imaging
process [8].

Scale cannot be inferred from the observations of the imaged
control points alone: the positions of the cameras and the control
points can be scaled by an arbitrary scale factor and remain con-
sistent with the observations. In practice, the scale of the inferred
parameters will be close to the true scale since the starting point is
determined using an estimate of the 3D structure of the calibration
object with approximately correct scale. In order to enforce cor-
rect scale, known distances must be used. The 2D structure of the
patterns on the faces of the calibration objects are used to enforce
scale. Knowledge of this 2D structure is limited to the accuracy
of the laser printing process that is used to form the patterns. The
2D structure is used rather than the 3D structure, since it is likely
to be known more accurately. Umeyamma’s method [9] is used to
determine the optimal rotation, translation and scaling in order to

register the inferred 3D structure for each face with its expected
structure (the 2D points are augmented with a Z � 0 coordinate
since they are known to lie on a flat surface). This process of scal-
ing, rotating and translating a data set of points to fit another data
set of corresponding points is often referred to as Procrustes anal-
ysis†. The mean of the scaling factors corresponding to each face
is used to scale the assumed radius of the circular targets, r, so that
circle radii are in proportion to the size of the inferred 3D struc-
ture of the calibration object at each step of the bundle adjustment
procedure. After the bundle adjustment is complete, the method
is used to scale the camera positions and 3D calibration object
structure appropriately. The internal camera parameters are unaf-
fected by the scale: the focal lengths, principal points and radial
distortion coefficients remain unchanged when a change in scale
is imposed.

5 Results
The calibration procedure was tested using a cube with 50 mm
sides and nine control points per face. The calibration object was
machined from aluminium. A laser printer was used to print the
coded target patterns onto adhesive paper. The patterns were then
cut from the paper and stuck to the faces of the calibration object.

Since cubes can be manufactured highly accurately, the geom-
etry of the inferred positions of the control points on the face of
the cube can be used as a measure of the performance of the cali-
bration procedure: inferred control point positions corresponding
to the same face should be coplanar and sets of inferred positions
corresponding to opposite faces should be an equal distance apart.

The camera system that was calibrated consisted of three ap-
proximately orthogonally mounted Dragonfly cameras. The Drag-
onfly cameras are grey-scale 640� 480 pixel progressive scan
cameras that are connected to an IEEE 1394 bus. The cameras
are able to synchronise their acquisition time to within 20 µs.

The calibration procedure was coded in MATLAB. Where it was
possible to achieve significant improvements in execution time,
routines were coded as MEX (MATLAB executable) files in C.
However, no particular effort was made to ensure fast execution
and there is plenty of scope for reducing the running time of the
calibration procedure. Since the calibration procedure is typically
run off-line, and in principle need only be performed once, execu-
tion speed is of limited importance.

Twenty-four different poses of the cube were used. This re-
sulted in 72 images from which 1423 imaged control points were
located and identified. The approximate structure of the cube was
determined using the known 2D structure of the six laser printed
patterns for each cube face. Normally distributed noise with a
standard deviation of 0.5 mm was added to each of the 3D coor-
dinates to ensure that the calibration procedure produced correct
results when the approximate 3D structure of the control points is
known with only limited accuracy. The starting point parameters
resulted in an RMS reprojection residual of 5.3 pixels. Bundle ad-
justment produced parameters which resulted in an RMS residual
of 0.09 pixels.

The best-fit plane was determined for each of the six sets of nine
control points corresponding to the six cube faces. The perpendic-
ular distance between each inferred 3D control point position and
its corresponding best fit-plane was then determined. The results
are shown in Table 1. Note that since three points define a plane,
one must multiply the values in Table 1 by 9

9�3 � 1�5 in order to
obtain the expected RMS deviations that one would obtain as the

†Procrustes was a mythological Greek robber who offered travellers hospitality on
a magical bed that would fit any guest. He would then stretch or shorten the travellers
so that they fitted the bed perfectly.



Face RMS Distance Face RMS Distance

1 2.9 µm 4 2.2 µm
2 1.6 µm 5 4.5 µm
3 1.9 µm 6 4.7 µm

Table 1: RMS distance to best-fit plane for sets of nine control points.

number of control points per face tends towards infinity. The ob-
served deviations from the best-fit planes are due to errors in the
calibration parameters and to the actual deviations from flatness of
the control points on the cube (since neither the aluminium cube
nor the adhesive paper is perfectly flat). The results shown in Ta-
ble 1 thus represent an upper bound on the error that is associated
with the 3D positions determined by the calibration procedure.

An indication of the accuracy of the structure can also be deter-
mined by computing the angles between the best fit planes. The
angles were found to differ by a mean of 0�04Æ from what would
be expected if the control points lay on the surface of a perfect
cube.

Opposite Face Pairs Estimate 1 Estimate 2

Face 1 and 6 50.1223 mm 50.1220 mm
Face 2 and 4 50.1317 mm 50.1317 mm
Face 3 and 5 50.1252 mm 50.1251 mm

Table 2: Estimates of the distance between opposite face pairs of the calibration cube.

The distances between opposite cube faces was calculated by
determining the distance between the mean of a set of nine con-
trol points and the best-fit plane of the opposite face. This results
in two estimates of the distances between each opposite face pair
since the opposite best-fit planes are not perfectly parallel. Table 2
shows the results. The distances indicate that the thickness of the
adhesive paper is between 60 µm and 70 µm, since the aluminium
cube has 50 mm sides. The standard deviations of each of the three
estimates gives a measure of the extent to which the three parallel
face pairs are not the same distance apart. The standard deviations
are 4.8 µm for the first set of estimates and 5.0 µm for the second.

The method for enforcing scale that is described in the previous
section involves determining the best fit of the known 2D patterns
to sets of inferred 3D control point positions that correspond to the
same face. The differences between these two points sets, once the
optimal similarity transform has been applied, is mainly due to in-
accuracies in the laser printing process (calibration errors and the
extent to which the surfaces are not perfectly flat are only minor
contributors towards these differences). A measure of the accuracy
of the laser printing process can be computed from these RMS dif-
ferences. The RMS difference for all control points was measured
to be 67 µm. This is the same order of magnitude as the dot size
(1in�300� 85µm) of a 300 dpi laser printer.

The execution time of the calibration procedure was roughly 2
hours on a 300 MHz Pentium II machine, using MATLAB 6.0 and
the Windows NT operating system. Approximately 70% of this
time was spent locating and identifying targets.

6 Conclusions
A complete calibration procedure for determining internal and
pose parameters for a multiple camera system been described. Un-
like other calibration procedures, the method is accurate, yet inex-
pensive since the 3D structure of the control points on the calibra-
tion object need not be accurately known in advance (obtaining
a calibration object whose 3D structure is known in advance is
usually a costly procedure). The control points also need not be
visible from all viewpoints.

Coded target patterns are used so that control points can be

located and identified automatically. Additional robustness is
achieved by means of a RANSAC (random sample consensus)
algorithm that rejects any false positive target matches that do not
conform to the consensus geometrical structure of the imaged con-
trol points (as defined by the approximately known 3D positions
of the control points and the observed targets).

In order to reduce the effects of errors on the observed 2D po-
sitions of the imaged control points, and to ensure that the 3D
structure of the calibration object can be determined along with
the camera parameters, multiple poses of the calibration object are
used.

A starting point parameter vector is determined by combining
information derived from all of the images. This involves forming
an initial estimate of the focal lengths of the cameras using Tsai’s
method, and then using a recently developed globally convergent
pose estimation method to estimate camera and object poses. Mul-
tiple pose estimates are combined using an approach based on sin-
gular value decomposition. The starting point parameters are then
refined using the Levenberg-Marquardt method to produce a set
of parameters that is jointly optimal across all observations. To
ensure accurate results, the imaging model takes into account the
difference between an imaged circle-centre and an imaged-circle
centre that occurs because of perspective distortion. Since scale
cannot be inferred from image observations, it is derived from the
structure of the flat patterns on each of the faces of the polyhedral
calibration object.

Results indicate that reprojection residuals of less than one tenth
of a pixel can be achieved across 72 images captured by three cam-
eras. The inferred 3D structure of control points on the surface of
an accurately machined cube conformed closely with the geom-
etry of the points on the surface of a cube. Specifically, control
points deviated by no more than 5 µm from the best fit planes cor-
responding to each of the faces. The angles between best fit planes
and standard deviation of the distances between opposite face pairs
were also very close to what would be obtained for control points
lying on the faces of a perfect cube.
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