
Chapter 7

Matching Pairs of Silhouette Sets

7.1 Introduction

This chapter moves on to the next major topic: recognising individual stones from their silhouettes. The

key idea is to apply the ET-based pose optimisation described in Chapter 6 to pairs of silhouette sets. If the

residual ET error after pose alignment is sufficiently low, then the pair of silhouette sets is classified as a

match (i.e., produced by the same stone); otherwise, the pair of silhouette sets is classified as a mismatch

(i.e., the two silhouette sets were produced by two different stones).

Recall that the ultimate goal for the recognition componentof this thesis, as stated in Chapter 1, isbatch

matching. Batch matching is matching twobatchesof silhouette sets from two unordered runs of the same

batch of stones. This chapter investigates the simpler problem of verification, i.e., verifying that a pair of

silhouette sets was produced by the same stone (a match). Themethods developed for verification will be

extended in later chapters for the purposes of batch matching.

The proposed alignment-based method achieves its accuracyby approaching the matching problem from the

point of view of silhouette consistency, rather than considering the similarity between 3D approximations

of the stones computed from each silhouette set. A weakness of using 3D approximations is that the shape

of the 3D approximations will vary with stone orientation even in the noise-free case. Chapter 8 considers

a matching method that is based on 3D approximations to stoneshape. Although less accurate than the

method describe in this chapter, it is substantially fasterto compute. Chapter 9 will demonstrate how the two

methods can be combined to achieve both speed and accuracy for solving the batch matching problem.

Alignment-based matching simply requires applying the ET-based pose optimisation described in Chapter 6.

This chapter investigates two modifications to the method: (1) the use of an orthographic projection model,

and (2) the use of a measure of inconsistency based on the coneintersection projection (CIP) constraint.
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The use of an orthographic projection model is aimed at improving efficiency. The use of a measure of

inconsistency based on the CIP constraint is aimed at improving accuracy.

Experiments are carried out on image sets of stones capturedusing the six-camera setup and the two-mirror

setup. The experiments demonstrate how the residual ET error across pairs of silhouette sets separate match

cases from mismatch cases. The improvement in running time efficiency is quantified for the use of an

orthographic projection model. The effect of using CIP-based measures of inconsistency is investigated using

downsampled real data and synthetic data for different camera configurations. (Downsampling is required

to create overlap between the match and mismatch distributions.) Synthetic data are used to investigate

the behaviour of ET-based matching on different camera configurations and at different levels of image

resolution.

7.2 Related Work

There is a wealth of literature on recognising silhouettes from a fixed viewpoint, a 2D recognition problem.

Since this thesis considers stones that are arbitrarily oriented with respect to the cameras, these approaches

are not relevant. The computer vision literature describesseveral approaches to silhouette-based matching

from variable viewpoints. The principal difference between the problems addressed by these methods and

the problem addressed in this work is that single silhouettes are used for matching, whereas here silhouette

sets are used. Several approaches are outlined below and their relevance to this work is explained.

Jacobs et al. [65] consider the problem of recognising an object from a single silhouette. Their method is

related to the approach described in this chapter in that recognition is attempted without 3D reconstruction,

only a small number of views is used, and silhouette consistency is used to determine matches. However,

the authors limit themselves to the case in which the camera translates and rotates about a known axis that

is parallel to the image. Outer tangents are used to determine consistency using an approach based on linear

programming.

Lazebnik et al. [77] describe a method for recognising objects from single silhouettes by storing multiple

silhouettes of objects in a database. A geometrical approach is taken, where a match is considered to cor-

respond to consistent epipolar geometry. The method achieves its discriminatory power by considering all

epipolar tangents rather than only the outer epipolar tangents. For epipolar tangents to aid discrimination,

the tangencies must be visible across different viewpoints. Since most stone silhouettes do not have epipolar

tangents (other than the outer epipolar tangents) that are visible across multiple viewpoints, such an approach

is not feasible.
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7.3 An Orthographic Model for Computing ET Error

In this section, a method for computing ET error using an orthographic imaging model is described. An

orthographic model offers several advantages over the perspective model:

1. An analytical expression can be computed for the Jacobianmatrix that is used by the Levenberg-

Marquardt routine for pose optimisation. This has the potential to speed up the computation. Without

an analytical expression, the Jacobian is estimated using aforward difference method [58]. This

method requires one extra evaluation of the cost function for each dimension of the pose parameter

vector. Since seven parameters are used to describe the pose(a quaternion and a 3D translation vector),

each evaluation of the Jacobian requires seven extra evaluations of the cost function. If the analytical

expression can be computed faster than this, then the matching process can be completed in less time.

2. In the perspective case, it is possible that an epipole maylie within a silhouette. If this occurs, there

will be no outer epipolar tangencies. The use of a perspective model requires the additional overhead of

identifying these cases, and introduces the additional complexity of differing numbers of reprojection

errors corresponding to different poses. In the orthographic case the epipoles are always at infinity,

and thus correspond to directions [58]. Each silhouette image of a stone will always yield two outer

epipolar tangencies with respect to the epipole.

3. Tangencies can be computed more efficiently using an orthographic imaging model. This is described

in Section 3.5.4. The gain in efficiency is because directions of epipolar tangencies correspond ex-

actly to the direction of the epipole for an orthographic imaging model. Tangencies can therefore be

unambiguously determined using the edge-angle data structure. Unlike the perspective case, no check

is required to confirm that the vertex is a tangency.

4. Unlike in the case of a perspective model, for an orthographic model residual errors (i.e., distances

from tangencies to projected epipolar tangents) computed in one image of a pair are identical to resid-

ual errors computed in the other image of the pair. This meansthat residual errors need only be

computed in one image for each pair.

The orthographic model is computed separately for each silhouette view and is based on the perspective

model for each of the cameras, which is determined with the once-off camera calibration procedure. The

orthographic model is thus a very close approximation to thefull perspective model in the vicinity of the

stone.

The original polygonal boundary is used to create an approximation to the orthographic projection that

would be observed from an orthographic camera that shares a viewing direction with the perspective cam-

era. Whereas the original polygonal boundary is specified inpixel units, the orthographic approximation
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is specified in world units (millimetres). To approximate anorthographic vertex(px, py)
T from the image

coordinates(u,v)T of a vertex of the original polygonal boundary, the following equation is used:

(

px

py

)

=

[(

u

v

)

−

(

u0

v0

)]

zcen

f
, (7.1)

wherezcen is the depth of the centroid of the VEMH. The assumption that is implicit in Equation 7.1 is that

the depth of the VEMH centroid closely approximates the depth of the rim points.

Consider computing the ET error across two silhouette sets:Set A and Set B. This requires reprojection

errors to be computed across each silhouette from Set A paired with each silhouette from Set B (as described

in Section 3.5.2).

Reprojection errors are computed for each pair of silhouette views. The relative pose of two views (one from

Set A and one from Set B) is described by a rotationR followed by a translationt that transform points in

the reference frame of View 2 into the reference frame of View1:
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
. (7.3)

The last rows ofR andt are not needed, since orthographic projections are used andany point may thus slide

arbitrarily along theZ-axis of either camera. However, in practiceR andt are computed as in Equations 7.2

and 7.3 since they are computed directly from 4×4 rigid body transform matrices that are used to describe

silhouette poses in different reference frames. The 4×4 rigid transform matrixMC2→C1 that transforms from

Camera 2’s reference frame to Camera 1’s reference frame is computed as follows:

MC2→C1 =

(

R t

0T 1

)

= (MWA→C1)(MWB→WA)(MC2→W B). (7.4)

The two silhouette sets are Set A and Set B. Camera 1 is from SetA and Camera 2 is from Set B. The matrix

MWA→C1 describes the rigid transform from Set A’s world reference frame to Camera 1’s reference frame.

The matrixMWB→WA describes the rigid transform that attempts to align Set B’sworld reference frame with

Set A’s world reference frame. The matrixMC2→WB describes the rigid body transform from Camera 2’s

reference frame to Set B’s world reference frame (usually computed asM−1
WB→C2). The matricesMWA→C1

andMWB→C2 are computed using a once-off camera calibration procedure; the candidate pose is represented

by the matrixMWB→WA . To computeR andt for a pair of silhouettes and a candidate pose, a 4×4 matrix

representation of the candidate pose must be formed, and then Equation 7.4 is used. Note that the candidate

pose describes the pose between Set A and Set B, so the pose between specific views within Sets A and B

must be derived from both the candidate pose and the relativeposes within a set.
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The reprojection error is the distance from an outer epipolar tangency to the epipolar line corresponding to

the tangency in the opposite view. In the noise-free case thedistance will be zero, since the tangencies are

two views of the same 3D point (a frontier point). In order to determine the tangencies, it is first necessary

to determine the epipolar directions. The tangencies can then be located, and the reprojection errors can be

computed.

The epipolar directione12 is the projection of the viewing direction of View 2 onto the image plane of View 1.

This is illustrated in the example shown in Figure 7.1a.

Camera 1

viewing direction 1

viewing direction 2

Camera 2

p12+ve12
p1

p2p12

e12

(a)

p12+ve12
p1

p12

(b)

∆x

∆y

p12+ve12

p1 +u

(

− r23
+ r13

)

p1

r

(c)

Figure 7.1: The epipolar geometry relating two orthographic views of astone: (a) shows the two silhouette views, (b) shows the
image plane of the first view, and (c) shows a closeup of (b) in the vicinity of the outer tangency under consideration.

The viewing directiond of a camera in its own reference frame is

d =







0

0

1






, (7.5)
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since by convention the camera is modelled to point along thez-axis. In the reference frame of Camera 1,

the viewing direction of Camera 2 is

d12 = Rd =







r13

r23

r33






. (7.6)

Sinced12 is a direction, it is unaffected byt. The epipolar directione12 is obtained by dropping thez-

coordinate ofd12 to project the vector onto the image plane of Camera 1:

e12 =

(

r13

r23

)

. (7.7)

Once the epipolar direction has been computed, the tangencyvertices are located using the edge-angle data

structure as described in Section 3.5.4.

The reprojection errors are computed as the distance from anepipolar tangency to the epipolar line corre-

sponding to the opposite epipolar tangency.

To compute the epipolar line that the projection ofp2 is constrained to lie on (given the relative pose between

Views 1 and 2), a point on the line is considered. For simplicity, thez-coordinate ofp2 in the reference frame

of Camera 2 is set to zero so that

p2 =







p2x

p2y

0






. (7.8)

The projectionp12 is then given by

p12 =

(

r11p2x + r12p2y + tx
r21p2x + r22p2y + ty

)

. (7.9)

The epipolar linep12+ve12 meets the line that passes through the epipolar tangencyp1 and is perpendicular

to the epipolar direction at

r = p12+v0e12 = p1 +u0

(

− r23

+ r13

)

. (7.10)

(See Figure 7.1.) Solving foru0 gives

u0 =
r23(p1x− r11p2x− r12p2y− tx)− r13(p1y− r21p2x− r22p2y− ty)

r2
23+ r2

13

. (7.11)

Reprojection errors∆x and∆y are then given by

(

∆x

∆y

)

= u0

(

− r23

+ r13

)

. (7.12)
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The above equations provide an efficient means for computingthe ET error in the case of an orthographic

imaging model. The residual values should only be computed in one image plane of the pair. This is because

the distance values in both images are equal to the distance between two specifications of the epipolar tangent

plane: one specified by the camera centres and the epipolar tangency in View 1, and the other specified by

the camera centres and the epipolar tangency in View 2.

An important advantage of the equations laid out above is that an analytical expression can be derived for

the Jacobian matrix that is used by the Levenberg-Marquardtmethod that is used for pose optimisation. The

derivation of this Jacobian matrix is described in AppendixB.

7.4 Error Formulations Based on the CIP Constraint

The ET constraint is a weaker constraint than the CIP constraint (as described in Section 3.5). The ET

constraint specifies a necessary, but insufficient condition for consistency. An error or degree of inconsistency

derived using the ET constraint has been chosen for pose optimisation, since it is efficient to evaluate. This is

important since pose estimation is an iterative procedure that requires the error to be evaluated for different

parameters over many iterations.

Under noisy conditions, a mismatch pair of silhouette sets may have an ET error that is sufficiently low that

the pair is misclassified as a match. However, since the CIP constraint is stronger than the ET constraint (it

specifies both a sufficient and a necessary condition for consistency), a measure of inconsistency based on

the CIP constraint may not result in a misclassification. This approach makes use of the ET error for pose

optimisation, but uses a once-off evaluation of a CIP-basederror for match verification.

This section presents three measures of inconsistency thatare based on the CIP constraint: Boyer error,

convex CIP error, and nonconvex CIP error. Boyer error is based on Boyer’s silhouette calibration ratio [14,

15], whereas convex CIP error and nonconvex CIP error are novel formulations. The three measures of

inconsistency will be compared with ET error in terms of match verification accuracy.

7.4.1 Boyer Error

Boyer’s method [14, 15] considers the rays corresponding toeach silhouette point in the silhouette regions

that are not covered by the CIP. The error associated with each ray is determined by computing the 3D point

on the ray that is consistent with the largest number of the silhouettes in the set. The error contributed by

this ray is proportional to the number of silhouettes that are inconsistent with the 3D point (i.e., silhouette

viewpoints in which the 3D point does not project into the silhouette).
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Since there is a continuum of rays corresponding to any finiteimage region, silhouettes are pixelated in order

to compute the Boyer error. The ray passing through the pixelcentre is considered for each pixel. Higher

resolution pixelations will therefore lead to more accurate approximations of the Boyer error.

The ray corresponding to each foreground pixel in each silhouette view is considered in turn. Each of the

remaining silhouettes defines a (possibly empty) interval on the ray for which the silhouette is consistent

with the ray. This interval is computed by projecting the rayonto the silhouette. The projected ray-silhouette

intersection is a line segment. This line segment is projected back onto the 3D ray to obtain the interval.

A 3D point on the ray that lies within the maximum possible number of intervals is considered next. If the

maximum number of intervals is equal to the number of silhouettes, then the pixel is covered by the CIP, and

does not contribute to the error since it is consistent with all silhouettes. Otherwise, the pixel contributes an

error ofka/(A(m−1)), wherek is the number of them−1 remaining silhouettes that are consistent,a is the

pixel area, andA is the total area of foreground regions in the silhouette set.

Boyer’s method differs from the other methods (such as the approach of Hernández [39], and the formu-

lations that are presented in Sections 7.4.2 and 7.4.3) in that the viewing ray corresponding to each point

within a silhouette is not simply classified as consistent orinconsistent. Rather, a degree of inconsistency is

obtained for each viewing ray. This is done by using thenumberof consistent silhouettes for each viewing

ray. Another approach would be to take into account some measure ofdistancefrom consistency for each

silhouette-ray pair. This was not implemented because it isinefficient to compute, making it impractical to

apply to a large number of silhouette sets.

7.4.2 Convex CIP Error

The convex CIP error is an attempt to create an error formulation that is fast to compute by limiting the

input to convex silhouettes. The approach achieves efficiency by providing a closed form solution that is

computed directly from the input polygons (as opposed to theother methods which require rasterisation).

This comes at the cost of discarding information in the concave regions of the original polygonal boundaries.

This information may potentially aid discrimination between matches and mismatches.

The convex hulls of the silhouette boundaries are used as input. This approach works because the silhouettes

of the 3D convex hull of a stone are the 2D convex hulls of the silhouettes of the stone: if a silhouette set

is consistent, then a silhouette set formed from the 2D convex hulls of the silhouettes in this set will be

consistent too.

The convex CIP error method integrates the distance (possibly raised to some power ofn) from the silhouette

boundary to the CIP over the silhouette boundary for all silhouettes in the set. Silhouette regions that are not

overlapped by the CIP can contribute error according to how far they are removed from the CIP (by squaring

or cubing the distance for instance). This is a potential advantage over the Boyer error, since uncovered
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regions that are far from the boundary are more likely to be caused by a mismatch than by segmentation or

calibration error.

Using convex silhouettes provides several advantages:

1. The cone intersection can be efficiently computed.

2. The boundaries of the CIP can be easily and efficiently computed.

3. A boundary-based error formulation can be used, since convex boundaries cannot have fractal-like

perimeters that make nonconvex boundaries highly sensitive to resolution.

The cone intersection of convex cones can be efficiently computed as a halfspace intersection. Each cone face

represents a halfspace (the halfspace on the cone side of theplane passing through the face). The halfspace

intersection is computed using a dual space formulation which allows a convex hull algorithm to be used.

Efficient convex hull algorithms exist (O(mlogm) for mcone faces).

The boundaries of the CIPs can now be obtained by computing the 2D convex hulls of the projected vertices

of the cone intersection. Note that computing the boundary of a projection of a nonconvex polyhedron is a

far more elaborate procedure.

To integrate the distance (raised to thenth power) to the CIP around the silhouette boundary, the boundary

is traversed to identify triangular and trapezial∗ regions (see Figure 7.2). The triangles consist of portionsof

(a) (b) (c)

Figure 7.2: Computing convex CIP error: (a) the silhouette boundary (solid line) and CIP boundary (dashed line), (b) the triangles
and trapezia that must be considered when computing the error (with alternating shading to aid visualisation), and (c) acloseup of
the top right of (b).

the silhouette boundary whose closest point is the same point on the CIP. The trapezia are made up of the

remaining portions of the boundary. The trapezia and triangles are computed by determining whether the

closest point on the CIP polygon is along an edge (for trapezia) or at a vertex (for triangles).

∗Confusingly, what is referred to as a trapezium in British English is a trapezoid in American English, and vice versa. Here,
British English is used: a trapezium is a quadrilateral witha pair of parallel sides.
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The error componentEtri contributed by each of the triangles is computed from the three side lengthss, t,

andu (as illustrated in Figure 7.3) as follows (the side of lengthu lies on the silhouette boundary polygon):

Etri =

0
∫

−w

(x2 + f 2)n/2dx+

v
∫

0

(x2 + f 2)n/2dx, (7.13)

where

θ = acos((t2−s2−u2)/(−2su)) (7.14)

f = ssinθ (7.15)

v = scosθ (7.16)

w = u−v. (7.17)

s
t

u

w

f

v

θ

(0, 0)

Figure 7.3: Diagram for computing the error contribution of triangles.

Equation 7.13 was successfully evaluated for values ofn= 1,2,3, and 4 using the Matlab Symbolic Toolbox.

In this work, the exponent ofn = 2 was used. The solution to the integral forn = 2 is

Etri =
1

(18ut2 +18us2−6u3)
. (7.18)

Similarly, the error componentEtrap contributed by each of the trapezia is computed from the fourside

lengthsp, q, r, andm (as illustrated in Figure 7.4) as follows (the side of lengthm lies on the silhouette

boundary polygon):

Etrap =

m
∫

0

[ x
m

p+
(

1−
x
m

)

r
]n

dx= m(pn+1− rn+1)/((p− r)(n+1)). (7.19)
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m(0, 0) (m, 0)

Figure 7.4: Diagram for computing the error contribution of trapezia.

7.4.3 Nonconvex CIP Error

Nonconvex CIP error works with the silhouettes directly rather than their convex hulls. This means that

saddle-shaped regions on a stone that are imaged as concave portions of the silhouette boundary can poten-

tially be used to discriminate between matches and mismatches. For instance, if two stones have very similar

convex hulls, yet differ in shape because of saddle-shaped regions, the nonconvex CIP error may be able to

correctly classify a mismatch that would be misclassified ifthe convex CIP error were used. The nonconvex

CIP error is therefore only likely to show a substantial improvement over convex CIP error for matching

applications in which the stones have substantial variation in the shapes of saddle-shaped regions of their

surfaces.

Unlike the convex CIP error, area-based integrals are used,since a nonconvex boundary can be highly sensi-

tive to resolution. The integral of the distance to the CIP (raised to thenth power for somen) from all points

inside the silhouette, but outside the CIP, forms the nonconvex CIP error.

A visual hull algorithm is used to compute the cone intersection†. Although Matusik et al. [91] describe

an efficient algorithm, it is not used here because it produces a so-called polygon soup output that does not

provide connectivity information for the faces. This makescomputing an exact projection of the cone inter-

section impossible, and creating an approximate quantisedprojection of the cone intersection by rendering

is slow. Instead, a marching tetrahedron-based approximation to the visual hull was created using a C++ im-

plementation‡ of Bloomenthal’s implicit surface polygonizer [8]. The routine outputs the visual hull surface

as a triangular mesh. An alternative algorithm is the exact method described by Franco and Boyer [48].

The CIP outline is computed exactly from the triangular meshrepresentation. To do this, it is necessary

to identify the contour generator edges on the triangular mesh with respect to the viewpoint. Only edges

formed by a pair of faces in which exactly one face is towards the viewpoint are candidates. The bottommost

vertex of the projected edges is guaranteed to lie on the outline, and may be used as a starting point. From the

starting point, the algorithm moves from vertex to vertex. Care must be taken in selecting the correct edge, as

multiple candidate edges may share a common vertex. Edge projections may also be crossed by edges from

†In the case of a match, the cone intersection is the visual hull of the object and associated viewpoints. However, to avoidabuse
of terminology, the term cone intersection is preferred since in the case of a mismatch set the visual hull is not a meaningful concept.

‡The polygonizer library was provided by J. Andreas Bærentzen (Technical University Denmark).
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a different part of the triangular mesh. These crossings cause a discontinuity in the contour generator (but

not in its projection), and introduce new vertices. Each other candidate edge must therefore be checked when

traversing each edge. This makes the algorithm ofO(m2) complexity form candidate edges. The algorithm

terminates upon returning to the starting point. An exampleis shown in Figure 7.5.

(a) (b)

Figure 7.5: Example showing (a) a triangular mesh, and (b) the outline of a projection of a triangular mesh computed using the
algorithm described above.

For each silhouette, the CIP and the silhouette are renderedto create rasterised versions. A distance transform

is used to assign values to pixels in the silhouette according to their distance from the silhouette outline.

Pixels not covered by the CIP contribute error of the distance value. Error values are summed for all pixels

over all silhouettes. The approach of computing the exact projection of a triangular mesh described above

allows the error to be computed reasonably efficiently. Notethat by counting the number of pixels that are

not covered by the CIP, one obtains an estimate of the area of non-overlap. This measure was considered by

Hernández et al. [60], who created a perimeter-based method to approximate the area of non-overlap.

7.5 Experiments

7.5.1 Empirical Match and Mismatch Distributions

Pose optimisation was applied to match and mismatch pairs ofsilhouette sets formed from the data set of five

runs of 246 garnet stones captured with the six-camera setup. The five silhouette sets of each stone (from the

five runs) can be paired in 5!/(2!(5−2)!) = 10 different ways. This means that there are 10×246= 2460

match pairs. The 5× 246= 1230 silhouette sets can be paired in 1230!/(2!(1230− 2)!) = 755 835 ways

of which 755 835− 1230= 754605 are mismatch pairs. However, only mismatches acrossdifferent runs

were considered, as this still provides a large number of mismatch pairs, whilst simplifying the selection of
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the pairs. This means that 10× (246×246− 246) = 602 700 mismatch pairs were considered. Note that

although there is a large number of mismatch cases, they are not statistically independent samples. This is

because the same stone is used in multiple pairs. Such dependence is common in the evaluation of biometrics

recognition systems such as fingerprint verification. Bolleet al. [10] have developed the subsets bootstrap

to account for this dependence when estimating uncertaintyassociated with accuracy performance statistics

derived from such data.

Pose optimisation based on the orthographic projection model was used, as the garnets are small with respect

to the distances to the camera. One hundred starting points were used for each silhouette set pair. The first

four starting points were based on alignment of the principal axes of the two VEMHs, and the remaining

orientation components were uniform random rotations. Theexperiment required several days of running

time on a 3.2 GHz Pentium 4 machine.

Figure 7.6 shows the distributions of ET error values acrosssilhouette sets after pose optimisation for matches

and mismatches. It is important to notice that the match and mismatch distributions do not overlap: the

smallest mismatch ET error is 2.26 pixels, whereas the largest match ET error is 0.72 pixels. This means

that there is a range of ET error thresholds (0.72–2.26 pixels) that will separate, without misclassifications,

match pairs from mismatch pairs for the pairs considered in this data set.

Figure 7.7 illustrates the pairs corresponding to the highest match error (i.e., the match that comes closest

to being misclassified as a mismatch), and the lowest mismatch error (i.e., the mismatch that comes closest

to being misclassified as a match). As can be seen in the figure,the mismatch pair exhibits a higher degree

of inconsistency than the match pair both in terms of ET errordistances shown in red, and in terms of the

degree of non-coverage of the silhouettes by the CIPs.

The non-overlap between the match and mismatch distributions, is beneficial to the accuracy of matching

based on pose optimisation. However, it makes estimating the long run error rate and comparison between

different methods difficult. In Section 7.5.4, ET error is compared with CIP-based error formulations by us-

ing reduced resolution images with smaller numbers of views. Reducing the resolution and number of views

creates overlap between the match and mismatch distributions, which facilitates comparison of different

methods.

The experiment was repeated with the gravel data set captured using the mirror setup. Three runs of five-

view silhouette sets of the 220 gravel stones were used. Fromthis data, 3× 220= 660 match pairs and

(220×220−220)×3 = 144 540 mismatch pairs were formed. Unlike in the case of the garnet data, pose

optimisation was applied using the perspective model. Thiswas because some initial experimentation in-

dicated that the camera was sufficiently close to the stones for the orthographic model to be inappropriate.

The experiment required more than a week’s processing time.The results of the experiment are shown in

Figure 7.8. Again, there is a range of ET threshold values that completely separate the match pairs from the

mismatch pairs from this data. In the case of the gravel data,the largest ET error across silhouette sets for a

match pair is 0.68 pixels, whereas the smallest ET error froma mismatch pair is 3.15 pixels.
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Figure 7.6: ET errors across silhouette set pairs after pose optimisation for 2460 match pairs and 602 700 mismatch pairs formed
from the six-view garnet data set: (a) shows match and mismatch distributions estimated with a kernel smoothing method (a low
variance Gaussian was used to limit over-smoothing); (b) shows a closeup of (a) in the region where the distributions areclosest; (c)
shows the data points in the region illustrated by (b) (the vertical component, which is random, is a visualisation aid).
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Figure 7.7: Pair of garnet silhouette sets corresponding to the highest ET error of a match(top half), and the lowest ET error of
a mismatch(bottom half). For each pair, the top row shows projected epipolar tangents within the silhouette set in green, across
silhouette sets in blue, and error distances in red; the bottom row shows silhouettes in colour with 12-view CIPs in grey.
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Figure 7.8: ET errors across silhouette set pairs after pose optimisation for 660 match pairs and 144 540 mismatch pairs formed
from the five-view gravel data set captured using the mirror setup: (a) shows the region where the distributions are closest; (b) shows
the data points in the region illustrated by (a) (the vertical component, which is random, is a visualisation aid).

Figure 7.9: Match matrices formed from the gravel data set. Each element corresponds to a silhouette set pair from two runs.
Diagonal elements are match pairs and off-diagonal elements are mismatch pairs. The three matrices correspond to the three run
pair combinations. Darker regions indicate lower ET error.

Figure 7.9 illustrates the three 220×220 match matrices formed from the gravel data set.

7.5.2 Recognising Stones by Mass

The results observed in the above-mentioned experiments indicate that ET error after pose optimisation

provides a potentially accurate way to recognise individual stones. It is interesting to consider another

method that one might use to identify or recognise individual stones on different occasions: the stone’s mass

as measured by an electronic balance.

Figure 7.10 shows ROC (receiver operating characteristic)curves computed using mass difference as mea-

sured by an electronic balance as a measure of dissimilarity. Results are shown for the data set of gravel
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Figure 7.10: ROC curves computed for dissimilarity defined as the difference in mass as measured by an electronic balance. The
ROC curves have nonlinear axes to aid visualisation: this isthe detection error tradeoff curve format introduced by Martin et al. [89].

and gemstones. Each stone was weighed with an electronic balance. Each gravel stone was weighed on

three different days (three runs of mass measurements). Tworuns of mass measurements were captured for

the gemstone data. This was carried out by staff of the company that provided the gemstones. The ROC

curves show the estimated error rates that one would obtain from matching the stones based on a threshold

on the difference between mass values measured on two different occasions. The ROC curves are computed

by determining all the measured mass differences for matches and for mismatches across runs. The ROC

curves indicate that using measured masses cannot be used toprovide error-free classification. This is be-

cause the variability of measured masses is sufficiently high to create differences in measured mass of the

same stone that are in some cases higher than the mass differences between different stones. In the case of

the gravel stones, the data indicate that the equal error rate is approximately 0.5%, whereas the equal error

rate is approximately 3% for the gemstone data. The gemstonedata produce larger errors partially because

the mass variability is not as large as for the gravel data: there are many cases where pairs of gemstones have

approximately the same mass, and are therefore prone to being misclassified as matches (a false acceptance).

The ROC curve for the gemstone data indicates that to attain alow false rejection rate (say< 0.1%), one

must tolerate a very high false acceptance rate (> 30%). This is because the mass measurements contain

several gross errors (the measurements were possibly incorrectly transcribed by the data capturer). A few

large measured mass differences for match pairs result in the necessity of a high tolerance for measured mass

differences if one is to ensure that the false reject rate remains low. This will result in a high false acceptance

rate as many mismatch pairs will be misclassified as matches.The principal reason for presenting the ROC

curves in Figure 7.10 is to demonstrate that identifying stones by individual mass is infeasible for the data

sets considered in this thesis.
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7.5.3 Running Time Experiments

Section 7.3 presented an algorithm for computing ET error based on an orthographic projection model. This

approach was designed to speed up the computation of the ET error. The results presented here quantify the

speedup that one obtains using the orthographic model instead of the perspective model.

Table 7.1 shows the mean running time for optimisation from asingle starting point for different optimisation

types. Results were computed using 246 pairs of six-view silhouette sets of garnets.

imaging tangency Jacobian mean
model location computation time

orthographic lookup analytical 4.6 ms
orthographic scan analytical 11.6 ms
orthographic lookup forward difference 8.6 ms
orthographic scan forward difference 28.6 ms
perspective lookup forward difference 73.6 ms
perspective scan forward difference 144.6 ms

Table 7.1: Mean running time per optimisation for various methods: ‘lookup’ means the edge-angle lookup was used and ‘scan’
means that each vertex of the polygon was visited to determine tangencies. Times are computed using 6-view silhouette sets of
garnets with a stopping criterion requiring an error reduction of no more than 1% reduction of the RMS residual ET error over three
Levenberg-Marquardt steps. A 3.2 GHz Pentium 4 machine was used.

The results demonstrate the speedup that is achieved in practice when using the proposed modifications to

compute ET error. A speedup of a factor of 30 is achieved over the basic perspective model without tangency

lookup. Tangency lookup increases the speed of the perspective-based method by a factor of two. A further

speedup of a factor of approximately eight is achieved by switching to an orthographic model. The use of an

analytical expression for the Jacobian matrix provides a further speedup of more than a factor of two.

7.5.4 Performance of CIP-Based Error Formulations

Silhouette inconsistency formulations based on the CIP constraint were presented in Section 7.4. To compare

the performance of the CIP-based formulations with ET error, the garnet images were downsampled to reduce

the silhouette boundary accuracy, and in so doing to create an overlap between the match and mismatch

distributions for ET error. Each pixel in 32×32 blocks of pixels was replaced with the mean intensity value

of the 32×32 block. This mimics what would be obtained using a camera with lower resolution. Figure 7.11

shows an example of a downsampled silhouette set.

Pose optimisation as described in Section 7.5.1 was appliedto matches and mismatches formed from the

first two runs of the downsampled garnet data. (Only two runs were used because of the long running time

required for these experiments.) The experiment was repeated using different subsets of camera views to

investigate the effects of varying the number of cameras.
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Figure 7.11: An example of a six-view image set of a garnet after 32× 32 downsampling. Extracted polygonal boundaries are
shown in colour.

Where parameter values needed to be chosen (e.g., silhouette rasterisation resolution for Boyer error, and

voxelisation resolution for nonconvex CIP error), the values were chosen so that any attempt to further

increase the accuracy would result in negligible improvements. The approach to parameter value selection

therefore sacrifices speed in favour of matching accuracy.

Figure 7.12 shows ROC curves computed after ET-based pose optimisation using different CIP-based for-

mulations and ET error. Boyer error was not computed in theseexperiments because of its prohibitively high

running time. The plots show ROC curves based on an additional measure of dissimilarity: earth mover’s

distance (EMD) between caliper distributions of the VEMH. This method will be described in the next chap-

ter. Unweighted nonconvex CIP refers to nonconvex CIP errorcomputed without the distance transform: the

silhouette area not covered by the CIP is used without weighting uncovered regions according to the distance

from the boundary.

The plots show that greater accuracy is achieved as the number of cameras is increased, because this increases

the number of consistency constraints imposed by the silhouettes within a set. Despite incorporating more

information than ET error, Figure 7.12 indicates that in most cases the CIP-based error formulations produce

worse ROC curves than the ET error. The plots suggest that theCIP-based methods only outperform ET

error (in terms of accuracy) for certain operating points ofthe ROC curve for the 3-camera case.

The poor performance of the CIP-based methods (particularly for more than three cameras) may be a conse-

quence of the following:
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(b) 3 cameras
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(c) 4 cameras
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(d) 5 cameras
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(e) 6 cameras

Figure 7.12: ROC curves computed using two runs of downsampled images from the garnet data set. Results are shown for different
subsets of the six camera views. (See text for further details.)
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1. As the number of well-distributed views is increased, theconstraints imposed by the epipolar tangents

become closer to the constraints imposed by the CIPs. This was pointed out by Hernández [39].

The potential advantage of using a CIP-based measure of inconsistency is therefore diminished as the

number of views considered is increased.

2. CIP-based errors require the cone intersection to be computed. The cone intersection is sensitive

to noise, since if any silhouette indicates that a 3D region of space is empty it is considered to be

empty. This noise sensitivity is analogous to using a maximum rather than a mean of some feature

to characterise a class of objects. For instance, one might expect the maximum caliper diameter of a

silhouette to be more noise sensitive than the mean caliper diameter.

3. Stones tend not to have deep concavities that are visible from widely disparate views. This limits the

potential of nonconvex CIP error to incorporate information that cannot be captured by ET error (or

convex CIP error).

Figure 7.12b suggests that CIP-based error can provide superior performance to ET error in at least some

situations. Figure 7.13 uses bootstrap replications to illustrate that the observed differences between the

ROC curves are not likely to be due to chance alone. When considering the statistical variability of a curve

estimated from samples, Efron [35] recommends using bootstrap samples (i.e., repeatedly drawingn samples

from the originalnsamples with replacement) for a “quick and dependable picture of the statistical variability

in the original curve.” The idea is that the variability of the bootstrap curves approximates the variability that

one would obtain if one carried out the same experiment (withdifferent random samples) many times. Since

error values are not independent, the ‘subsets bootstrap’ method of Bolle et al. [10] was used. The method

groups error values in an attempt to reduce dependence as much as possible. The plot indicates that the

observed superior performance of the CIP-based methods in the upper region persists over twenty bootstrap

replications.

The superior performance of CIP-based methods for certain operating points in the three-view case is clearly

of little practical significance, and thus far the CIP-basedmethods appear to be of little use.

In a further attempt to investigate whether CIP-based methods might outperform ET error in certain situa-

tions, synthetic data sets were used. The first set was created from refined visual hull models of 100 uncut

gemstones that were selected for their degree of nonconvexity. The stones are scaled along their three princi-

pal axes so that each stone has unit convex volume and its caliper diameter along the three principal directions

are in the ratio 2 : 3 : 4. Giving the stones the same gross shapeensures that false acceptance errors occur.

The synthetic nonconvex stones are illustrated in AppendixC on page 225. Nonconvex stones were created

as these have the potential to demonstrate the superiority of nonconvex CIP error over convex CIP error.

A further set of synthetic stone shapes was generated based on the convex hulls of the refined visual hull

models of the first 200 garnets. Again, the stones are scaled along their three principal axes so that each
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Figure 7.13: Twenty bootstrap replications of the ROC curve shown in Figure 7.12b.

stone has unit convex volume and its caliper diameter along the three principal directions are in the ratio

2 : 3 : 4. These stones are illustrated in Appendix C on page 226.

Synthetic images were generated from the synthetic stones by rasterising the polygonal projections. Various

camera configurations were simulated. The camera configurations are based on the optimised frontier point

criterion (as described in Chapter 5, and illustrated in Figure 5.5 on page 86).

ROC curves computed from the synthetic data are shown in Figure 7.14. Boyer error was computed for the

nonconvex stones. The plots show similar behaviour to the real data: CIP-based methods outperform ET

error only for small numbers of cameras (fewer than six), andin these cases the outperformance is only for

certain operating points on the ROC curve.

7.5.5 Effect of Image Resolution and Camera Configuration

Synthetic data sets were further used to investigate the effects of camera configuration and image resolution

on match and mismatch distributions of ET error after pose alignment.

Camera configurations based on the optimisation criteria described in Chapter 5 were used. In addition, var-

ious six-camera configurations were investigated to illustrate the importance of the configuration of cameras

for a fixed number of cameras. The additional six-camera setups were generated by varying the elevation

angle of cameras positioned in a semicircle. Three examplesare shown in Figure 7.15.

Figure 7.16 shows the match and mismatch ET error values for different camera configurations and factors

of resolution reduction. Many of the camera configurations show a similar trend: as the image resolution
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(b) 4 cameras
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(c) 2 cameras
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(d) 3 cameras
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(e) 4 cameras
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(f) 6 cameras

Figure 7.14: ROC curves computed using synthetic data sets: (a)–(b) nonconvex stones, (c)–(f) convex stones.
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Figure 7.15: Six-camera setups with elevation angles of 60◦ (top row), 30◦ (middle row), and 0◦ (bottom row).

is decreased, the distribution of match errors rises in a predicable fashion, and the distribution of mismatch

errors stays in roughly the same position, rising only slightly.

There are, however, some pathological cases: in some cases cameras with coplanar optical axes produce low

ET errors for both match and mismatch pairs. This is because the epipolar tangencies occur in approximately

the same position for coplanar camera setups. (The extent towhich the epipolar tangencies are not exactly

coincident is influenced by the degree of perspective distortion: if the cameras are moved back to infinity,

the epipolar tangencies will be exactly coincident.) The plots therefore clearly illustrate the undesirability of

the coplanar camera configuration for matching.

In the case of well-distributed cameras, camera configurations based on minimising the most isolated viewing

direction, and on minimising the sum of distances between frontier points produce similar results. This is

because any well-distributed camera setup is likely to produce epipolar tangencies that are well-separated

from one another, and whose residual error values are almostindependent from one another.

Figure 7.17 illustrates the match and mismatch error valuesfor different six-view configurations. The plots

demonstrate that the configuration of cameras is important.The camera configurations correspond to differ-

ent elevation angles. For low elevation angles, the configuration is close to the coplanar configuration, and

poor separation between match and mismatch error values is observed. As the elevation angle is increased the

separation improves, and then degrades again as the elevation angle becomes large and the viewing directions

converge.
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(a) 2 cameras, coplanar (b) 3 cameras, coplanar (c) 3 cameras, frontier

(d) 4 cameras, frontier (e) 4 cameras, isolation (f) 6 cameras, coplanar

(g) 6 cameras, frontier (h) 8 cameras, isolation (i) 8 cameras, frontier

(j) 10 cameras, frontier (k) 10 cameras, isolation

Figure 7.16: Plots of match values (red) and mismatch values (blue) for different camera configurations. Different levels of quanti-
sation noise are shown, corresponding to different degreesof resolution reduction from the original image resolution. Cameras are
configured to fulfil the frontier point criterion (frontier), the direction isolation criterion (isolation), or to havecoplanar optical axes
with even angular distribution about 180◦ (coplanar).
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(a) φ = 1◦ (b) φ = 5◦ (c) φ = 10◦

(d) φ = 15◦ (e) φ = 20◦ (f) φ = 25◦

(g) φ = 30◦ (h) φ = 35◦ (i) φ = 40◦

(j) φ = 45◦ (k) φ = 50◦ (l) φ = 60◦

Figure 7.17: Plots of match values (red) and mismatch values (blue) for different six-view camera configurations. Cameras are po-
sitioned in a semicircle with uniform angular spacing. Eachconfiguration has a different elevation angleφ, whereφ = 0 corresponds
to a coplanar camera configuration.
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7.6 Summary

It has been demonstrated that attempting to align silhouette set pairs by minimising ET error provides a

means for determining whether the pair is a match or a mismatch. Methods for improving the efficiency and

the accuracy of the approach have been investigated.

To improve the matching efficiency, equations that make use of an orthographic projection model were

derived. The approach is valid for cases in which the stone issmall with respect to the distances to the

cameras. This is the case with data sets captured using the six-camera setup. The orthographic-based method

runs approximately 30 times faster than the perspective-based method.

In an attempt to improve the accuracy of alignment-based matching, measures of inconsistency based on

the CIP constraint were investigated. Since the CIP constraint is stronger than the ET constraint, CIP-based

methods potentially make use of more information in the silhouettes to discriminate between matches and

mismatches. However, unlike the ET error, where pairwise reprojection errors are accumulated, CIP-based

methods make use of a cone intersection that is computed fromall views simultaneously. This makes the

methods more sensitive to noise. Experiments carried out with synthetic data and downsampled real data

show the CIP-based errors outperformed ET error in terms of accuracy only for certain operating points of

the ROC curve for setups consisting of fewer than five cameras. The CIP-based methods are therefore not

considered any further in this thesis.

ET-based alignment was applied to all pairs across runs for the 2-mirror 5-view gravel data set (using a per-

spective camera model) and the 6-camera garnet data set (using the proposed orthographic approximation).

For the gravel data set, all 660 match pairs were found to havesubstantially lower ET error than any of the

144540 mismatch pairs. For the garnet data set, all 2460 match pairs were found to have substantially lower

ET error than any of the 602700 mismatch pairs. This indicates that ET-based alignment is an accurate ap-

proach for distinguishing between match and mismatch pairsfor the types of data and camera configurations

considered in this thesis.

Synthetic data sets were used to investigate the effect of different camera configurations and different image

resolutions on match and mismatch distributions of ET error. As expected, with insufficient image resolution

and too few cameras, there is overlap between the match and mismatch distributions, and such a setup will

produce classification errors. Configurations in which optical axes are coplanar, or close to coplanar are

observed to result in distribution overlap that does not occur for well-distributed cameras at the same image

resolution.
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Chapter 8

Dissimilarity from 3D Shape

Approximations

8.1 Introduction

Alignment-based matching (as described in the previous chapter) is accurate, yet slow, since time-consuming

nonlinear optimisation must be applied for each comparisonof two silhouette sets. Although alignment-

based matching is not prohibitively slow for verification tasks (i.e., determining whether a single pair of

silhouette sets is a match or a mismatch), the method is too slow to apply to all pairings for batch match-

ing. There aren2 pairings that can be made between silhouette sets from two runs of n stones. A naive

approach, where alignment-based matching is applied to allpairings forn = 1000 stones, would take almost

a week to process assuming approximately 0.5 seconds per pair (100 starting points and an orthographic

approximation).

To address this issue, a fast signature-based method for estimating the dissimilarity between two 3D shapes

is proposed. The method uses the idea of shape distributionsintroduced by Osada et al. [103, 104], along

with the compact representations of distributions that Rubner et al. [112,113] refer to as asignatures. Likely

matches can be identified with the signature-based method sothat the more time-consuming alignment-based

matching need only be applied to a small number of cases. The signature-based method requires less than

one microsecond to assign a dissimilarity value to a silhouette set pair (after once-off preprocessing has

computed a signature for each silhouette set). This allows all pairings between two runs ofn = 1000 stones

to be considered in less than one second.

In this chapter, the performance of the proposed signature-based method is quantified in terms of accuracy

when applied in isolation (i.e., without alignment-based matching) to verification and identification tasks.

The next chapter shows how the signature-based method can becombined with alignment-based matching

to efficiently solve the batch matching problem.
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Broadly, the proposed signature-based method for computing dissimilarity is carried out as follows. The

VEMH is computed from each silhouette set as an estimate of the 3D shape of the convex hull of the corre-

sponding stone. Caliper diameters are sampled from each VEMH in different directions to create a caliper

diameter distribution for each silhouette set. The caliperdiameter distribution is approximated with a signa-

ture consisting of a vector of a small number of elements. Dissimilarity between pairs of signatures is rapidly

computed using the earth mover’s distance (EMD).

8.2 Related Work

There is a vast body of literature describing different approaches for defining dissimilarity between 3D

shapes. Several survey papers compare the different methods [21, 124]. The methods are broadly classified

into graph-based and feature-based methods.

Graph-based methods (such as determining the skeleton of anobject) are appropriate for complex shapes,

and are typically computationally inefficient. Since stones are simple shapes, graph-based methods are not

an appropriate means for matching.

Local feature-based methods, such as shape contexts, have been shown to be effective for shape retrieval,

even in cases where only a portion of the object is available (partial matching). However, since these methods

are typically inefficient, and since local features cannot be accurately estimated from sparse silhouette sets,

they were not considered.

Global feature-based methods compare features (such as volume and moments) or distributions of features

computed from the 3D shape. Since global features or featuredistributions can be rapidly compared, these

approaches have been identified by the survey papers as the most efficient approach to matching, and are

appropriate for use as pre-classifiers. The shape distribution framework of Osada et al. has been selected as

the basis of the method described in this chapter because of its simplicity, efficiency, and success in a range

of applications [22,64,104]. Although not considered by the original authors, the framework also facilitates

the use of the compact signature representation for which dissimilarity between distributions can be rapidly

computed.

Because of its speed, the shape distribution framework has been chosen by researchers for specific shape-

lookup applications. Canzar and Remy [22] use shape distributions as a faster alternative to alignment-based

techniques to look up protein models from a database that aresimilar to a query model. Comparisons of

353766700 protein shapes were completed in less than an hour, with 97% nearest neighbour agreement on

class label. Ip et al. [64] use shape distributions to createa query-by-example interface to a CAD database

of mechanical parts.

In their original work on dissimilarity measurement using shape distributions, Osada et al. introduce five

functions that are used to form shape distributions:
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• D1 is the distance between a random point on the surface and thecentroid;

• D2 is the distance between two random surface points;

• D3 is the square root of the area of the triangle formed by threerandom surface points;

• D4 is the cube root of the volume of the tetrahedron formed by four random surface points; and

• A3 is the angle formed by three random surface points.

The D2 shape function was found to be the most accurate shape function for looking up 3D models of

everyday objects (cars, humans, phones, mugs), and was found to perform better than feature-based lookup

based on moments. In this chapter, these five functions are compared with caliper diameter distributions in

terms of matching accuracy.

8.3 Method

The signature-based method uses the VEMH as a 3D approximation of the convex hull of the corresponding

stone for each silhouette set. The distribution of caliper diameters over all directions is approximated by

sampling caliper diameters in a finite number of directions.Approximately uniform sampling is obtained by

using the vertices of a subdivided icosahedron [61] to specify the directions along which to compute caliper

diameters.

A subdivided icosahedron of LevelL is formed from a subdivided icosahedron of LevelL− 1 as follows.

Each face of the LevelL−1 polyhedron is replaced with a vertex at its centre; all vertices are projected onto

the unit sphere, and the resultant convex hull is the LevelL subdivided icosahedron. An icosahedron whose

vertices lie on the unit sphere is the Level 0 polyhedron. Different levels of subdivision of an icosahedron

are illustrated in Figure 8.1.

(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

Figure 8.1: Different subdivision levels of an icosahedron.

The same caliper diameters are obtained along directions specified by antipodal vertex pairs of the subdivided

icosahedron, so only one vertex per antipodal pair is used.
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The dot product of a VEMH vertexv and the unit direction vector̂d is used to determine the extente of the

vertex in the direction:

e= v · d̂. (8.1)

The caliper diameterc in directiond̂ is the difference between the maximum and minimum extent values in

the direction:

c = emax−emin. (8.2)

Rubner et al. [112, 113] point out that distributions can be efficiently approximated assignaturesinstead of

histograms with bins of equal width. Creating signatures involves clustering sample points and representing

each cluster with a single point, typically the centroid of the cluster. For one-dimensional distributions,

clustering can easily be achieved by selecting histogram bins with equal counts rather than equal widths.

The mean values of the sample points in each bin form the signature. By varying the bin width so that bin

counts are equal, greater weight is given to describing parts of the shape distribution that have greater density.

The signature is therefore a more efficient approximation ofthe distribution than a histogram.

Figure 8.2 illustrates the process of forming a 10-element signature from a silhouette set for three examples.

Note that the silhouette sets in the first two columns correspond to the same stone (however, the stone is

oriented differently). The VEMHs and the signatures in the first two columns are therefore similar to one

another, whereas the VEMH and the signature from the third column appear dissimilar since they are formed

from a different stone.

Dissimilarity between pairs of signatures is computed using the EMD, which is the area between the CDFs

(cumulative distribution functions) of the two distributions.

The EMD between two signatures is efficiently computed by directly computing the area between the two

CDFs implied by the signatures. The PDFs (probability distribution functions) of the two distributions are

approximated by unit Dirac delta functions positioned at the signature element values. The area difference is

computed inO(n) time complexity (forn-element signatures) by traversing the two arrays and accumulating

the area difference between CDFs. Figure 8.3 illustrates the comparison of signatures between a match pair

and a mismatch pair formed from the three examples of Figure 8.2.

Note that Osada et al. [103] investigate various norms between both the PDF and the CDF for measuring

dissimilarity between distributions. The compact signature representation is not amenable to computing

distances between PDFs, so this approach is not investigated here. The EMD is equivalent to the 1-norm

between CDFs. The infinity-norm (i.e., maximum difference)between CDFs is a commonly used dissimi-

larity measure that is sometimes known as Kolmogorov distance. This is also not investigated here, since the

compact signature representations limit the number of discrete values that the Kolmogorov distance could

take on. For instance, the dissimilarity between two 2-element signatures could only take on three values: 0,

1 and 2.
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Figure 8.2: Three examples of input silhouette sets(first row), corresponding VEMHs(second row), and caliper diameter sample
values and signature values(third row). The vertical component in the caliper diameter value plotsis random (a visualisation aid).
Larger dots represent signature values computed as the meanof corresponding deciles of caliper diameter values (10 signature
elements are used). Decile colouring alternates to show correspondences with signature values. The silhouette set in the first column
matches the silhouette set in the second column, but not the silhouette set in the third column. ET-based pose optimisation has been
applied to align all VEMHs with the reference frame of the first column.

8.4 Experiments

8.4.1 Numbers of Samples and Signature Elements

Experiments were carried out to investigate the effect of the number of signature elements and the number

caliper diameter samples on the matching accuracy achievedusing the signature-based method.

Bradley [16] recommends using the area under the ROC curve (AUC) for a single number measure of accu-

racy. The area under the ROC curve represents the probability that the dissimilarity value associated with a

mismatch selected at random will be smaller than the dissimilarity value associated with a match selected at

random. Figure 8.4 shows plots of AUC versus number of signature elements for the gravel and garnet data

sets. The plots illustrate that further improvements in accuracy are small after approximately ten elements

per signature. This indicates that, for the purpose of matching, ten signature elements are able to capture

most of the information in the caliper diameter distribution.
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Figure 8.3: Examples of caliper diameter distributions for a match(first column)and a mismatch(second column). The match pair
is formed from columns one (green) and two (red) of Figure 8.2, and the mismatch pair is formed from columns one (green) and
three (blue) of Figure 8.2. The first row shows distributionsestimated from the caliper diameter samples using a kernel smoothing
method. The second row shows CDFs derived directly from the caliper diameter samples. The area between CDFs (which represents
the EMD) is shown in grey. The third row shows the CDFs impliedby the signatures overlaid on the original CDFs. The fourth row
shows the area between the signature CDFs in grey. This represents the EMD between signatures. The EMD is smaller in the first
column (a match pair) than the second column (a mismatch pair).
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(a) 2-mirror 5-view gravel data set
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(b) 6-camera garnet data set

Figure 8.4: Plot of number of signature elements versus area under the ROC curve for (a) the 2-mirror 5-view gravel data set, and (b)
the 6-camera garnet data set. Error bars represent 95% confidence intervals computed using the subsets bootstrap. Six icosahedron
subdivisions were used to compute 3646 directions for caliper diameter samples from each VEMH. Note that nonlinear axeshave
been used.
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(a) 2-mirror 5-view gravel data set
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(b) 6-camera garnet data set

Figure 8.5: Plot of number of caliper diameter samples versus area under the ROC curve for (a) the 2-mirror 5-view gravel data set,
and (b) the 6-camera garnet data set. Error bars represent 95% confidence intervals computed using the subsets bootstrap. Curves
have been computed using both systematic sampling using subdivided icosahedra, and random sampling. The following numbers of
samples were used: 16 (corresponding to one subdivision of an icosahedron), 46 (two subdivisions), 136 (three subdivisions), 406
(four subdivisions), 1216 (five subdivisions), and 3646 (six subdivisions).

Figure 8.5 shows the results of an experiment in which the number of caliper diameter samples used to

estimate each distribution is varied.

Results are shown for both systematic sampling (based on icosahedron subdivision) and random sampling

(using a uniform random distribution of points on a sphere).The results clearly indicate that systematic

sampling outperforms random sampling using the same numberof samples. Little further improvement is
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observed with more than 406 samples (from four icosahedron subdivisions) in the case of systematic sam-

pling. Subsequent experiments therefore make use of 10-element signatures formed from 406 systematically

selected caliper diameter samples.

Using these parameter values, a 3.2 GHz Pentium 4 machine takes an average of 1.3 milliseconds to compute

the caliper signature from the VEMH for silhouette sets captured using the six-camera setup. Computing the

EMD between two signatures takes an average of 0.5 microseconds.

8.4.2 Comparison with ET Error

The EMD between signatures was computed for all match and mismatch pairs for the garnet data set and

compared with the ET error across the same pairs. A plot of EMDversus ET error is shown in Figure 8.6.

The EMD and ET error values are highly correlated with one another. The closeup in Figure 8.6b shows

that whereas the ET error separates all match pairs from mismatch pairs, the EMD between signatures does

not. The EMDs are however substantially faster to compute than the ET errors: the EMD between signatures

take approximately half a microsecond to compute and the ET errors take approximately half a second. The

EMDs are therefore faster to compute by a factor of a million.

Figure 8.6: Plot of EMD versus ET error for silhouette set pairs from the6-camera garnet data set. The plot on the right is a closeup
of part of the plot on the left.

8.4.3 Different Methods of Estimating Stone Shape

Caliper diameter signatures were computed using the visualhull and the constant depth rim hull (CDRH) as

alternatives to the VEMH for estimating the convex hull of the stone from its silhouette set. The ROC curves

shown in Figure 8.7 illustrate that greater accuracy is achieved using the VEMH than the two competing

methods. The CDRH produces the worst results. Efron’s method [35] of visualising the statistical variability
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(a) 2-mirror 5-view gravel data set
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(b) 6-camera garnet data set
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(c) 2-mirror 5-view gravel data set
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(d) 6-camera garnet data set

Figure 8.7: ROC curves derived from (a) the 2-mirror 5-view gravel dataset, and (b) the 6-camera garnet data set for caliper
signatures computed using different means to approximate the 3D convex hulls of stones: VEMHs, visual hulls, and CDRHs;(c)
twenty bootstrap curves drawn from the data presented in (a); (d) twenty bootstrap curves drawn from the data presented in (b).
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associated with the curves is illustrated in Figures 8.7c and 8.7d: the subsets bootstrap [10] is used to show

20 bootstrap replications (an estimate of what would be observed if the experiment were repeated 20 times

with new samples). The bootstrap replications indicate that the differences between the curves is sufficiently

low that the observed differences cannot be attributed to chance. The greater variability present in the bottom

right of the curves is an artefact caused by using many more mismatch pairs than match pairs. Part of the

reason that the plots for the gravel data exhibit greater variability than the plots for the garnet data is that

fewer runs were used (3 runs that provide 3 pair combinationsacross runs versus 5 runs that provide 10 pair

combinations across runs).

8.4.4 The Shape Functions of Osada et al.

Figure 8.8 shows ROC curves computed using the caliper diameter distribution and the shape functions

suggested by Osada et al. [104]. The caliper diameter distributions outperform all of the shape functions of

Osada et al. for both data sets.
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(a) 2-mirror 5-view gravel data set
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(b) 6-camera garnet data set

Figure 8.8: ROC curves derived from (a) the 2-mirror 5-view gravel dataset, and (b) the 6-camera garnet data set for caliper
signatures and for the shape functions proposed by Osada et al. [104]. One million samples of each shape function of Osadaet al.
was used for each VEMH. This value was found to be sufficientlylarge so that further increases showed negligible improvement in
accuracy.

The shape functions show a wide range of performance, with the distance-based (DN) features degrading as

the numberN of random surface points used to compute each sample is increased. The worst performing

shape function is theA3 feature, which is based on angle distributions rather thandistance-based distribu-

tions.

Note that Osada et al. use the functions to identify similar shapes from existing mesh models. Here, dis-

similarity is based on approximate 3D shapes that are derived from silhouette sets. The more accurate
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performance of the caliper distribution indicates that thecaliper distribution of a stone can be more accu-

rately inferred from the silhouette sets than Osada et al.’sshape functions (with respect to the variation of the

shape distribution amongst different stones). This does not imply that caliper distributions would outperform

Osada et al.’s shape functions for the 3D model retrieval application for which they were designed.

8.4.5 The Effect of Size and Shape

Part of the ability of the signature-based method to distinguish match pairs from mismatch pairs is the size

variability of the stones within each data set. To obtain an indication of the performance of the signature-

based method with only shape information, matching was carried out using normalised signatures. Normal-

isation was carried out by dividing each caliper diameter distribution by its mean. In addition, matching was

carried out using only size information: the mean diameter values were used as 1-element signatures.

Figure 8.9 shows the results in terms of ROC curves. As expected, the normalised signatures provide lower
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(a) 2-mirror 5-view gravel data set
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(b) 6-camera garnet data set

Figure 8.9: ROC curves derived from (a) the 2-mirror 5-view gravel dataset, and (b) the 6-camera garnet data set for caliper
signatures, normalised caliper signatures, and mean caliper diameter values. Normalised caliper signatures are normalised by
dividing by the mean caliper diameter to create signatures with unit mean in all cases. This demonstrates the accuracy obtainable
without scale enforcement after camera calibration, or equivalently, the accuracy obtainable with shape informationbut not size
information. The mean caliper diameter shows the accuracy obtainable with size information but not shape information.

accuracy than the original signatures, since size information has been discarded. However, the normalised

signatures outperform the mean caliper signatures for mostoperating points. This indicates that the caliper

signatures accurately capture some essence of stone shape,rather than discrimination accuracy being due to

the size variability present in the data sets. The plots indicate, for example, that an operating point can be

chosen (for either data set) so that the equal error rate is approximately 2%. This means that, for a certain

EMD threshold, the signature-based method would correctlyclassify a randomly selected match or mismatch

pair with 98% probabilitywithoutscale information.
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8.4.6 Feature-Based Dissimilarity

The signature-based method was compared with a few simple feature-based methods. To justify its additional

complexity over the simpler feature-based methods, the signature-based method should provide superior

accuracy.

Four features were measured from each VEMH: volume and caliper diameters along the three principal

directions. The absolute difference between the two feature values associated with each pair was used as

a measure of dissimilarity. In addition, the Euclidean distance between a 3-vector consisting of all three

principal caliper diameters was used as a further simple feature-based method. ROC curves based on the

different methods are shown in Figure 8.10. The plots indicate that the signature-based method substantially
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(a) 2-mirror 5-view gravel data set
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Figure 8.10: ROC curves derived from (a) the 2-mirror 5-view gravel dataset and (b) the 6-camera garnet data set for caliper
signatures and feature-based measurements. Dissimilarity is defined by difference in volume, and difference in caliper diameter
measured along the three principal directions of the VEMH (primary, secondary, and tertiary). Dissimilarity defined asthe Euclidean
distance between a 3-vector of the three caliper diameters along the principal directions (three principal) is shown. The ROC curve
computed using differences between mass measured on an electronic balance is shown for the gravel data set.

outperforms the simple feature-based methods. Caliper diameter along the tertiary principal direction (short

diameter) is the worst performing feature. Caliper diameter along the primary principal direction (long di-

ameter) outperforms caliper diameters measured along the other two principal directions. This is consistent

with observations made in Chapter 3 that indicate that a large degree of variability is associated with esti-

mating short diameters from silhouette sets. Using all three diameters provides better performance than any

one diameter.

The plot in Figure 8.10a also shows the ROC curve derived fromthe gravel masses measured using an

electronic balance. The plot does not appear stepped like the other curves. This is because of the discretised

nature of the mass measurements: more than one mass measurement difference corresponds to the same

value. The ROC curve of the mass measurements crosses the ROCcurve of the signature-based method,
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indicating that which method is better depends on the operating point selected. The mass-based approach

performs poorly at low probability of false acceptance. This is because there are 61 mismatch pairs (of the

144 540 mismatch pairs considered) whose dissimilarity values (that is, differences between the measured

masses of two different stones) are exactly zero. (The resolution of the electronic balance was 0.01 grams;

the mean mass was 20.72 grams, and the standard deviation of the mass values was 6.91 grams.)
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Figure 8.11: (a) Rank versus cumulative match score plot derived using various measures of dissimilarity; (b) a closeup of part of
the plot shown in (a).

Rank versus cumulative match score plots [106] show the proportion of cases in which a query ranks within

the topr matches. For instance, a rank ofr = 5 with a cumulative match score of 0.85 means that the correct

match ranks amongst the top five matches (ordered from smallest to largest EMD) in 85% of all cases. The

plots are computed by considering each case as a query in turn, and comparing each query with the other

cases from another run. All combinations of runs are considered, with cases from each run being considered

as queries and as database entries. Rank versus cumulative match score plots are useful for quantifying

performance in closed universe [106] scenarios, where the query is known to match one of a certain number

of database entries.

Figure 8.11 shows the rank versus cumulative match score plot derived from the gravel data. This provides

an indication of how well the signature-based approach performs at the task ofidentifying a stone from

a database of 220 pre-stored silhouettes sets, one of which is known to match the query silhouette set. A

practical system could use alignment-based matching to classify database-query pairs in an order specified by

signature-based dissimilarity. The plot indicates that the probability of the first pair considered by alignment-

based matching being a match is 98%.

The plot shows that the signature-based approach outperforms the feature-based approaches. Although the

signature-based method is more likely than the measured mass method to contain the match in the pairs

169



ranked up to one and two, the measured mass method is more likely to contain the match in the pairs ranked

up to three and four.

8.5 Summary

This chapter has proposed a simple method based on caliper distribution signatures for computing a measure

of dissimilarity between silhouette sets. The signatures and the dissimilarity between signatures can be

rapidly computed.

The method achieves its efficiency by using approximations to 3D shape, rather than relying on silhouette

consistency constraints. This approach places an inherentlimitation on the accuracy that can be achieved

using the method, since there are inherent ambiguities in inferring 3D shape from a sparse silhouette set.

Caliper distribution signatures have been shown to outperform simple feature-based methods (such as vol-

ume) as well as the five approaches introduced by Osada et al.

Since the method facilitates rapid ranking of silhouette sets in order of similarity, the signature-based method

can be used in conjunction with the alignment-based method described in the previous chapter to identify a

stone from a query silhouette set, by matching a previously stored silhouette set in a database.
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Chapter 9

Batch Matching

9.1 Introduction

Batch matching is finding the one-to-one correspondences between silhouette sets from two unordered runs

of the same batch of stones: each silhouette set in the first run must be matched to the silhouette set in the

second run that was produced by the same stone.

This is asquare assignment problemsince each of then objects in the first run must be matched to one of

then objects in the second run. The matching can be specified by ann×n permutation matrixin which each

element is either one or zero (indicating match or mismatch), and each row and each column sums to one.

The proposed approach to batch matching makes use of the desirable characteristics of the two measures

of dissimilarity developed in Chapters 7 and 8: alignment-based matching, where ET error is the measure

of dissimilarity, and signature-based matching, where theEMD between signatures is the measure of dis-

similarity. The desirable characteristic of alignment-based matching is its accuracy, whereas the desirable

characteristic of signature-based matching is its speed.

Signature-based matching is used to compute a measure of dissimilarity between all pairings of silhouette

sets in the first run with those in the second run: forn stones there aren2 pairings. Prior knowledge of the

distributions of dissimilarity values for match and mismatch pairings is used to estimate likelihood ratios

for each pairing (indicating the likelihood of being a match). Pose optimisation is then successively applied

to the pairing with the greatest likelihood ratio. If pose optimisation from a given starting point (initial

pose estimate) leads to a sufficiently low error, then the pairing is labelled a match and is removed from

consideration. Otherwise the likelihood ratio isupdatedto reflect that a failed pose optimisation from the

given starting point indicates that the pairing is less likely to be a match. Starting points based on the

principal axes of 3D approximations to the stone are used, followed by uniform random orientations. The

proposed greedy algorithm (which processes the pairing with the greatest likelihood ratio at each iteration)
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is demonstrated to produce close to optimal performance on atest set of six-view silhouettes of 1200 uncut

gemstones (i.e., the time spent processing mismatches is small). On a 3.2 GHz Pentium 4 machine, the

once-off per silhouette set computations take approximately 50 seconds. Computing dissimilarity between

shape distributions takes 0.7 seconds and pose optimisation takes 17 seconds (of which 15 seconds is spent

considering matches and 2 seconds on mismatches).

There aren2 comparisons (or pairings) that can be made between silhouette sets in the first run and silhouette

sets in the second run. Although the proposed algorithm is still inherently of at leastO(n2) time complexity,

then2 component dominates only for very largen. This means that batches of more than a thousand stones

can be matched efficiently.

The batch matching algorithm makes use of several key ideas that together achieve efficiency:

1. Shape distribution dissimilarity for ranking pairings by l ikelihood of match. EMDs are computed

between estimated caliper diameter distributions for eachof then2 pairings between first run silhouette

sets and second run silhouette sets. (EMDs are computed efficiently, taking less than a microsecond

per pairing.) Likelihood ratios are computed for each pairing from the EMD using prior knowledge of

distributions of EMDs for match and mismatches. A priority queue is used to access pairings so that

the most likely matches can be processed first.

2. Recomputing the most likely match after pose optimisation from one starting point. Pose opti-

misation proceeds by optimising from a single pose estimateat a time. After pose optimisation, the

likelihood ratio is updated if the associated ET error is above the threshold for matches. (Knowing

that a pose optimisation fails from a given starting point implies that a match is less likely than before

this is known). The pairing is pushed back into the priority queue with its updated likelihood ratio. If

the likelihood ratio has been decreased by a sufficiently small amount, then the pairing will remain at

the front of the priority queue, otherwise a new pairing willbe selected for processing. This approach

ensures that ET-based pose optimisation is always applied to the pairing that is most likely a match

(based on EMD between signatures and number of failed pose optimisations so far).

3. Certainty of a match implies certainty of mismatches. If ET-based pose optimisation leads to an

ET error that is below the match threshold, the pairing is labelled as a match (i.e., the probabilistic

framework is abandoned and a hard decision is made). This means that all other pairings associated

with the two matched silhouette sets can be labelled as mismatches and removed from consideration.

This amounts to zeroing the remaining permutation matrix elements that share a row or a column with

the matched element. In other words, finding a match implies that mismatches have been found too.

(Although possibly obvious, this removal of mismatches from consideration is an important factor in

substantially reducing the running time of problems in which a one-to-one correspondence exists, and

is therefore explicitly mentioned.)
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4. Good starting points provided by moments of 3D shape approximations. Pose starting points

are selected using the principal axes of a 3D approximation to the stone as a guide. The first pose

starting point aligns the principal axes of the two 3D approximations and ensures that their third order

moments have the same sign. This starting point leads to an ETerror below the match threshold in

approximately 80% of match cases. The next three pose starting points align the principal axes in the

three other possible ways. Subsequent pose estimates alignthe centroids of the 3D approximations

and select the orientation component using a uniform randomrotation.

9.2 Approach

This section describes the greedy algorithm that was designed to efficiently solve the one-to-one correspon-

dence problem for silhouette sets.

9.2.1 Design Rationale

The proposed algorithm is based on the assumption that all matching pairs can be aligned so that the ET error

across the two silhouette sets is below a fixed threshold value, and that no mismatch pairs can be aligned so

that ET error is below the threshold. This assumption is valid if noise levels are sufficiently low, and stone

shapes are sufficiently dissimilar. (Section 9.3.2 demonstrates the consequences of using a data set for which

the assumptions do not hold.) The threshold must be determined from a training data set.

The aim of the algorithm is to find then silhouette set pairs with ET errors below the threshold. Once pose

optimisation has determined pose parameters that alignn pairs sufficiently well (i.e., ET error across the

silhouette set pair that is below the threshold), the algorithm terminates, since the one-to-one correspondence

has been determined.

ET-based pose optimisation is time-consuming, and for an efficient matching algorithm it must be kept to a

minimum. Efficiency is achieved by combining two strategies:

1. As little time as possible is spent on pose optimisation between pairs that do not match.

2. As little time as possible is spent optimising from starting points (initial pose estimates) that lead to

insufficiently low ET errors (local minima) for pairs that domatch.

The first strategy is implemented by selecting, in each iteration, the pairing most likely to match (based on

the information considered: EMD and number of optimisations failed so far). Since the most likely match is

selected at each iteration, rather than trying to minimise total running time, the proposed algorithm isgreedy.
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The second strategy is carried out by using the principal axes and moments of 3D approximations to each

stone to select the starting points that are most likely to lead to the correct alignment of matching pairs.

Figure 9.1 shows a flow chart of the greedy algorithm. Note that the algorithm could finish aftern− 1

Pop element from priority queue.

yes

yes

yes

no

no

no

finished

Segment images, form VEMHs,
compute caliper distributions for all silhouette sets.

C

2n

ompute the EMDs between caliper distributions.

Map EMDs to likelihood ratios and push into priority queue.

n
2

start

Is element already classified as a mismatch?

Apply pose optimisation using the next initial pose
estimate associated with the element.

Pose optimisation successful?
(Found ET error below threshold?)

Classify element as a match.

Classify all other elements in the
same row or columns mismatches.

Update likelihood ratio based on
number of pose optimisations failed so

far for the current element.

Push element back into the priority queue.

Found all matches yet?n

Figure 9.1: Flow chart for the proposed greedy algorithm.

matches are found, since the single remaining unmatched element must be the match. Instead, alln elements

are matched with ET-based pose optimisation. This results in a very small increase in total running time.

9.2.2 Initial Likelihoods from EMDs

EMDs between caliper diameter signatures are computed for each of then2 pairings between silhouette sets

in the first run and silhouette sets in the second run.
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The EMDs are used toorder the pairings so that pairings that are the most likely to match are considered

first. A reasonable approach would be to process the pairings(apply pose optimisation) in the order specified

by the raw EMD values. This would, however, require the number of pose optimisations to be considered

for each pairing to be specified in advance. Alternatively, asingle pose optimisation could be applied for

each pairing in turn up to a certain threshold on the EMD, after which pairings are reconsidered in turn from

different starting points.

A better approach, however, is to update the likelihood of a pair being a match based on the additional infor-

mation of the number of failed optimisations that have been carried out for the pair. (A failed optimisation

is one in which a pose with an associated ET error below the match threshold could not be found.) By using

additional information, matches are more likely to be selected than mismatches than if only the raw EMD

values were used. This requires that the EMD values be mappedto likelihood ratios so that they can be

updated using Bayes’s rule.

9.2.3 Training

To determine the mapping from EMD values to likelihood ratios, a training set is required. A training

set consists of multiple runs of silhouette sets of a batch ofstones for which the correspondence between

silhouette sets is known. The training set is a random samplefrom the population of stones for which

the batch matching is to be used. The ratio of match density tomismatch density must be estimated for

all EMD values. Many methods exist for estimating probability density from samples [34]. This problem

also has the additional constraint of monotonicity: a greater EMD implies a lower likelihood of match.

Arandjelović describes a method to enforce the constraintof monotonicity [2]. A simple histogram method,

however, was found to produce good results, so more sophisticated methods were not implemented. A coarse

histogram (five bins) was formed for EMD values from match pairs in the training data and for mismatch

pairs in the training data. Ratios of normalised bin counts at the bin centres were used to form a mapping

from EMD values to likelihood ratios. Piecewise linear interpolation was used to determine values between

the bin centres.

The training procedure also uses the training set to determine a threshold value on the ET error for matches,

and to estimate the probability of failed alignment for a match pair afters starting points have been used.

To determine a threshold value, the largest ET error across silhouette sets for a match, and the smallest ET

error across silhouette sets for a mismatch are estimated. The threshold is chosen to be midway between

these two values.

Since applying pose optimisation from many starting pointsto all training set pairs is too time-consuming,

the following method was used. The mismatch pairs are ordered by EMD between signatures, and pose

optimisation is only applied to the first 1000 mismatch pairs. Pose optimisation is applied to the cases only

from the four starting points specified by principal axis alignment. This approach ensures that an ET error
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value that is approximately as small as the smallest mismatch error can be computed in a reasonable running

time.

The estimate of the largest ET error for match pairs is computed by applying pose optimisation from the four

principal axis starting points to each match pair. Pose optimisation is then applied from a random starting

point to the match pair whose lowest ET error is the largest. This is repeated until the match pair with largest

minimum ET error, has had pose optimisation applied from 1000 random starting points. This match pair is

used to estimate the largest ET error across silhouette setsfor a match.

Once the threshold has been specified, the proportion of match cases that lead to an ET error below the

threshold value is computed for starting points based on theprincipal axes, followed by random starting

points.

9.2.4 Forming a Priority Queue

Pairings are stored in a priority queue that is prioritised by the value specifying the likelihood of match. The

indices of the silhouette sets that make up the pair are also associated with each element in the priority queue.

These indices are used to reference a permutation matrix that is built up as the algorithm progresses. When a

match is found, the corresponding permutation matrix element is changed from ‘unknown’ to one, and other

elements in the same row and column are zeroed. When an element that references a zero in the permutation

matrix is at the front of the priority queue, it is popped fromthe queue and no pose optimisation is applied

since the pair is already known to be a mismatch. The number offailed optimisations that have been applied

to the pair is also associated with each element in the priority queue.

9.2.5 Pose Optimisation

Pose optimisation is applied to the pair of silhouette sets associated with the front of the priority queue

(provided that this element has not already been labelled asa mismatch, in which case it is popped and the

next element is considered). Pose optimisation attempts todetermine the relative pose between two silhouette

sets with the assumption that the sets were produced by the same stone.

The starting points (initial pose estimates) for pose optimisation are based on the principal axes and moments

of inertia of the VEMHs from each silhouette set. Choosing the pose that aligns the principal axes of the

3D stone approximations and that ensures that the third order moments have the same signs, leads to an ET

error below the match threshold value in approximately 80% of cases when the pair is a match. A pose

in which the translational component of pose is chosen so that centroids from the two 3D approximations

coincide, and the rotational component is a uniform random rotation, leads to the correct alignment in only

about 10% of cases. After considering all four possible posealignments based on the principal axes, the

correct alignment is found in all but about 2% of cases (as illustrated in Figure 6.8 on page 111).
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The first four initial pose estimates for a pair are thereforechosen to correspond to the four poses that

align the principal axes. The pose that keeps the signs of thethird order moments unchanged is first. The

second two poses change only one sign of the third order moments. After four poses have been considered,

uniform random orientations are used for the following poses. A systematic orientation sampler described in

the robotics literature [142] was considered, but some initial experimentation showed no evidence of better

results.

Note that the one-to-one matching constraints remove the need to decide on the number of pose optimisations

to apply: optimisations are applied until all the matches are found. Compare this with the situation of

searching for a tag stone that may or may not be present in a batch of stones: in this case a decision must be

made to stop applying pose optimisation after it has been applied from a certain number of starting points.

9.2.6 Updating Likelihood Values

After a failed optimisation, the likelihood ratio associated with a pair is updated to reflect both the associated

EMD value and the number of failed optimisations.

The probability of a match given a certain number of startingpoints from which optimisation has been applied

must be estimated from a training data set. It is assumed thatoptimisation will always fail with mismatch

pairs. The proportion of cases that fail after one, two, three, and four pose optimisations is computed from

the training data (using the pose ordering as described in Section 9.2.5). If the probability of failed pose

optimisation from a single pose with a random orientation component isp1, the probabilitypm of failure for

all of m random starting points is

pm = pm
1 . (9.1)

The value ofp1 will vary for different silhouette set pairs. As an approximation, the mean value ofp1 is

estimated from the training set, and Equation 9.1 is used to estimatepm.

The posterior oddsP(Hmatch|data)/P(Hmismatch|data) of an element being a match is given by Bayes’s rule:

P(Hmatch|data)
P(Hmismatch|data)

=

(

P(data|Hmatch)

P(data|Hmismatch)

)(

P(Hmatch)

P(Hmismatch)

)

, (9.2)

whereHmatch is the match hypothesis andHmismatch is the mismatch hypothesis. Note that the prior odds

P(Hmatch)/P(Hmismatch) are the same for all elements (the stones are assumed to be in random order), so

ordering by the likelihood ratioP(data|Hmatch)/P(data|Hmismatch) is the same as ordering by the posterior

odds.

The updated likelihood ratiorupdatedis computed from new observations as follows:

rupdated=
P(data|Hmatch)

P(data|Hmismatch)
rd, (9.3)
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whererd is the likelihood ratio computed from the EMD value. Here, the data specifies the number of failed

optimisations so far. SinceP(data|Hmismatch) = 100%,

rupdated= psrd, (9.4)

whereps is the proportion of match cases for which optimisation fails in all cases after usingsstarting points.

For s> 4, ps is estimated using

ps(s) = ps(4)ps−4
1 . (9.5)

Note that likelihood ratios are computed without using the one-to-one correspondence constraint. Making

use of this constraint does not aid efficiency, since each pairing requires evaluation of a function of val-

ues associated with all other pairings. Knowledge of the one-to-one constraint is therefore discarded, and

likelihood ratios are computed without considering valuesassociated with other pairings.

9.3 Experiments

This section describes a set of experiments that were carried out using a C++ implementation of the proposed

algorithm. The experiments aim to quantify the behaviour ofthe proposed algorithm in terms of running time,

and to quantify the relative importance of the various components in keeping the running time as small as

possible.

Experiments were carried out using a data set of 1423 uncut gemstones (pictured in Appendix C, pages 222–

224). Ten runs of six-view image sets were captured, yielding a total of 1423× 10× 6 = 85 380 images.

Computations were carried out on a 3.2 GHz Pentium 4 machine.For each trial, runs corresponding to 243

randomly selected stones were used as a training set, leaving the remaining 1200 stones as a test set. All

45 run pair combinations of 243 stones were used for training, providing 10 935 match pairs and 2 646 270

mismatch pairs across runs. For each trial, two runs were selected at random from the ten available runs to

form a test set of two runs of 1200 silhouette sets.

9.3.1 Preprocessing Running Time

Table 9.1 gives a breakdown of the mean running time for the various preprocessing components. Ten signa-

ture elements were computed for each silhouette set using four subdivisions of an icosahedron to determine

the caliper sampling directions. The results show a mean processing time of 20.7 ms per silhouette set. The

once-off preprocessing per silhouette set is therefore sufficiently fast that it can be carried out online as the

stones are fed through the six-camera setup at a rate of ten stones per second.
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Computation
Running

Time
Percentage

of Total

segmentation 9.0 ms 43.5%
convex viewing edges 5.3 ms 25.6%

3D convex hull 3.2 ms 15.5%
2D convex hulls 1.5 ms 7.2%

caliper signatures 1.3 ms 6.2%
moments 0.3 ms 1.4%

edge angle data structure 0.1 ms 0.5%

Total 20.7 ms 100%

Table 9.1: Mean running time for preprocessing a 6-view silhouette set.

9.3.2 Batch Matching with the Proposed Greedy Algorithm

The proposed batch matching correctly matches silhouette sets across two runs of 1200 stones in approxi-

mately 68 seconds. The once-off per silhouette set preprocessing takes approximately 50 seconds. Comput-

ing dissimilarity between shape distributions takes approximately 0.7 seconds and pose optimisation takes

17 seconds (of which 15 seconds is spent considering matchesand 2 seconds on mismatches).

Varying Moments and Shape Approximation Methods Used

A set of experiments was carried out to determine the effectsof the number of moments used to form initial

estimates and the shape approximation method used.

Using only first order moments (moments up to order 1) means using only the centroids of the shape ap-

proximation (VEMH, visual hull, or CDRH) to form the positional component of initial pose; the rotational

component is random.

Using first and second order moments (moments up to order 2) makes use of the principal axes of the shape

approximation for the first four initial pose estimates. Thefour possible alignments of the principal axes are

considered in random order.

Using first, second, and third order moments (moments up to order 3) uses the third order moments to order

the four possible alignments of the principal axes as described in Chapter 6.

Table 9.2 shows the mean time over 30 trials spent on pose optimisation. The same starting point selection

and shape approximation methods used for testing were also used for training in each case. The results

indicate that the VEMH produces shorter running times than the visual hull and the CDRH. Using more

moments for initial pose estimates reduces running times.
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VEMH VH CDRH

moments up
to order 1

273.5 515.6 1796.6
(208.7, 64.8) (207.4, 308.3) (210.4, 1586.2)

moments up
to order 2

30.4 65.3 297.1
(22.0, 8.4) (27.4, 37.8) (39.9, 257.2)

moments up
to order 3

17.4 38.7 198.0
(15.0, 2.4) (21.4, 17.2) (35.6, 162.5)

Table 9.2: Mean running time (in seconds) spent on applying pose optimisation for batch matching of 1200 silhouette sets of uncut
gemstones across two runs. Times spent on matches and on mismatches are shown in brackets.

Running Time as a Function of Number of Stones

The next set of experiments investigates how running time isaffected by varying the number of stones.

Random subsets of up to 1200 stones were selected as test sets.

Figure 9.2a shows a plot of number of stones versus running time using the VEMH and moments up to order

3 for determining starting points.
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Figure 9.2: Running time for batch matching different numbers of stones: (a) using the VEMH and moments up to order 3, (b)
using the CDRH and moments up to order 1. The running time consists of time spent setting up the priority queue and applying
pose optimisation to matches and to mismatches.

Setting up the priority queue takes only a small amount of time, yet populating the priority queue is of

O(mlogm) complexity form elements. Since there arem= n2 elements forn stones, the time complexity is

O(n2 logn2); setting up the priority queue will become the most time consuming component for sufficiently

largen. Applying pose optimisation to match pairs takes time proportional to the number of stones. However,

for the values tested here it forms the largest component of the running time. Although the time spent on
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mismatches isO(n2), for values ofn tested, the running time is small. For values ofn up to 1200, the running

time is therefore approximately proportional to the numberof stones.

The experiment was repeated using the CDRH and moments up to order 1 (only random rotations were

used). This was done to observe the quadratic dependence of the time spent optimising mismatch pairs on

the number of stones. The results are shown in Figure 9.2b. The quadratic dependence is more apparent than

in Figure 9.2a. A larger proportion of running time was spentconsidering mismatch pairs than match pairs

for larger numbers of stones.

Using Downsampled Input Images

Image downsampling was used to investigate the behaviour ofbatch matching in cases in which image noise

is high enough that some ET errors across a silhouette set fall on the wrong side of the threshold. Since

the proposed batch matching algorithm applies pose optimisation to pairs until all matches are found, the

algorithm will fail to terminate if there are insufficient pairs with ET errors below the threshold. A limit on

the time spent on pose optimisation must therefore be imposed to force termination.

Table 9.3 shows the error rates achieved for different degrees of downsampling and for different time limits.

(An error is incurred if a silhouette set is matched to the wrong silhouette set or is not matched at all; the

Time Limit [seconds]
5 10 20 40 80 160

original resolution 54.4% 22.0% 0.5% 0.0% 0.0% 0.0%
2×2 binning 57.1% 26.3% 0.5% 0.0% 0.0% 0.0%
4×4 binning 53.2% 14.8% 0.5% 0.5% 0.4% 0.4%
8×8 binning 41.8% 22.9% 9.6% 8.7% 8.7% 8.8%

16×16 binning 61.6% 39.2% 26.8% 14.4% 12.6% 12.7%
32×32 binning 76.8% 65.6% 60.8% 60.1% 60.1% 60.1%
64×64 binning 96.0% 95.5% 95.5% 95.5% 95.5% 95.5%

Table 9.3: Mean error rates over 30 trials for batch matching two runs of 1200 stones with a time limit imposed on the running time
spent on pose optimisation. Results are shown for differentlevels of downsampling (pixel binning). Each error rate corresponds
to batch matching of two runs of 1200 silhouette sets of uncutgemstones. Images were segmented using the subpixel resolution
method described in Appendix A.

error rate is the number of errors divided by the number of stones.) There is little reduction in the error

rate between 40 and 80 seconds, indicating that further matches are unlikely to be found. At levels of

downsampling greater than 2× 2 binning, the silhouette sets are not all correctly matchedup for even the

largest time limit. The error rate increases as the degree ofimage downsampling is increased.

The approach of imposing a time limit may be useful for cases where image resolution is poor. Image

resolution may be insufficient for all match and mismatch errors to be on opposite sides of the ET error

threshold; however, a 100% correct matching may not be a necessity. This situation can occur in cases where
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one is interested in estimating statistical shape properties of a batch of stones using merged silhouette sets.

If a small number of silhouettes is not matched, or is incorrectly matched, this may have negligible effect on

the shape property estimates, especially since mismatchedpairs will tend to be of similar shape.

9.3.3 Batch Matching with Caliper Diameter Distributions

An experiment was carried out to investigate the error ratesand running times achievable using only the

likelihood ratios derived from EMDs between caliper diameter distributions (i.e., not using ET-based pose

optimisation.) The same likelihood ratio values that were computed for the experiments described in Sec-

tion 9.3.2 were used as input.

The maximum likelihood permutation is the permutation thatresults in the highest product of likelihood

ratios. To compute the permutation, the logarithm of likelihood ratios is used, so that the sum can be max-

imised, rather than the product. Finding the permutation ofa square matrix that minimises summed cost is

a well-known combinatorial optimisation problem that can be solved using the Hungarian Method [23]. A

Matlab implementation of the Hungarian Method (provided byNiclas Borlin of Umeå University, Sweden)

was used to determine the permutation that maximises the sumof the logarithm of likelihood ratios.

Results are shown in Figure 9.3. Each data point correspondsto an experiment in which 10 runs of 223
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Figure 9.3: Plot of number of test stones versus error rate for batch matching based on caliper distribution using different methods
for approximating stone shape. Two methods are used for determining the permutation matrix: the Hungarian Method, and selecting
the row with the minimum EMD for each column of the permutation matrix.

randomly selected stones are used as a training set and the test set of stones is randomly selected from the

remaining 1200 stones. The two runs used as the test set for each data set were randomly selected from the

10 available runs. For each training and test set, separate results were computed using the VEMH, visual
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hull and CDRH for shape approximation. The match permutation was computed using both the Hungarian

Method, and a simpler minimum distance method that selects the row with the minimum EMD for each

column of the permutation matrix.

The results indicate that the batch matching using only EMDscannot be carried out without error for the

data sets considered. The VEMH outperforms the visual hull,which in turn outperforms the CDRH for

shape approximation. The Hungarian Method outperforms theminimum distance method for forming the

permutation matrix from a square matrix of EMD values. For batch matching of 1200 stones, the most accu-

rate approach (VEMH for shape approximation and the Hungarian Method for computing the permutation)

achieves an error rate of approximately 5%.

These experiments demonstrate that the information contained in the EMD values is an important aid to the

batch matching process, but is alone insufficient. ET-basedpose optimisation must also be used for matching

that is both efficient and correct.

9.4 Summary

An algorithm has been designed and implemented for efficiently matching two runs of silhouette sets of the

same batch of stones. Various approaches were combined to ensure efficiency:

1. Likelihood ratios based on rapidly computed EMD values between estimated caliper distributions are

used to identify the pair (of those still under consideration) that is most likely a match.

2. ET-based optimisation is applied to the most likely matchpair from a single starting point before

updating the likelihood ratio for the pair if the pose optimisation fails.

3. If a match is found (alignment with sufficiently low ET error across the two silhouette sets), then pairs

that are implied to be mismatches are removed from consideration.

4. Moments of 3D approximations to the stone computed from pairs are used to select initial pose esti-

mates most likely to lead to correct alignment of the two silhouette sets.

On a test set of 1200 uncut gemstones, pairs of runs of six-view silhouette sets are matched in approximately

18 seconds on a 3.2 GHz Pentium 4 machine. The once-off per silhouette set processing takes approximately

50 seconds; the computations are sufficiently fast to be computed online as the stones are passed through

the six-camera setup. This represents a substantial improvement on a naive approach where alignment-based

matching is applied to all pairs (such an approach would takeweeks to complete). The proposed approach

is also superior to the naive approach in that the number of starting points to consider for aligning each pair

need not be decided in advance.
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For correct matching, the proposed method requires the minimum ET error for all match pairs to be below a

pre-specified threshold (determined with a training set), and the error for all mismatch pairs must be above

this threshold. Although this is the case for the data sets and camera configuration considered, this is not

guaranteed to hold. If the criterion fails to hold, then the algorithm may fail to terminate. To force termina-

tion, a limit can be imposed on the time spent on pose optimisation. The effects of applying the algorithm

to cases in which silhouette set quality is insufficient to meet the criterion has been demonstrated by using

downsampled versions of the original images. As the time limit is increased, improvements in the error rate

become negligible. As the degree of downsampling is increased, the error rate increases.

Experiments that use the Hungarian Method to estimate the match permutations using likelihood ratios based

on EMDs between signatures, and not using ET-based alignment, produced errors (a correct classification

rate of approximately 95% is achieved for matching 1200 silhouette sets across two runs). This justifies

combining the signature-based matching with alignment-based matching to achieve results that are both

correct and efficiently computable.
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Chapter 10

Comparing Silhouette-Based Sizing with

Sieving

10.1 Introduction

Particle shape analysts are interested in (1) emulating sieving with silhouette-based methods, (2) quantifying

the repeatability of silhouette-based sieve emulation, and (3) investigating the effect of individual particle

shape on the sieve aperture through which the particles pass[42,109]. This chapter describes an experiment

which uses the methods developed in this thesis to address all three of these issues.

The repeatability of sieve sizing cannot be evaluated by sieving particles individually. The sieve bin that each

particle ultimately lands in is a function not only of particle shape, but also the length of time over which the

sieves are shaken, and the presence of other particles in thesieves.

Knowing which sieve bins each particle lands in over multiple runs of batch sieving provides (1) an un-

derstanding of the shape characteristics that determine bin classification and bin classification variability,

and (2) a more accurate quantification of repeatability thanif histograms alone were considered. By ap-

propriately quantifying the repeatability of sieving, it can be directly compared with silhouette-based sizing

methods. Demonstrating that silhouette-based methods areat least as repeatable as sieving is an important

step in having such methods accepted by particle shape analysts as an alternative to sieve sizing.

The minimum enclosing cylinder of a silhouette-based 3D approximation to the stone shape (both the VEMH

and the visual hull are tested) is used for sieve emulation. This approach is based on the assumption that

the minimum enclosing cylinder of a stone provides a good approximation of the smallest circular sieve

aperture through which the stone may pass. By comparing the silhouette-based estimate of minimum cylinder

diameter with the sieve bins in which each stone is actually found to land up in, the accuracy of the silhouette-

based sieve emulation can be quantified.
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The experiment described in this chapter was carried out as follows. A data set of 494 garnets was sieved

fifteen times using a stack of sieves with five bins. (The 494 stones are illustrated using refined visual

hull models in Appendix C on page 227.) The five sieve bins are separated by circular sieve apertures with

diameters of 4.521 mm, 5.410 mm, 5.740 mm, and 6.350 mm. For each of the fifteen sieving runs, the garnets

were manually sieved for 30 seconds. After each run of sieving, the garnets were passed through the six-

camera setup in five sub-batches according to the sieve bin inwhich they landed. This means that the sieve

bin corresponding to each six-view silhouette set is known.By matching the silhouette sets that correspond

to the same stones across the fifteen runs, the bin in which each stone landed for each run is determined.

The experiment allows the performance of the matching procedure to be evaluated too. Although the stone

identity associated with each silhouette set is not known inadvance, consistency constraints across multiple

runs can be used to evaluate matching performance. For instance, if A matches B, and B matches C, then A

must match C.

10.2 Batch Matching

For the purposes of matching the stones across runs, batch matching was applied to batches of silhouette

sets from each run and the run’s immediate successor. Preprocessing (computing signatures and moments

from the raw image sets) requires approximately 20 ms per silhouette set. Although for this experiment

preprocessing was carried out offline, it is sufficiently fast to be carried out online as the stones pass through

the feeder at a rate of approximately 10 stones per second. After preprocessing, batch matching across

two runs of the 494 stones requires approximately three seconds of processing time. (This is faster than

matching the same number of gemstones because the garnets are less compact and therefore alignment tends

to require fewer optimisations.) The batch matching is therefore substantially faster than sieving the stones

and feeding them through the six-camera setup, and can clearly be considered to be sufficiently fast for

practical experimental purposes.

Batch matching was applied to all run pairings to check consistency. There are
(15

2

)

= 105 pairs of runs that

are formed from the 15 runs. The data set of 246 garnets was used as training data to determine parameters

for the experiments described in this chapter.

A necessary condition for correct matching is that the matching results are consistent across runs. If a

silhouette set from Run A matches one from Run B and one from Run C, then the silhouette sets from Run B

and Run C must match each other. By adding up the number of cases in which triplets of pairwise matches

are consistent, a measure of consistency can be made. There are
(15

3

)

= 455 triplets of runs and 494 cases in

each run, yielding a total of 455×494= 224770 triplets.

All 224770 triplets were found to be consistent for the batchmatching. This result was compared with

other simpler approaches to matching. Table 10.1 shows the results for different matching methods that were

tested. The first column of the table (Minimum Dissimilarity) shows results for matching using the minimum
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Matching
Method

Minimum
Dissimilarity

Square
Assignment

caliper signatures 94.0% 98.8%
caliper, three principal 76.0% 84.0%

VH min cylinder diameter 62.9% 19.8%
VEMH min cylinder diameter 63.0% 24.5%

VH nonconvex volume 63.1% 26.7%
VH convex volume 63.5% 25.5%

VEMH convex volume 63.4% 27.7%

Table 10.1: Percentage of consistent triplets of pairwise matches computed using different matching methods.

dissimilarity case in the other run as the match. The second column (Square Assignment) shows results for

matching using square assignment, which selects the permutation that results in the maximum sum of log

likelihood ratios (described in Section 9.3.3).

The first row of the table shows the results of matching using dissimilarity based on the caliper signatures

described in Chapter 8. The second row of the table uses results based on dissimilarity defined as the

Euclidean distance between three caliper diameters of the VEMH. The remaining rows of the table define

dissimilarity using the differences between minimum enclosing cylinder diameters and difference between

volumes for visual hulls and VEMHs.

The table indicates that, unlike the proposed batch matching method, none of the other methods is perfectly

consistent. Consistency is a necessary but not sufficient condition for correct matching. If A is similar to B,

and A is similar to C, then B is likely to be similar to A even if the measure of similarity is inaccurate. For this

reason, the first column shows consistency values of over 60%for relatively poor approaches to matching,

such as choosing the case in which the difference between minimum cylinder diameters of the visual hull is

a minimum. (A computer simulation in which 15 runs of 494 random measurement values were drawn from

a uniform distribution, and minimum dissimilarity was usedfor matching, resulted in 62.5% of triplets being

consistent.)

Table 10.2 shows the percentage of cases that are correctly matched for the various methods. These are

computed on the assumption that the proposed batch matchingmethod produces correct results. The table

indicates that matching based on a single shape property performs poorly, with VEMH-based estimates

outperforming visual hull-based estimates. Note that it ispossible to have a greater percentage of correct

matches than consistent triplets: the 105× 494= 51870 matched silhouette set pairs do not correspond

directly to the 455×494= 224770 triplets.
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Matching
Method

Minimum
Dissimilarity

Square
Assignment

caliper signature 96.6% 99.4%
caliper, three principal 79.1% 87.7%

VH min cylinder diameter 3.6% 3.2%
VEMH min cylinder diameter 5.7% 5.3%

VH nonconvex volume 6.5% 6.0%
VH convex volume 6.8% 6.4%

VEMH convex volume 7.8% 7.3%

Table 10.2: Percentage correct matches as classified by the ET-based batch matching.

10.3 Silhouette-Based Sieve Emulation

This section investigates sieve emulation using the minimum enclosing cylinder of a 3D approximation of

the stone. The same silhouette sets that are used for batch matching are used to approximate 3D shape.

A analogous approach is used by Fernlund et al. [43] who provide a method for emulating square-aperture

sieves. They compute the minimum enclosing square from all available silhouettes of each stone. This is

used to approximate the smallest infinite-length prism witha square cross section that encloses the stone.

10.3.1 Computing the Minimum Enclosing Cylinder

The minimum enclosing cylinder of a 3D point set is the smallest diameter cylinder of infinite length that

completely encloses the points. Various methods for estimating the minimum cylinder have been developed

in the field of computational geometry, but implementing these methods is non-trivial [24,116]. The method

proposed here instead uses a conjugate-gradient minimisation algorithm to minimise the cylinder radius

from many starting points corresponding to different directions. An efficient minimum enclosing circle

algorithm [135] is used to compute the minimum cylinder radius for each direction, by projecting all points

onto a plane that is perpendicular to the direction of the cylinder axis. The derivative of the cost function is

required by the conjugate-gradient minimisation algorithm. This was calculated using an azimuth-elevation

representation for directions. To computed the partial derivatives, only the support points of the circle on

the plane need be considered. Since a circle is supported by either two or three points (barring cases in

which an infinitesimal perturbation of the points changes the number of support points), both cases need to

be formulated. The Matlab Symbolic Toolbox was used to compute a solution, which was verified using a

forward difference approximation. (The resulting C code for the derivative computation is tens of thousands

of lines long.) One hemisphere of a subdivided icosahedron is used to create direction samples. Some

computer simulations were carried out to determine a set of parameters (number of direction starting points,

number of descent iterations, number of optimisations fromn best starting points) with desirable speed-

accuracy tradeoff characteristics.

188



10.3.2 Experimental Results

Minimum enclosing cylinders were computed from the 15 runs of 494 silhouette sets using the visual hull

and the VEMH to approximate the stone shape. The minimum cylinder was expected to provide a reasonable

estimate of the minimum sieve aperture that the corresponding stone can pass through. This provides a means

for predicting the sieve bin that the stone would land in fromits silhouette set. The minimum cylinder is

used as an approximate means for predicting sieve bins; certain stones (e.g. banana-shaped stones) may pass

through sieve diameters that are smaller than their minimumcylinder diameter. A similar observation is made

by Rao [109] also in the context of silhouette-based particle sizing: “[T]here is a chance that the particle can

weave, wiggle and make its way through. . . under the vigoroussieve shaking process. . . ” Although Rao

makes use of square-aperture sieves, the observation is equally valid for the circular-aperture sieves used

here.

The minimum enclosing cylinder diameters were used to classify each silhouette set into one of five bins

using the sieve aperture diameters as bin boundaries. The proportions of cases in each bin over all 15 runs is

given in Table 10.3. These values give an indication of the extent to which the silhouette-based methods can

be used to emulate sieving.

Bin No. 1 2 3 4 5

Sieving 14.1% 32.6% 19.1% 16.9% 17.2%
Min Cylinder VH 7.5% 31.8% 13.3% 25.4% 21.9%

Min Cylinder VEMH 10.6% 32.5% 15.1% 22.7% 19.2%

Table 10.3: Mean proportion of cases in each of the five bins

Histograms for the sieving and silhouette-based emulations are shown in Figure 10.1. The histograms give

an indication of the extent to which the silhouette-based methods can emulate the sieving process, as well as

an indication of the repeatability of the different sizing methods from run to run.

To investigate the extent to which the minimum cylinder diameter of a stone is a good estimate of the smallest

sieve aperture that the stone can pass through, 90-view visual hulls were formed for each stone by merging

silhouette sets (as described in Chapter 6). The minimum cylinders of the 90-view visual hulls are assumed

to be good estimates of the minimum cylinders of the corresponding stones. Each stone’s minimum sieve bin

over the 15 runs was used as an estimate of the smallest of the five bins that the stone could land in, i.e., it

was assumed that if the stonecouldpass through a sieve aperture, then itdid pass through on at least one of

the 15 runs. Figure 10.2 shows histograms of the minimum cylinder diameters for stones corresponding to

each of the five bins. Vertical lines indicate the locations of the four bin boundary aperture diameters. Since

the minimum cylinder diameter cannot be smaller than the smallest circular aperture through which a stone

can pass, the histograms are all expected to lie to the right of the lower bin boundary. Figure 10.2 shows that

this is indeed the case: the histograms lie to the right of thevertical lines that represent the sieve aperture

diameters. This means that all stones passed through all apertures wider than their minimum cylinders on at

189



1 2 3 4 5
0

50

100

150

200

Bin No.

C
ou

nt

(a)

1 2 3 4 5
0

50

100

150

200

Bin No.

C
ou

nt

(b)

1 2 3 4 5
0

50

100

150

200

Bin No.

C
ou

nt

(c)

1 2 3 4 5
0

20

40

60

80

100

120

140

160

Bin No.

C
ou

nt

Sieving
VH
VEMH

(d)

Figure 10.1: Histograms for (a) sieving, (b) minimum cylinder of the visual hull, (c) minimum cylinder of the VEMH, and (d) mean
bin counts for 15 runs of the three sizing methods. Each run isrepresented by a different colour bar for histograms (a)–(c).
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(e) Bin 5

Figure 10.2: Histograms of minimum enclosing cylinder diameters for 90-view visual hulls of garnets whose minimum sieve bin is
(a) Bin 1, (b) Bin 2, (c) Bin 3, (d) Bin 4, (e) Bin 5. Vertical lines indicate the sieve aperture diameters.
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least one of the 15 runs. Parts of the histograms that overlapthe upper bin boundaries correspond to cases in

which the stones have passed through an aperture smaller than their minimum cylinder. The figure indicates

that there are cases of stones passing through apertures up to 10% smaller than the minimum enclosing

cylinder. Note that a stone that passes through an aperture 10% smaller than its minimum enclosing cylinder

may pass through an aperture even smaller than this. This means that the ratio of minimum cylinder diameter

to smallest possible sieve aperture diameter (i.e., considering sieves of any diameter rather than the four used

in this experiment) is likely to be larger than 1/(1-10%).

Figure 10.3 illustrates the fives stones whose minimum sievebin is smaller than the minimum cylinder

diameter by the largest amount. These stones must exhibit some degree of concavity, since convex stones

Figure 10.3: Refined visual hull models of stones whose minimum sieve binis smaller than the minimum cylinder diameter by the
largest amount.

cannot pass through a sieve aperture of smaller diameter than the minimum enclosing cylinder. It is visually

apparent that the concavities on these stones allow the stone to pass through a sieve aperture smaller than its

minimum enclosing cylinder.

No attempt was made to improve the estimate of the smallest sieve aperture through which a stone can pass

by accounting for possible changes in the direction of motion as the stone passes through a sieve aperture.

However, it is interesting to note that for a convex-shaped aperture (such as the circular or square apertures

used in practice), the line hull of any shape that can pass through the aperture (with possible changing

direction of motion) can pass through the aperture too. Thisis because synclastic concavities (such as a

dimple in a golf ball) do not affect whether a shape can pass though a convex-shaped aperture. It is therefore

possible, in principle, to determine whether or not a 3D solid can pass through a convex-shaped aperture, by

considering only its silhouettes from all viewpoints.

10.4 Comparing Histogram Repeatability

Particle shape analysts have historically made use of histograms, which are the natural output of sieving to

quantify the size characteristics of a batch of particles. It has been argued that particle volume measurements

are often preferable to sieve size measurements for the purpose of characterising particle size [133]. To
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switch from sieving to silhouette-based volume estimates for characterizing size, particle shape analysts

require that histograms of volume estimates are at least as repeatable from run to run as histograms derived

from sieving.

This section considers how the problem of comparing histogram repeatability can be meaningfully framed,

and then provides the results of an experiment that indicates that both silhouette-based sieve emulations and

volume estimates provide more repeatable histograms than the sieving runs carried out for the data set of 494

garnets.

10.4.1 Method for Comparing Histogram Repeatability

Summing Bin Count Variances: ΣVAR

The variation of histogram bin counts from run to run provides a means for computing repeatability. For

a perfectly repeatable system, the bin counts will not vary from run to run. The repeatability of two mea-

surement systems can be compared using the sum of bin count variances over multiple runs of histograms

produced by the two systems using the same sample of stones. The sum of bin count variances,ΣVAR, for r

histograms produced by a measurement system withn bins is given by

ΣVAR =
n

∑
j=1

VAR(b j), (10.1)

whereb j is a vector of lengthr containing the counts of thejth bin, and VAR gives sample variance. Lower

ΣVAR indicates greater repeatability.

Individual Stone Contributions

If ΣVAR is to be determined by binning individual measurements,then different combinations of histograms

are possible. For instance, the first histogram may use the first measurement of the first stone and the

first measurement of the second stone, or it may use the secondmeasurement of the first stone and the first

measurement of the second stone. All possible combinationsare equally valid, since each stone measurement

is made independently of all others. The variation on theΣVAR statistic due to the specific combination of

measurements used to form the histograms can be reduced without introducing bias by summing the bin

variances for the measurements corresponding to each stoneindividually.

For n measurements of a stone, the contribution of a bin to theΣVAR statistic is

bin variance contribution=
kn−k2

n(n−1)
, (10.2)
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wherek is the number of times the measurement falls into the bin. Thebin variances for all bins and all

stones must be added to form theΣVAR statistic.

Naive Bin Boundary Specification

To compare the repeatability of histograms formed from silhouette-based estimates of properties such as

volume with sieve histograms, the numbers of bins must be equal, and the probability of assigning a case

to corresponding bins must be the same. (If this were not the case then bin boundaries could be chosen to

create arbitrarily lowΣVAR values.)

In order to determine the bin boundaries for the silhouette-based estimates (for which the individual measure-

ments are available), the total proportion of measurementsin each of the sieve classes must be calculated.

The bin boundaries must be positioned so that the same proportion of the total measurements are classi-

fied into the corresponding classes. It is not, however, a straightforward matter of ensuring that the same

proportion of measurements fall into each class.

Consider Figure 10.4. Each of four stones, represented by the +,×, ⋆ and◦ symbols, has been measured

Stone Measurement Values

Class 1 Class 2 Class 3 Class 4

Figure 10.4: Class boundaries cannot be determined using the stone whose measurements are to be classified with the boundaries.

seven times. If the histograms with which the measurement system is to be compared have class probabilities

of 5/28, 6/28, 9/28 and 8/28, then the class boundaries shownas vertical lines in the figure would divide the

measurements so that the proportions correspond to the other measurement system. This method introduces

a bias, since no matter how tightly the measurements from each stone cluster, measurements will be assigned

to different bins resulting in an apparently poor repeatability statistic for a repeatable system.

Leave-One-Out Bin Boundary Specification

To classify measurements without introducing this bias, a leave-one-out approach is used. The measurements

corresponding to each stone are classified individually, using the measurements of the remaining stones. The

procedure is illustrated with an example. Consider an experiment in which five stones are each measured

eight times using a particular device. If the device is to be compared with a system that outputs histograms

with bin probabilities of 25%, 45% and 30% for bins #1, #2 and #3 respectively, then measurements can be

194



0%

20%

2
5
%

4
5
%

3
0
%

40%

60%

80%

100%

Bin #1

B
in

 #
1

Bin #2

B
in

 #
2

Bin #3

B
in

 #
3

5
30Count:

Measurement Value

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

B
in

 P
ro

p
o
rt

io
n
s
 o

f 
O

th
e
r

M
e
a
s
u
re

m
e
n
t 
S

y
s
te

m

Figure 10.5: An example of classifying measurements into bins based on the measurements of the remaining stones and the mean
histogram of the of the other measurement system.

classified according to the bin boundaries as determined in Figure 10.5. In this example, the eight measure-

ments for a particular stone are represented by the open circles shown in Figure 10.5. The bin boundaries for

determining which bin each of these eight measurements falls into are determined from the sets of repeated

measurements for the four remaining stones. The mean of the eight measurements for each of the four stones

is computed (shown as black dots) and define the cumulative probability distribution. The bin boundaries

are then determined from this cumulative distribution and the eight measurements for the single stone being

binned are classified into the corresponding bins. Five of the measurements are binned into Bin #2 and three

of the measurements are binned into Bin #3. The histogram bincounts for each run (or measurement) are

shown in Table 10.4. The variance for each bin can be calculated using Equation 10.2. This particular stone

contributes a total of30/56 to theΣVAR statistic.

Bin #1 Bin #2 Bin #3
Run #1 0 1 0
Run #2 0 0 1
Run #3 0 1 0
Run #4 0 0 1
Run #5 0 1 0
Run #6 0 1 0
Run #7 0 1 0
Run #8 0 0 1
VAR 0 15/56 15/56

Table 10.4: Histogram bin counts for single stone and corresponding contributions toΣVAR statistic

Note that forn stones, extrapolation is required to define bin boundaries for cumulative bin probabilities

below 1/n and above(n−1)/n. For a large number of stones, this situation is unlikely to occur. For cases
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in which the situation does occur, the contribution of the small number of measurements that do fall outside

the range can be discounted and theΣVAR weighted accordingly.

10.4.2 Experimental Results

TheΣVAR statistic can be estimated more accurately from individual measurements than directly from his-

tograms. However, this is under the assumption that the individual measurements are independent of the run.

The assumption may not be valid for sieving, with individualmeasurements being affected by the sieving

vigour for each run. Nevertheless, theΣVAR statistic provides a useful means for comparing silhouette-based

measurements with the inherently quantised sieving measurements in the sense of individual measurement

repeatability. In addition, if a silhouette-based method can be shown to be more repeatable in the sense of

individual measurement variability, then it must also be more repeatable in the sense of direct histogram

variability, since the run-dependent influence cannot decrease variability.
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Figure 10.6: Histograms ofΣVAR values computed directly from sieve histograms with 1000 trials of random permutations of the
15 bin values for each stone. TheΣVAR value of 393.0 computed from the original data is indicated with a vertical line.

Figure 10.6 illustrates the effect of randomly permuting the 15 bin values for each run on the computed

ΣVAR statistic. This removes the run-dependent variabilitycomponent. Each of the 1000 trials produced a

ΣVAR value much lower than that computed from the original permutation, providing strong evidence that

there is a large degree of run-dependence on the bin values.

To test the validity of the implementation of the method for estimatingΣVAR from individual measurements,

a computer simulation using synthetic data was set up. Sievebins were computed for 15 runs of 494 stones,

using proportions of bin occurrences for the real data to derive the distributions from which random values

were drawn. The experiment was repeated 250000 times, with theΣVAR statistic being computed directly
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from histograms and also from individual measurements for each trial. The mean and standard deviations of

these values are given in the first and second rows of Table 10.5. Note that the mean values are similar for the

Method Runs Trials Mean STD

ΣVAR from histograms 15 250000 57.426 12.435
ΣVAR individual measurements 15 250000 57.385 1.639

ΣVAR from histograms 100000 10 57.472 0.140
ΣVAR individual measurements 100000 10 57.389 0.017

Table 10.5: Results of a computer simulation in which theΣVAR statistic was computed directly from histograms and from indi-
vidual measurements for 494 cases. Values were generated from probabilities determined by the proportions of bin occurrences for
each of the 494 garnets over the 15 runs of sieving.

two methods, but the values computed from the histogram showa much larger spread than those computed

from the individual measurements. This indicates that a better estimate ofΣVAR is obtained using individual

measurements. To ensure that the correct quantity is being measured, theΣVAR statistic was computed for

a large number of runs. The results of 10 trials of 100000 runsare given in the third and fourth rows of the

tables The results indicate that estimatingΣVAR from a small number of runs (15 runs) does not introduce

substantial bias with either the histogram or individual measurement methods.

Comparing the silhouette-based measurements with sievingmeasurements requires the sieving measure-

ments to be binned. Bin probabilities must be the same as the sieve bin probabilities for a meaningful

comparison.

A computer simulation was carried out to test the validity ofthe implementation. A normal distribution was

created from which 494 sample values were drawn. Normally distributed noise of fixed standard deviation

was then added to create 15 noisy measurements for each sample value. The samples were then binned into

five bins using four bin boundaries. These data represent thesieve measurements. TheΣVAR statistic was

computed from these measurements using the individual measurement method. A new set of measurements

was then drawn from the same distributions. These representsilhouette-based measurements with the same

inherent repeatability as the simulated sieve measurements. TheΣVAR statistic was computed for these mea-

surements using the simulated sieve data to assign the data to bins using the leave-one-out approach. Note

that the bin boundaries are not used, and in general will be meaningless when comparing the repeatability of

two measurement systems that may be measuring different stone properties (e.g., mass, volume, hardness,

electrical conductivity). In addition to the data generated from the same distributions, data were also gen-

erated using measurement noise distributions with 1.1 and 0.9 times the original standard deviations. The

ΣVAR statistic should indicate that these measurements are less repeatable and more repeatable respectively.

Mean and standard deviations ofΣVAR values for 500 trials are shown in Table 10.6. The resultsindicate that

the leave-one-out method produces aΣVAR statistic that is in close agreement with the directly computed

ΣVAR statistic from an equally repeatable measurement system. TheΣVAR values also correctly reflect the

lower and higher repeatability of the simulations of the twoother measurement systems with different noise

characteristics.
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Data Mean STD

Original Binned Data 59.92 3.88
Data with same measurement STD59.59 4.34
Data with 1.1× measurement STD 65.44 4.62
Data with 0.9× measurement STD 53.93 4.02

Table 10.6: Results of a computer simulation in which theΣVAR statistic was computed by binning individual measurements using
the leave-one-out approach. The mean and standard deviations for 500 trials are shown. Size and noise variation values were
based on minimum cylinder diameter values computed from thereal data set. The four sieve aperture diameters were used asbin
boundaries.

ΣVAR statistics were computed for the sieving data and various silhouette-based estimates of shape proper-

ties. Results are presented in Table 10.7. The 95% confidenceintervals were computed using the bootstrap

ΣVAR
95% Conf. Int.

Measurement lower upper
bound bound

sieving 61.5 53.9 69.6
VH min cylinder diameter 64.0 53.7 77.5

VEMH min cylinder diameter 35.3 27.1 46.4
VH nonconvex volume 30.4 25.6 43.6

VH convex volume 29.8 24.8 41.5
VEMH convex volume 24.1 20.0 36.5

Table 10.7: ΣVAR statistics for sieving and various shape features measured from silhouette sets.

percentile method [36] with 2000 bootstrap samples per case. Note that the sievingΣVAR values that are

computed from individual measurements are substantially lower than the values computed directly from his-

tograms (see Figure 10.6 in which the mean value of the histograms will tend towards the values in Table 10.7

as the number of trials is increased).

Although the sievingΣVAR values which are computed from individual measurementswould provide an

underestimate of the actual sum of bin variances one would obtain over repeated sieve runs (since the run-

dependent component of variability is not considered), they provide a useful means of comparing the re-

peatability of the inherently quantised sieve measurements with shape features derived from silhouette sets

on an individual measurement basis.

TheΣVAR values indicate that visual hull volume is more repeatable than sieving in terms of individual mea-

surements. Since visual hull repeatability is not run-dependent, while sieve repeatability is run-dependent,

visual hull volume histograms are also expected to be more repeatable than sieving histograms.

The table confirms observations of measurement repeatability implied by matching accuracy (see Table 10.2):

(1) VEMH-based measurements tend to be more repeatable thanvisual hull-based measurements, (2) vol-

ume measurements tend to be more repeatable than minimum cylinder measurements.
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Only the minimum enclosing cylinder of the visual hull appears to be less repeatable than the sieve-based

measurements on an individual stone basis. This suggests that the minimum enclosing cylinder of the VEMH

(rather than the visual hull) should be used to emulate sieving.

The contribution that each stone makes to theΣVAR statistic can be used as a measure of how likely the

stone is to land in different bins on different runs. Presumably, the shape of a stone plays an important role

in determining the likelihood that a stone will have a tendency to fall into different bins on different runs.

Figure 10.7 illustrates the five stones that produced the largest contribution to the sievingΣVAR statistic.

The 3D shapes do not seem to provide any obvious clues as to whythese stones have a tendency to fall into

Figure 10.7: Refined visual hull models of stones that tend to fall in different bins as measured by contribution toΣVAR.

different bins. However, the stones do exhibit some protrusions which may cause the stone to become stuck

in an aperture in certain orientations.

Also note that a stone whose minimum sieve aperture is just larger than an actual sieve aperture will have

less of a tendency of fall into different bins on different runs (as it will easily pass through the bin’s upper

boundary but cannot pass through the lower boundary). The actual bin boundaries also therefore play a role

in determining theΣVAR contribution for a stone.

10.5 Summary

An experiment in which 494 garnets were sieved 15 times has been presented. The experiment makes use of

the main shape, calibration, and recognition methods developed in this thesis to compare sieve sizing with

silhouette-based estimates of shape properties.

The proposed batch matching method (see Chapter 9) has been demonstrated to produce perfectly consistent

matches over all run pairs. This is in contrast to other simpler methods that all exhibit inconsistency, thereby

providing justification for the additional complexity of the proposed batch matching method. Matching a

pair of runs of 494 stones takes approximately three seconds(in addition to the preprocessing that can be

carried out as the stones are passed through the system). Therunning time is therefore, for practical purposes,

insignificant.
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The minimum enclosing cylinder estimator has been used to emulate sieve measurements. Histograms of

sieve measurements were compared with those of silhouette-based sieve emulators. Refined visual hull

models formed from 90 views (15 runs of six-view sets) demonstrated the limitations of using minimum

cylinders to predict sieve bins. (Note that batch matching provides an efficient means of obtaining the 90-

view visual hulls: without batch matching, each stone wouldhave to be individually passed through the

camera setup 15 times; batch matching allows the stones to bepassed through in batches, substantially

speeding up data capture.) Cases were found in which the minimum cylinder diameter of a 90-view visual

hull was up to 10% larger than the sieve aperture of the stone’s minimum bin. However, the minimum

cylinder diameter was larger than the minimum bin’s lower boundary diameter in all cases.

The sum of bin count variances (ΣVAR) has been introduced as a means for comparing the repeatability

of silhouette-based shape properties with sieving, which produces histograms as output. Volume estimates

based on visual hull volume, and sieve emulation based on theminimum enclosing cylinder of the VEMH

have been shown to be more repeatable than sieving for the data captured using a batch of 494 garnets.
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Chapter 11

Conclusion

11.1 Summary of Contributions

This thesis has extended the capabilities of multi-view silhouette based particle analysis by incorporating sil-

houette consistency constraints. Three problems have beenaddressed: (1) camera calibration, (2) estimating

shape, and (3) recognising individual stones.

To provide practical tools to particle shape analysts, running time efficiency has been considered: com-

putations which require hours or days to complete are impractical. ET error and the VEMH have played

an important role in the design of efficient methods throughout this thesis. ET error is an efficiently com-

putable measure of silhouette consistency, and a VEMH is an efficiently computable estimate of the shape

that produced a silhouette set.

11.1.1 Calibration

The configuration and calibration of two image capture setups have been addressed. The first, the two-mirror

setup, is a low cost setup that can be easily created using readily available equipment. The second, the six-

camera setup, is a high throughput system that can be used forlarge batches of stones in either an industrial

or a laboratory setting.

The Two-Mirror Setup

The two-mirror setup is used to capture five silhouette viewsof an object in a single image. It has been shown

that the setup can be calibrated using only constraints imposed by silhouette bitangents. This approach

therefore adds to the array of silhouette-based self-calibration methods described in the computer vision
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literature. These approaches include setups that impose constraints based on known circular motion [93] and

prior knowledge of camera orientation [102].

Calibration involves determining the camera pose and internal parameters as well as mirror poses; there is

therefore no need for accurate positioning of any apparatus. The two-mirror setup provides a convenient

approach to capturing multiple calibrated silhouette views of stones for shape-from-silhouette reconstruction

without using specialised equipment. Its use is not, however, limited to stones: it can be used for shape

reconstruction of arbitrary objects. Experiments have demonstrated that calibration is sufficiently accurate

that silhouette noise is a greater contribution to inconsistency across silhouettes than calibration parameter

errors.

The Six-Camera Setup

Two different heuristics were considered for determining the camera configuration for the six-camera setup:

one requires maximising the distribution of frontier points on a sphere, and the other minimises the isolation

of the direction that is furthest from any viewing direction. Both heuristics are designed to provide good

results over a range of silhouette-based applications (estimating shape, volume, and matching), and both

indicate that six cameras should be configured so that viewing directions are perpendicular to the parallel

face pairs of a regular dodecahedron. This is therefore the configuration that is used.

The six-camera setup is calibrated using several runs of silhouette sets of a ball. Initial parameter estimates

are computed by generating approximate point correspondences using the centres of the ball projections.

The method is based on the work of Tomasi and Kanade [129]. Thecalibration parameters are then refined

by minimising ET error, and scale is enforced using the knownsize of the ball.

Merging Silhouette Sets

A method for aligning silhouette sets in a common reference frame by minimising ET error has been intro-

duced. This is external calibration: the poses of the cameras must be specified, but the internal parameters

are known. The method allows silhouette sets containing a large number of views of a stone to be constructed

from setups that produce a small number of views (such as the two-mirror setup and the six-camera setup).

A larger number of silhouettes provides more constraints onstone shape, which provides the potential for

more accurate estimates of shape properties.

11.1.2 Recognition

The main recognition goal of this thesis is efficient batch matching: an algorithm to compute the one to

one correspondences between two unordered batches of silhouette sets of the same batch of stones. Batch
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matching is useful for tasks such as reconciling class labels assigned to each stone using batch classification

methods such as sieving (in which stones are classified together rather than individually). The design of a

batch matching algorithm was split into three components: (1) alignment-based matching, (2) faster, but

less accurate signature-based matching, and (3) a framework to combine the accuracy of alignment-based

matching with the speed of signature-based matching to create an efficient batch matching algorithm.

Alignment-Based Matching

Alignment-based matching simply applies ET-based pose optimisation to a pair of silhouettes. If a suffi-

ciently low error is achieved, then the pair is classified as amatch, otherwise it is classified as a mismatch.

A formulation of ET error based on an orthographic projection model was introduced to improve computa-

tional efficiency. The method was applied to the 2-mirror 5-view gravel data set and the 6-camera garnet data

set. All mismatch pairs considered were found to produce substantially larger ET errors after alignment than

any of the match pairs considered. Various CIP-based error formulations were found to produce no practical

improvement on matching accuracy when tested on downsampled image data. Used alone, alignment-based

matching provides a means for verification: a silhouette setof a stone can be compared with a silhouette set

on record to confirm that the two silhouette sets correspond to the same stone.

Signature-Based Matching

Signature-based matching uses signatures that approximate the CDF of a stone’s caliper diameter distribu-

tion. The EMD between signature pairs is used to quantify their dissimilarity. The EMD between signatures

can be computed inO(m) time complexity form-element signatures (typicallym= 10), and in practice takes

less than one microsecond to compute. This makes it practical to compute dissimilarity values between alln2

pairings across two runs ofn stones (for realistic values ofn; a batch of stones will contain several thousand

stones at the most). Although signature-based matching wasdeveloped primarily as a component of batch

matching, it can also be used for identification. To identifya query silhouette set from a database of stored

silhouette sets, the query-database pairings can be rapidly ranked in order of dissimilarity specified by EMD

between signatures. The slower alignment-based matching is then applied to pairs in order of dissimilarity.

Tests applied to the 2-mirror 5-view gravel data set result in the correct match being ranked first by EMD in

98% of cases, and the correct match is always within the top five.

Batch Matching

A simple probabilistic framework was used for batch matching. Each silhouette set pair across two runs is

assigned a likelihood ratio (indicating the likelihood of being a match). The pairs are pushed onto a priority
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queue that is prioritised by likelihood ratio. Alignment-based matching is used to make a hard (i.e., non-

probabilistic) decision for each pair and starting point considered: match or unknown. Once all matches

are found, the algorithm terminates. Efficiency is achievedby reducing the likelihood ratio using Bayes’s

rule and pushing the pair back into the priority queue after an unsuccessful optimisation. This is a greedy

algorithm: pose optimisation is always applied to the pair and starting point that is most likely to result

in successful alignment. A data set of two runs of six-view silhouette sets of uncut gemstones is correctly

matched up in approximately 68 seconds on a 3.2 GHz Pentium 4 machine. Of this, 50 seconds is spent on

preprocessing that can be computed online as the stones passthrough the six-camera setup.

11.1.3 Shape

The VEMH has been introduced as an alternative to the visual hull for estimating the shape of the convex

hull of a stone from its silhouettes. The VEMH can be used to estimate the caliper diameter of a stone in a

given direction. This has been used for recognising stones,but is also of use to particle shape analysts who

use estimates of the short, intermediate, and long diameters for a broad range of applications.

The accuracy with which commonly-used shape properties (long, intermediate, short diameters and volume)

can be estimated from silhouette sets has been quantified forboth image capture setups considered. Merging

silhouette sets to create a single large silhouette set of a stone from silhouette sets containing a smaller

number of silhouettes has been shown to improve the accuracyin estimating these shape properties.

The extent to which the minimum enclosing cylinder can be used to emulate sieving has been investigated in

an experiment which makes use of the calibration, recognition, and shape methods developed in this thesis.

The sieve bin associated with each of 494 garnets across 15 runs of sieving was determined using batch

matching. The bins associated with most stones are consistent with the minimum cylinder diameter, limiting

the smallest sieve aperture through which the stone can pass. A few stones landed in bins bounded by circular

apertures with diameters smaller than the minimum cylinder, indicating that these stones may have changed

their direction of motion as they passed through the aperture. Both visual hull-based volume estimates and

silhouette-based sieve emulation were found to produce more repeatable histograms than sieving for the data

set of 494 garnets.

11.2 Future Work

There are many ways in which the work described in this thesiscan be extended. Some ideas follow.

This work has been limited to considering silhouette imagesof stones. Front-lit images from colour cameras

will provide information about the colour and surface texture of stones. This information may enable esti-

mation of particle properties that are not available from silhouettes. Stereo vision techniques may be able to

reconstruct concavities that cannot be captured with silhouettes.
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There has recently been interest in the discrete element modelling community in using silhouette-based

methods for model validation [107]. Li et al. [79] use computer simulations with discrete element modelling.

They are interesting in the efficiency of the sieving processas a function of sieving time and intensity. The

methods presented in this thesis may be useful for validating this type of computer simulation with real

experiments. For instance, the results of a computer simulation of sieving (using 3D shape models computed

from a real batch of stones) can be compared with the results that are achieved in practice on a stone by stone

basis.

Some initial work indicates that ET-based alignment of silhouette sets may be adapted to align silhouettes of

a stone before and after the stone is chipped. Figure 11.1 shows an example.

Figure 11.1: A refined visual hull model of a stone formed by merging five 6-view runs is shown in red. A portion of the stone
was subsequently chipped off. A refined visual hull model of the chipped stone formed by merging five 6-view runs is shown in
yellow. The original stone is also overlaid on the broken version to aid visualisation of the chipped piece. Silhouettesof the stone
are shown in black with the CIPs formed from all silhouettes overlaid in grey. Each row of silhouettes corresponds to a camera view,
and each column, a run. The stone was chipped between runs 5 and 6. CIPs therefore do not cover portions of the original stone
corresponding to the chipped piece: these portions are black.
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To specify all silhouettes in a common reference frame, poseoptimisation using a modified version of ET

error that accounts for the chipping was used. (The modification assumes stone projections can become

smaller, but not larger between runs 5 and 6.) This provides the potential to analyse the shape and location of

chipping during certain industrial processes, and to recognise stones even if they are chipped. Understanding

the nature of breakage is important when dealing with high value gemstones. By identifying the shape and

location of chips broken from real stones, it may be possibleto validate computer simulations that attempt

to predict the breakage occurrences. Since constraints on relative pose are weaker after breakage, it may be

necessary to use more silhouettes or to incorporate CIP constraints in addition to ET constraints.

Gemstones are manually classified into different shape classes for valuation purposes. It is possible that some

of the recognition methods developed in this thesis could beextended to automate the shape classification of

gemstones.
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Appendix A

Threshold-Based Subpixel Segmentation

The methods developed in this thesis use as input polygonal boundaries that separate the foreground and

background regions in images. This appendix describes the silhouette boundary extraction algorithm used

to segment the images captured by the six-camera setup described in Chapter 5. Since images are captured

under controlled lighting conditions, a simple threshold-based segmentation effectively separates foreground

from background.

An empty background image is stored for each of the six cameras so that background subtraction can be ap-

plied. This reduces the effect of any intensity variation ofthe background over an image. Otsu’s method [105]

is applied to the difference images to determine thresholds. The method selects a threshold to minimise the

intra-class variance of pixel intensity values for background and foreground. In practice, the extracted bound-

aries are found to be insensitive to the precise threshold value since backlights ensure that background pixels

are substantially brighter than foreground pixels.

The algorithm achieves efficiency by using a strategy that does not visit each pixel. This can be done because

the boundary of only one connected region is sought per image(i.e., the prior knowledge that each image

contains exactly one stone silhouette is used). Only visited pixels are classified as foreground or background.

This is done by subtracting the pixel intensity value of the background image from the pixel intensity value

of the foreground image and comparing the result with the fixed threshold value. This allows segmentation

to be carried out without visiting each pixel. After a pixel-resolution boundary is extracted, the boundary is

traversed once more to compute a subpixel resolution boundary using linear interpolation of pixel intensity

values. The resultant boundary is equivalent to themarching squaresboundary. (Marching squares is the 2D

analogue of marching cubes [84].)

Broadly, the algorithm proceeds as follows:

1. Find a pixelinsidethe silhouette.

2. Walk downwards to find the boundary of the silhouette.
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3. Traverse the silhouette to determine its pixel resolution boundary.

4. Traverse the silhouette again to determine its subpixel resolution boundary.

A.1 Finding a Starting Point

The first step of the algorithm is to find a pixel that is sufficiently dark (i.e., a foreground pixel). This is

carried out by considering grid point vertices at successively finer resolutions until a foreground pixel is

found. The first point is the image centre. This point belongsto the Level 1 Grid. The Level 2 Grid is formed

by points in the centres of the four rectangles defined by the image corners and the first vertex. There are

therefore four Level 2 vertices. Vertices belonging to further grid levels are defined in a similar manner using

the rectangle centres of the grid’s predecessor. Figure A.1illustrates the point locations for grids up to Level

5. There are 22(n−1) point locations for a grid of leveln.

The procedure of looking for a foreground pixel ensures thatfew pixels are visited. Figure A.2 shows an

example. In this case, ten grid points are considered beforea sufficiently dark pixel is found.

Once a dark pixel has been found, the algorithm searches for abackground pixel. This is done by moving

downwards one pixel at a time as can be seen in the example in Figure A.3.

A.2 Pixel-Resolution Boundary

Once a pair of foreground and background pixels has been found, their shared edge is used as the first edge

of the boundary polygon, and the leftmost vertex of this edgeis used as the first vertex of the polygon (see

Figure A.3).

The polygon is then traversed by moving from pixel corner to pixel corner, keeping the silhouette to the left.

At each step the boundary can proceed either left, straight ahead, or right. This is determined by considering

the two pixels ahead of the current polygon edge (theahead left pixeland theahead right pixel). The rules

for determining the direction of the next edge from the current edge vertex are given in Table A.1. The rules

imply that the foreground is 4-connected and the backgroundis 8-connected. However, in practice, there are

rarely images for which a 4-connected foreground differs from an 8-connected foreground.

ahead left pixel ahead right pixel direction
foreground foreground right
foreground background straight ahead
background foreground left
background background left

Table A.1: Determining the direction of the next edge from theahead left pixeland theahead right pixel.
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Figure A.1: Example showing point locations considered when searching for a foreground pixel. The grid level number associated
with each point is shown next to each point.

Figure A.2: A segmentation example. Grid points used to locate a foreground pixel are in blue with the level number shown. The
vertical path from the starting point to the boundary is in green, and the silhouette boundary is red.

Figure A.3: A closeup of part of Figure A.2. The vertical path from the foreground starting point to the boundary is shown with
green dots. The boundary is in red. A yellow circle indicatesthe start of the boundary, and a yellow line segment indicates the first
edge of the polygon representing the boundary.
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Upon return to the starting point, the pixel resolution boundary has been found.

A.3 Subpixel Boundary

Figure A.4 shows an example of a portion of a subpixel boundary. The original boundary (shown in green)

runs across pixel edges and is therefore limited to pixel resolution. To create a subpixel boundary, linear

interpolation based on pixel intensity values is used. For each edge, a pixel-length line segment is considered.

Each line segment runs from the centre of one of the pixels bounded by the edge to the centre of the other

pixel bounded by the edge. One pixel is a background pixel, and one is a foreground pixel. A vertex of the

subpixel boundary is generated along each line segment. Thevertex is positioned at a distancep from the

centre of the foreground pixel using the following formula:

p =
iF − iT
iF − iB

, (A.1)

whereiF is the intensity value of the foreground pixel,iB is the intensity value of the background pixel, and

iT is the threshold value.

Figure A.4: An example of subpixel segmentation. The original pixel resolution boundary is shown in green. The subpixel boundary
is shown in red. Each vertex of the subpixel boundary lies on apixel-length line segment associated with each edge of the original
boundary. These line segments (shown in blue) are perpendicular to and share centre points with the associated originaledges.

The resultant subpixel boundary is the same as a marching squares boundary. The marching squares algo-

rithm considers pixel-sized squares centred at each pixel corner. The corners of the squares (which lie on

pixel centres) are classified as foreground or background based on the intensity thresholdiT . The 24 = 16

possible classifications of the square determine how the boundary enters and exits the square, i.e., which

square sides the boundary crosses. The square sides are equivalent to the pixel-length line segments consid-

ered above.
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A.4 Experiments

To test the performance of subpixel segmentation, image downsampling was used. This was done because in-

tensity noise in the images is high, and at full resolution intensity noise dominates spatial quantisation noise.

Downsampling uses the mean intensity value ofn× n groups of pixels to create a lower resolution image.

Averaging the intensity values has the effect of reducing intensity noise, but increasing spatial quantisation

noise.

(a) 64×64 binning (b) 32×32 binning

(c) 16×16 binning (d) 8×8 binning

Figure A.5: Subpixel segmentation of an image of a garnet with various levels of downsampling. The subpixel boundary is shown
in colour.

Figure A.5 shows examples ofn×n pixel binning of a garnet image for various values ofn.

Pixel binning was applied to 246 image sets of garnets captured with the six-camera setup. Bin dimensions

of 1× 1 (i.e., no binning) through to 20× 20 were used. Boundaries were then extracted using both pixel

resolution and subpixel boundary extraction methods (withfixed intensity thresholds determined by the
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calibration procedure). At full resolution, the C++ implementation of the subpixel boundary extraction takes

approximately 1.5 ms per image on a 3.2 GHz Pentium 4 machine.

After extraction, the boundaries were scaled up by a factor of n to facilitate direct comparison between

different degrees of downsampling, and so that unaltered computed calibration parameters could be used.

Figure A.6 shows a plot of the internal ET error for the silhouette sets at different resolution levels using

pixel resolution boundaries and using subpixel boundaries. The plot shows that with no downsampling

Figure A.6: Plot of internal ET error versusn for n×n pixel binning of 246 silhouette sets of garnets.

(1× 1 binning), subpixel boundary extraction offers no greateraccuracy than pixel resolution boundary

extraction. This is because intensity noise dominates spatial quantisation noise. With 2× 2 binning the

ET errordecreases. This is because the averaging effect that reduces pixel intensity noise outweighs the

increased spatial quantisation noise. This suggests that,given the current lighting, it would be beneficial to

run the cameras of the current six-camera setup in 2×2 binning mode (the Dragonfly cameras used with the

current setup can be configured to run in this mode). This alsoindicates that there is scope for improvement

in boundary accuracy if the signal to noise ratio of the images is improved, by using brighter backlights for

instance.

The plot illustrates that subpixel boundary extraction produces significantly more accurate boundaries (in

terms of ET error) than pixel resolution boundaries when spatial quantisation errors are the major source of

error.
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Appendix B

An Analytical Expression for a Jacobian

Matrix

This appendix records the derivation of an analytical expression for the Jacobian matrix that is used for

ET-based pose optimisation with an orthographic imaging model (as described in Chapter 7).

The Jacobian matrix is used by the Levenberg-Marquardt method to create a local linear approximation to

the cost function

f(v) = e. (B.1)

In this case,v = (q1,q2,q3,q4,xt ,yt ,zt)
T is a seven parameter vector representing a pose. The orientation

part of the pose is represented by a (possibly non-unit) quaternion(q1,q2,q3,q4). To determine the rotation,

the quaternion is unitised. Thex-, y-, andz-components of the translational part of the pose is represented

by xt , yt andzt . The error vectorestores the individual residual values:

e= (∆x0A1B1,∆y0A1B1,∆x1A1B1,∆y1A1B1 . . .∆x0AmBn,∆y0AmBn,∆x1AmBn,∆y1AmBn)
T . (B.2)

Each residual value is identified by subscripts. The first indicates to which of the two outer tangencies the

reprojection error corresponds (0 or 1). Subsequent subscripts indicate which image from Set A and which

image from Set B correspond to the residual value.
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The Jacobian matrixJ is as follows:

J =
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The Jacobian matrixJ has as many rows as there are elements ineand as many columns as there are elements

in v. Since there are reprojection errors in thex- andy-directions for each of two outer tangencies, there are

2×2 = 4 reprojection errors for each silhouette pair. Note that the residual values are computed in only one

image of the pair. Since we are using an orthographic projection, the corresponding residuals computed in

the opposite image are identical.

If Set A containsmsilhouettes and Set B containsn silhouettes, then there aremnpairings across sets. There

are thus 4mnreprojection errors corresponding to a pose estimate.

The partial derivatives that are the elements ofJ are computed using the chain rule. For example
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The Matlab Symbolic Math Toolbox was used as an aid in computing the following partial derivatives:
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A candidate rigid transform from View 2 of Set B to View 1 of SetA is derived from its parameter vectorv

and the poses of Views 1 and 2 with respect to the world reference frames of Sets A and B.

A 4×4 matrix representing a rigid transform is derived from the parameter vectorv. The first four elements

of v represent a quaternion. The normalised (unit) quaternionq̂ = (qx,qy,qz,qw)T represents a rotation:













qx

qy

qz

qw













=
1

√

q2
1 +q2

2 +q2
3 +q2

4













q1

q2

q3

q4













. (B.21)

A rotation matrixRB→A is formed from the unit quaternion:

RB→A =







1−2q2
y −2q2

z 2qxqy−2qzqw 2qxqz+2qyqw

2qxqy +2qzqw 1−2q2
x −2q2

z 2qyqz−2qxqw

2qxqz−2qyqw 2qyqz+2qxqw 1−2q2
x −2q2

y






. (B.22)

A rigid transformMB→A that transforms Set B’s world reference frame to Set A’s world reference frame is
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formed fromRB→A and the remaining elements of the parameter vector:

MB→A =

(

RB→A tB→A

0 1

)

, (B.23)

wheretB→A = (xt ,yt ,zt)
T.

The 4×4 matrixMWA→C1 that represents the transform from Set A’s world reference frame to Camera 1’s

reference frame can be written as

MWA→C1 =













mA11 mA12 mA13 mA14

mA21 mA22 mA23 mA24

mA31 mA32 mA33 mA34

mA41 mA42 mA43 mA44













. (B.24)

The 4×4 matrixMC2→WB that represents the transform from Camera 2’s reference to Set B’s world reference

frame can be written as

MC2→WB =













mB11 mB12 mB13 mB14

mB21 mB22 mB23 mB24

mB31 mB32 mB33 mB34

mB41 mB42 mB43 mB44













. (B.25)

The transform from Camera 1’s reference frame to Camera 2’s reference frame is then is computed as fol-

lows:

MC2→C1 = (MWA→C1)(MWB→WA)(MC2→WB). (B.26)

This representation of pose is required for computing reprojection errors in the image planes of silhouettes

in Set A (sincev represents a transformation from Set B to Set A).

It is useful to define

MC2→C1 =













r11A r12A r13A txA

r21A r22A r23A tyA

r31A r32A r33A tzA

0 0 0 1






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

=




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a31 a32 a33 a34

a41 a42 a43 a44













, (B.27)

so that partial derivatives of more than one element of the pose matrices may be specified with a single

equation.

It is also useful to define

w = q1
2+q2

2 +q3
2 +q4

2, (B.28)

since the expressionq1
2 +q2

2 +q3
2 +q4

2 occurs frequently.
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The remaining equations required for populating the elements of J follow. (These were computed with the

aid of the Matlab Symbolic Toolbox.)

∂ai j

∂q1
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∂ai j

∂q2
=

(

mAi1

(

−4
q2

w
+4

q2
3

w2 +4
q3

2q2

w2

)

+mAi2

(

−4
q1 q2

2

w2 +2
q1

w
−4

q3 q4 q2

w2

)

+ mAi3

(

−4
q1 q3 q2

w2 −2
q4

w
+4

q2
2q4

w2

))

mB1 j

+

(

mAi1

(

−4
q1 q2

2

w2 +2
q1

w
+4

q3 q4 q2

w2

)

+mAi2

(

4
q1

2q2

w2 +4
q3

2q2

w2

)

+ mAi3

(

2
q3

w
−4

q2
2q3

w2 −4
q1 q4 q2

w2

))

mB2 j

+

(

mAi1

(

−4
q1 q3 q2

w2 +2
q4

w
−4

q2
2q4

w2

)

+mAi2

(

2
q3

w
−4

q2
2q3

w2 +4
q1 q4 q2

w2

)

+ mAi3

(

4
q1

2q2

w2 −4
q2

w
+4

q2
3

w2

))

mB3 j

(B.30)
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∂r i jA

∂xt
=

∂r i jA

∂yt
=

∂r i jA

∂zt
= 0 (B.33)

(

∂txA/∂xt ∂txA/∂yt ∂txA/∂zt

∂tyA/∂xt ∂tyA/∂yt ∂tyA/∂zt

)

=

(

mA11 mA12 mA13

mA21 mA22 mA23

)

. (B.34)

The individual elements ofJ (see Equation B.3) are computed using the above equations together with the

chain rule as shown in the example of Equation B.4.
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Appendix C

Polyhedral Models of Stone Data Sets

This appendix shows pictures of the polyhedral models of stones used in this thesis. The polyhedral models

are ordered so that similar shapes are nearby. This is achieved using the following approach. Each link

between a stone and its four-neighbours is assigned a cost based on the EMD between caliper diameter

distributions of the polyhedron. A low-cost combination iscomputed by randomly selecting pairs of stones,

and swapping them if the swap results in a cost reduction. A simulated annealing [51] approach is used

so that there is also a slight probability that swaps will be carried out if the swap increases the cost. The

probability is controlled by a cooling schedule so that the probability is reduced as the algorithm progresses.

This approach allows the algorithm to escape local minima.

The polyhedra have their principal axes aligned with thex-, y- andz-axes, and are viewed from the (1, 1, 1)

viewing direction. This helps in visualising the shape of flat or elongated stones in which a large part of the

particle may or may not be visible when viewed from an unspecified direction.
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Figure C.1: Refined visual hulls of the data set consisting of 220 piecesof gravel. Each visual hull is formed from 15 views of
the stone obtained by merging three runs of 5-view silhouette sets. The 5-view silhouette sets were captured using the mirror setup
described in Chapter 4.
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Figure C.2: Refined visual hulls of the data set consisting of 246 garnets. Each visual hull is formed from 30 views of the stone
obtained by merging five runs of 6-view silhouette sets. The 6-view silhouette sets were captured using the six-camera setup
described in Chapter 5.
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Figure C.3: Refined visual hulls of a portion of the data set consisting of 1426 naturally-occurring (uncut) gemstones. Each visual
hull is formed from 60 views of the stone obtained by merging 10 runs of 6-view silhouette sets. The 6-view silhouette setswere
captured using the six-camera setup described in Chapter 5.(The other stones from the data set are illustrated on pages 223 and 224.)
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Figure C.4: Refined visual hulls of a portion of the data set consisting of 1426 naturally-occurring (uncut) gemstones. Each visual
hull is formed from 60 views of the stone obtained by merging 10 runs of 6-view silhouette sets. The 6-view silhouette setswere
captured using the six-camera setup described in Chapter 5.(The other stones from the data set are illustrated on pages 222 and 224.)
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Figure C.5: Refined visual hulls of a portion of the data set consisting of 1426 naturally-occurring (uncut) gemstones. Each visual
hull is formed from 60 views of the stone obtained by merging 10 runs of 6-view silhouette sets. The 6-view silhouette setswere
captured using the six-camera setup described in Chapter 5.(The other stones from the data set are illustrated on pages 222 and 223.)
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Figure C.6: Synthetic data set of 100 nonconvex stones. The data set is used to investigate matching in Chapter 7.
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Figure C.7: Synthetic data set of 200 convex stones. The data set is usedto investigate matching in Chapter 7.
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Figure C.8: Refined visual hulls of the data set consisting of 494 garnets used in a sieving experiment described in Chapter 10.
Each visual hull is formed from 90 views of the stone obtainedby merging 15 runs of 6-view silhouette sets. The 6-view silhouette
sets were captured using the six-camera setup described in Chapter 5.
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