Chapter 7

Matching Pairs of Silhouette Sets

7.1 Introduction

This chapter moves on to the next major topic: recognisimtividual stones from their silhouettes. The
key idea is to apply the ET-based pose optimisation destiib€hapter 6 to pairs of silhouette sets. If the
residual ET error after pose alignment is sufficiently loaer the pair of silhouette sets is classified as a
match (i.e., produced by the same stone); otherwise, thieopailhouette sets is classified as a mismatch
(i.e., the two silhouette sets were produced by two diffestones).

Recall that the ultimate goal for the recognition comporafrihis thesis, as stated in Chapter 1pach
matching Batch matching is matching twmatchesof silhouette sets from two unordered runs of the same
batch of stones. This chapter investigates the simplerigmolof verification i.e., verifying that a pair of
silhouette sets was produced by the same stone (a match)néatheds developed for verification will be
extended in later chapters for the purposes of batch magchin

The proposed alignment-based method achieves its acdoyaqyproaching the matching problem from the
point of view of silhouette consistency, rather than coasidy the similarity between 3D approximations
of the stones computed from each silhouette set. A weakragsny 3D approximations is that the shape
of the 3D approximations will vary with stone orientatioreevin the noise-free case. Chapter 8 considers
a matching method that is based on 3D approximations to stbape. Although less accurate than the
method describe in this chapter, it is substantially fasteompute. Chapter 9 will demonstrate how the two
methods can be combined to achieve both speed and accuranhfimg the batch matching problem.

Alignment-based matching simply requires applying thebla$ed pose optimisation described in Chapter 6.
This chapter investigates two modifications to the methajlthle use of an orthographic projection model,
and (2) the use of a measure of inconsistency based on theirtensection projection (CIP) constraint.
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The use of an orthographic projection model is aimed at ivipgpefficiency. The use of a measure of
inconsistency based on the CIP constraint is aimed at inf@&ccuracy.

Experiments are carried out on image sets of stones captsieg the six-camera setup and the two-mirror
setup. The experiments demonstrate how the residual ETamross pairs of silhouette sets separate match
cases from mismatch cases. The improvement in running tifieéeacy is quantified for the use of an
orthographic projection model. The effect of using ClPdahsieasures of inconsistency is investigated using
downsampled real data and synthetic data for different camenfigurations. (Downsampling is required
to create overlap between the match and mismatch distritmi)i Synthetic data are used to investigate
the behaviour of ET-based matching on different camera gordtions and at different levels of image
resolution.

7.2 Related Work

There is a wealth of literature on recognising silhouettemfa fixed viewpoint, a 2D recognition problem.
Since this thesis considers stones that are arbitrarignted with respect to the cameras, these approaches
are not relevant. The computer vision literature descrs®ral approaches to silhouette-based matching
from variable viewpoints. The principal difference betwdbe problems addressed by these methods and
the problem addressed in this work is that single silhoaedte used for matching, whereas here silhouette
sets are used. Several approaches are outlined below ancketbeance to this work is explained.

Jacobs et al. [65] consider the problem of recognising aaablfjom a single silhouette. Their method is
related to the approach described in this chapter in thagreton is attempted without 3D reconstruction,
only a small number of views is used, and silhouette comsigtés used to determine matches. However,
the authors limit themselves to the case in which the camarnslates and rotates about a known axis that
is parallel to the image. Outer tangents are used to deteraginsistency using an approach based on linear
programming.

Lazebnik et al. [77] describe a method for recognising dbjémm single silhouettes by storing multiple
silhouettes of objects in a database. A geometrical apprizataken, where a match is considered to cor-
respond to consistent epipolar geometry. The method aehiéw discriminatory power by considering all
epipolar tangents rather than only the outer epipolar tatsgeF-or epipolar tangents to aid discrimination,
the tangencies must be visible across different viewpoBitsce most stone silhouettes do not have epipolar
tangents (other than the outer epipolar tangents) thatisitdesacross multiple viewpoints, such an approach
is not feasible.
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7.3 An Orthographic Model for Computing ET Error

In this section, a method for computing ET error using anagthphic imaging model is described. An
orthographic model offers several advantages over thgpeetige model:

1. An analytical expression can be computed for the Jacotiaimix that is used by the Levenberg-
Marguardt routine for pose optimisation. This has the piéto speed up the computation. Without
an analytical expression, the Jacobian is estimated usiiogward difference method [58]. This
method requires one extra evaluation of the cost functioreéeh dimension of the pose parameter
vector. Since seven parameters are used to describe théampssernion and a 3D translation vector),
each evaluation of the Jacobian requires seven extra éesisaf the cost function. If the analytical
expression can be computed faster than this, then the mgtphicess can be completed in less time.

2. In the perspective case, it is possible that an epipoleli@ayithin a silhouette. If this occurs, there
will be no outer epipolar tangencies. The use of a perspenivdel requires the additional overhead of
identifying these cases, and introduces the additionalpdexity of differing numbers of reprojection
errors corresponding to different poses. In the orthogcapase the epipoles are always at infinity,
and thus correspond to directions [58]. Each silhouettegerat a stone will always yield two outer
epipolar tangencies with respect to the epipole.

3. Tangencies can be computed more efficiently using angnaiphic imaging model. This is described
in Section 3.5.4. The gain in efficiency is because direstiohepipolar tangencies correspond ex-
actly to the direction of the epipole for an orthographic gimgg model. Tangencies can therefore be
unambiguously determined using the edge-angle data steudtnlike the perspective case, no check
is required to confirm that the vertex is a tangency.

4. Unlike in the case of a perspective model, for an orthdgamodel residual errors (i.e., distances
from tangencies to projected epipolar tangents) computedé image of a pair are identical to resid-
ual errors computed in the other image of the pair. This mehatresidual errors need only be
computed in one image for each pair.

The orthographic model is computed separately for eaclowgitie view and is based on the perspective
model for each of the cameras, which is determined with thee-aff camera calibration procedure. The
orthographic model is thus a very close approximation toftiieperspective model in the vicinity of the
stone.

The original polygonal boundary is used to create an appraton to the orthographic projection that
would be observed from an orthographic camera that sharesséng direction with the perspective cam-
era. Whereas the original polygonal boundary is specifiegixal units, the orthographic approximation
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is specified in world units (millimetres). To approximate @thographic vertexpy, py)" from the image
coordinategu,v)T of a vertex of the original polygonal boundary, the follogiequation is used:

(5)-10)- (%)

whereze. is the depth of the centroid of the VEMH. The assumption thamiplicit in Equation 7.1 is that
the depth of the VEMH centroid closely approximates the ldepthe rim points.

Zeen

5 (7.1)

Consider computing the ET error across two silhouette se¢t:A and Set B. This requires reprojection
errors to be computed across each silhouette from Set Adpaith each silhouette from Set B (as described
in Section 3.5.2).

Reprojection errors are computed for each pair of silheugéws. The relative pose of two views (one from
Set A and one from Set B) is described by a rotafiofollowed by a translation that transform points in
the reference frame of View 2 into the reference frame of Vlew

ri1 riz ris tx
R= o1 I [I23 s (7.2) t= ty . (73)
r3z rs2 r33 t;

The last rows oR andt are not needed, since orthographic projections are usedrgngbint may thus slide
arbitrarily along theZ-axis of either camera. However, in practiRe@ndt are computed as in Equations 7.2
and 7.3 since they are computed directly from 4 rigid body transform matrices that are used to describe
silhouette poses in different reference frames. Thel4igid transform matrixMc,_.c1 that transforms from
Camera 2's reference frame to Camera 1's reference franteriputed as follows:

Mc2-c1 = ( OFi ;_ ) = (Mwa-c1)(Mwg—wa) (Mc2—ws).- (7.4)
The two silhouette sets are Set A and Set B. Camera 1 is frorh &edl Camera 2 is from Set B. The matrix
Mwa_c1 describes the rigid transform from Set A's world referenaarfe to Camera 1's reference frame.
The matrixMywg_wa describes the rigid transform that attempts to align Set®dd reference frame with
Set A's world reference frame. The matti#c,_.wp describes the rigid body transform from Camera 2’s
reference frame to Set B’s world reference frame (usualmmaed aN@LCZ). The matricedMwa_.c1
andMywg_.c2 are computed using a once-off camera calibration procetheeandidate pose is represented
by the matrixMwg_wa. To computeR andt for a pair of silhouettes and a candidate pose xaddmatrix
representation of the candidate pose must be formed, andetdpgation 7.4 is used. Note that the candidate
pose describes the pose between Set A and Set B, so the pasebapecific views within Sets A and B
must be derived from both the candidate pose and the refadses within a set.
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The reprojection error is the distance from an outer epiplagency to the epipolar line corresponding to

the tangency in the opposite view. In the noise-free casditiiance will be zero, since the tangencies are
two views of the same 3D point (a frontier point). In order &amine the tangencies, it is first necessary
to determine the epipolar directions. The tangencies cam lbe located, and the reprojection errors can be
computed.

The epipolar directiom, is the projection of the viewing direction of View 2 onto tmeage plane of View 1.
This is illustrated in the example shown in Figure 7.1a.

Camera 1
Camera 2
P12+ Vver2
—_—
viewing direction 1 12 —
viewing direction 2
(a)
Ay
P12+ Vver2
P12+ Ver2
(b) ()

Figure 7.1 The epipolar geometry relating two orthographic views st@ne: (a) shows the two silhouette views, (b) shows the
image plane of the first view, and (c) shows a closeup of (bénvicinity of the outer tangency under consideration.

The viewing directiord of a camera in its own reference frame is

d=1] 0 |, (7.5)
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since by convention the camera is modelled to point along-eds. In the reference frame of Camera 1,
the viewing direction of Camera 2 is
K]
dip=Rd=| roy3 |. (7.6)
I3
Sinceds, is a direction, it is unaffected by The epipolar directiore;, is obtained by dropping the
coordinate ofdy, to project the vector onto the image plane of Camera 1:

e = ( 13 ) . (7.7)
23

Once the epipolar direction has been computed, the tangemtiges are located using the edge-angle data
structure as described in Section 3.5.4.

The reprojection errors are computed as the distance froepgolar tangency to the epipolar line corre-
sponding to the opposite epipolar tangency.

To compute the epipolar line that the projectiorpgis constrained to lie on (given the relative pose between
Views 1 and 2), a point on the line is considered. For simplithez-coordinate op, in the reference frame
of Camera 2 is set to zero so that

P2x
0
The projectionp2 is then given by
r +r +t
D12 = 11P2x + F12P2y + Ix ' (7.9)
Fo1P2x + o2P2y +1y

The epipolar lingp12+ vero meets the line that passes through the epipolar tangenagd is perpendicular
to the epipolar direction at

—r
I = P12+ Vo€12 = P1+ Uo < 2 ) . (7.10)
+ri3

(See Figure 7.1.) Solving far gives

r23(P1x — F11Pox — F12P2y — tx) — r13(P1y — r21P2x — r22P2y — ty)
U = S . (7.11)
531113

Reprojection errordx andAy are then given by

AX . — 123
()-u( ) -
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The above equations provide an efficient means for comptiied=T error in the case of an orthographic
imaging model. The residual values should only be computemé image plane of the pair. This is because
the distance values in both images are equal to the distataebn two specifications of the epipolar tangent
plane: one specified by the camera centres and the epipotgertey in View 1, and the other specified by
the camera centres and the epipolar tangency in View 2.

An important advantage of the equations laid out above isahanalytical expression can be derived for
the Jacobian matrix that is used by the Levenberg-Marqumaedbod that is used for pose optimisation. The
derivation of this Jacobian matrix is described in Apperiglix

7.4 Error Formulations Based on the CIP Constraint

The ET constraint is a weaker constraint than the CIP cdnsttas described in Section 3.5). The ET
constraint specifies a necessary, but insufficient comditioconsistency. An error or degree of inconsistency
derived using the ET constraint has been chosen for posmisgtion, since it is efficient to evaluate. This is
important since pose estimation is an iterative procechaerequires the error to be evaluated for different
parameters over many iterations.

Under noisy conditions, a mismatch pair of silhouette setg have an ET error that is sufficiently low that
the pair is misclassified as a match. However, since the QiBt@int is stronger than the ET constraint (it
specifies both a sufficient and a necessary condition forigt@ngy), a measure of inconsistency based on
the CIP constraint may not result in a misclassification.sTdpproach makes use of the ET error for pose
optimisation, but uses a once-off evaluation of a CIP-baseat for match verification.

This section presents three measures of inconsistencyatbabased on the CIP constraint: Boyer error,
convex CIP error, and nonconvex CIP error. Boyer error ietham Boyer's silhouette calibration ratio [14,

15], whereas convex CIP error and nonconvex CIP error arelrfovmulations. The three measures of
inconsistency will be compared with ET error in terms of rhaterification accuracy.

7.4.1 Boyer Error

Boyer's method [14, 15] considers the rays correspondingatth silhouette point in the silhouette regions
that are not covered by the CIP. The error associated with iegcis determined by computing the 3D point
on the ray that is consistent with the largest number of th@géettes in the set. The error contributed by
this ray is proportional to the number of silhouettes thatiaconsistent with the 3D point (i.e., silhouette
viewpoints in which the 3D point does not project into thaaciette).
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Since there is a continuum of rays corresponding to any fimiégye region, silhouettes are pixelated in order
to compute the Boyer error. The ray passing through the gieire is considered for each pixel. Higher
resolution pixelations will therefore lead to more accerapproximations of the Boyer error.

The ray corresponding to each foreground pixel in each sdtte view is considered in turn. Each of the
remaining silhouettes defines a (possibly empty) intervathee ray for which the silhouette is consistent
with the ray. This interval is computed by projecting the oayo the silhouette. The projected ray-silhouette
intersection is a line segment. This line segment is pregebiack onto the 3D ray to obtain the interval.
A 3D point on the ray that lies within the maximum possible twemof intervals is considered next. If the
maximum number of intervals is equal to the number of silli@ge then the pixel is covered by the CIP, and
does not contribute to the error since it is consistent withiliouettes. Otherwise, the pixel contributes an
error ofka/(A(m— 1)), wherek is the number of then— 1 remaining silhouettes that are consisteris the
pixel area, and\ is the total area of foreground regions in the silhouette set

Boyer's method differs from the other methods (such as thpgageh of Hernandez [39], and the formu-
lations that are presented in Sections 7.4.2 and 7.4.3)ainthle viewing ray corresponding to each point
within a silhouette is not simply classified as consisterihoonsistent. Rather, a degree of inconsistency is
obtained for each viewing ray. This is done by using iaenberof consistent silhouettes for each viewing
ray. Another approach would be to take into account some unead distancefrom consistency for each
silhouette-ray pair. This was not implemented becauseiiieificient to compute, making it impractical to
apply to a large number of silhouette sets.

7.4.2 Convex CIP Error

The convex CIP error is an attempt to create an error fornomahat is fast to compute by limiting the

input to convex silhouettes. The approach achieves effigiby providing a closed form solution that is
computed directly from the input polygons (as opposed toother methods which require rasterisation).
This comes at the cost of discarding information in the ceacagions of the original polygonal boundaries.
This information may potentially aid discrimination be®vematches and mismatches.

The convex hulls of the silhouette boundaries are used as.ifipis approach works because the silhouettes
of the 3D convex hull of a stone are the 2D convex hulls of titeosiettes of the stone: if a silhouette set
is consistent, then a silhouette set formed from the 2D cohwdls of the silhouettes in this set will be
consistent too.

The convex CIP error method integrates the distance (dgssilsed to some power o) from the silhouette
boundary to the CIP over the silhouette boundary for allsit#fites in the set. Silhouette regions that are not
overlapped by the CIP can contribute error according to lamwhiey are removed from the CIP (by squaring
or cubing the distance for instance). This is a potentiakathge over the Boyer error, since uncovered

136



regions that are far from the boundary are more likely to hesed by a mismatch than by segmentation or
calibration error.

Using convex silhouettes provides several advantages:

1. The cone intersection can be efficiently computed.
2. The boundaries of the CIP can be easily and efficiently etetp

3. A boundary-based error formulation can be used, sinceexoboundaries cannot have fractal-like
perimeters that make nonconvex boundaries highly seadiivesolution.

The cone intersection of convex cones can be efficiently coetpas a halfspace intersection. Each cone face
represents a halfspace (the halfspace on the cone side gifitie passing through the face). The halfspace
intersection is computed using a dual space formulatiorchvhllows a convex hull algorithm to be used.
Efficient convex hull algorithms exis@(mlogm) for m cone faces).

The boundaries of the CIPs can now be obtained by computengBhconvex hulls of the projected vertices
of the cone intersection. Note that computing the boundgyprojection of a nonconvex polyhedron is a
far more elaborate procedure.

To integrate the distance (raised to tite power) to the CIP around the silhouette boundary, the tayn
is traversed to identify triangular and trapeZiedgions (see Figure 7.2). The triangles consist of portans

@ (b) (©

Figure 7.2 Computing convex CIP error: (a) the silhouette boundanjiddine) and CIP boundary (dashed line), (b) the triangles
and trapezia that must be considered when computing the (&ith alternating shading to aid visualisation), and (cj@seup of
the top right of (b).

the silhouette boundary whose closest point is the same poithe CIP. The trapezia are made up of the
remaining portions of the boundary. The trapezia and tteangre computed by determining whether the
closest point on the CIP polygon is along an edge (for tra)exiat a vertex (for triangles).

*Confusingly, what is referred to as a trapezium in Britistglish is a trapezoid in American English, and vice versa. eter
British English is used: a trapezium is a quadrilateral \aiftair of parallel sides.
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The error componeritg; contributed by each of the triangles is computed from theedlside lengths, t,
andu (as illustrated in Figure 7.3) as follows (the side of lengties on the silhouette boundary polygon):

0 \%
Eui = /(x2+ fz)”/zdx+/(x2+ £2)2dx, (7.13)
—W 0
where
0 = acog(t? — & — u?)/(—2sU)) (7.14)
f = ssinB (7.15)
V = scos (7.16)
W=u-—V. (7.17)
(0,0)
t
S
f
0
«——— >
w Vv
D T E—

Figure 7.3 Diagram for computing the error contribution of triangles

Equation 7.13 was successfully evaluated for values-ofl, 2, 3, and 4 using the Matlab Symbolic Toolbox.
In this work, the exponent af = 2 was used. The solution to the integral for 2 is

1

Eyi = .
7 (1802 + 18U — 6US)

(7.18)

Similarly, the error componert;,p contributed by each of the trapezia is computed from the &ide
lengthsp, g, r, andm (as illustrated in Figure 7.4) as follows (the side of lengthies on the silhouette
boundary polygon):

m

Etrap= / [%er <1— %) r] ndx: m(p™ =™ /((p—r)(n+1)). (7.19)
0
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(0,0 m (m, 0)

Figure 7.4 Diagram for computing the error contribution of trapezia.

7.4.3 Nonconvex CIP Error

Nonconvex CIP error works with the silhouettes directiyhemtthan their convex hulls. This means that
saddle-shaped regions on a stone that are imaged as comgtivagof the silhouette boundary can poten-
tially be used to discriminate between matches and misraatd¥or instance, if two stones have very similar
convex hulls, yet differ in shape because of saddle-shaggidns, the nonconvex CIP error may be able to
correctly classify a mismatch that would be misclassifietiéf convex CIP error were used. The nonconvex
CIP error is therefore only likely to show a substantial immment over convex CIP error for matching
applications in which the stones have substantial variatiothe shapes of saddle-shaped regions of their
surfaces.

Unlike the convex CIP error, area-based integrals are s&gck a nonconvex boundary can be highly sensi-
tive to resolution. The integral of the distance to the CHis@d to thenth power for soman) from all points
inside the silhouette, but outside the CIP, forms the noveoCIP error.

A visual hull algorithm is used to compute the cone inteisaét Although Matusik et al. [91] describe
an efficient algorithm, it is not used here because it proslacgso-called polygon soup output that does not
provide connectivity information for the faces. This makesputing an exact projection of the cone inter-
section impossible, and creating an approximate quanfisgidction of the cone intersection by rendering
is slow. Instead, a marching tetrahedron-based approximat the visual hull was created using &€im-
plementatiof of Bloomenthal’'s implicit surface polygonizer [8]. The tme outputs the visual hull surface
as a triangular mesh. An alternative algorithm is the exathod described by Franco and Boyer [48].

The CIP outline is computed exactly from the triangular mesgtresentation. To do this, it is necessary
to identify the contour generator edges on the triangulasimweth respect to the viewpoint. Only edges
formed by a pair of faces in which exactly one face is towaneésiewpoint are candidates. The bottommost
vertex of the projected edges is guaranteed to lie on thameuind may be used as a starting point. From the
starting point, the algorithm moves from vertex to vertear&must be taken in selecting the correct edge, as
multiple candidate edges may share a common vertex. Edggeoms may also be crossed by edges from

TIn the case of a match, the cone intersection is the visubbhthe object and associated viewpoints. However, to agbigse
of terminology, the term cone intersection is preferredsiim the case of a mismatch set the visual hull is not a meaniogncept.
*The polygonizer library was provided by J. Andreas BaerenZechnical University Denmark).
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a different part of the triangular mesh. These crossingsecaudiscontinuity in the contour generator (but
not in its projection), and introduce new vertices. Eactepttandidate edge must therefore be checked when
traversing each edge. This makes the algorith@®@f?) complexity form candidate edges. The algorithm
terminates upon returning to the starting point. An exangp#hown in Figure 7.5.

(b)

Figure 7.5 Example showing (a) a triangular mesh, and (b) the outling projection of a triangular mesh computed using the
algorithm described above.

For each silhouette, the CIP and the silhouette are rentieedate rasterised versions. A distance transform
is used to assign values to pixels in the silhouette accgrttirtheir distance from the silhouette outline.
Pixels not covered by the CIP contribute error of the distavadue. Error values are summed for all pixels
over all silhouettes. The approach of computing the exameption of a triangular mesh described above
allows the error to be computed reasonably efficiently. Nloéd by counting the number of pixels that are
not covered by the CIP, one obtains an estimate of the areanebwerlap. This measure was considered by
Hernandez et al. [60], who created a perimeter-based méthapproximate the area of non-overlap.

7.5 Experiments

7.5.1 Empirical Match and Mismatch Distributions

Pose optimisation was applied to match and mismatch pasithoiuette sets formed from the data set of five
runs of 246 garnet stones captured with the six-camera.s€hgfive silhouette sets of each stone (from the
five runs) can be paired in 512!(5—2)!) = 10 different ways. This means that there are<1B46= 2460
match pairs. The & 246 = 1230 silhouette sets can be paired in 128R1(1230— 2)!) = 755 835 ways

of which 755 835- 1230= 754605 are mismatch pairs. However, only mismatches adiffesent runs
were considered, as this still provides a large number ofnaish pairs, whilst simplifying the selection of
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the pairs. This means that %0(246 x 246— 246) = 602 700 mismatch pairs were considered. Note that
although there is a large number of mismatch cases, theyoaisatistically independent samples. This is
because the same stone is used in multiple pairs. Such dapEnid common in the evaluation of biometrics
recognition systems such as fingerprint verification. Betlal. [10] have developed the subsets bootstrap
to account for this dependence when estimating uncertasggciated with accuracy performance statistics
derived from such data.

Pose optimisation based on the orthographic projectioretneds used, as the garnets are small with respect
to the distances to the camera. One hundred starting poars wsed for each silhouette set pair. The first
four starting points were based on alignment of the prirdpas of the two VEMHSs, and the remaining
orientation components were uniform random rotations. @eriment required several days of running
time on a 3.2 GHz Pentium 4 machine.

Figure 7.6 shows the distributions of ET error values acsdbsuette sets after pose optimisation for matches
and mismatches. It is important to notice that the match arsdnatch distributions do not overlap: the
smallest mismatch ET error is 2.26 pixels, whereas the sangatch ET error is 0.72 pixels. This means
that there is a range of ET error thresholds (0.72-2.26 gixkht will separate, without misclassifications,
match pairs from mismatch pairs for the pairs consideretigidata set.

Figure 7.7 illustrates the pairs corresponding to the highsatch error (i.e., the match that comes closest
to being misclassified as a mismatch), and the lowest misnstor (i.e., the mismatch that comes closest
to being misclassified as a match). As can be seen in the fith@enismatch pair exhibits a higher degree

of inconsistency than the match pair both in terms of ET edistances shown in red, and in terms of the

degree of non-coverage of the silhouettes by the CIPs.

The non-overlap between the match and mismatch distritgitis beneficial to the accuracy of matching
based on pose optimisation. However, it makes estimati@dotiig run error rate and comparison between
different methods difficult. In Section 7.5.4, ET error isrguared with CIP-based error formulations by us-
ing reduced resolution images with smaller numbers of videslucing the resolution and number of views
creates overlap between the match and mismatch distnitsjtivhich facilitates comparison of different

methods.

The experiment was repeated with the gravel data set captisiag the mirror setup. Three runs of five-
view silhouette sets of the 220 gravel stones were used. n@ata, 3x 220= 660 match pairs and
(220x 220— 220) x 3 = 144540 mismatch pairs were formed. Unlike in the case of #vaaj data, pose
optimisation was applied using the perspective model. Wais because some initial experimentation in-
dicated that the camera was sufficiently close to the stamrethé orthographic model to be inappropriate.
The experiment required more than a week’s processing tirhe.results of the experiment are shown in
Figure 7.8. Again, there is a range of ET threshold valuesdbmpletely separate the match pairs from the
mismatch pairs from this data. In the case of the gravel dagdargest ET error across silhouette sets for a
match pair is 0.68 pixels, whereas the smallest ET error framsmatch pair is 3.15 pixels.
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Figure 7.6. ET errors across silhouette set pairs after pose optimis&r 2460 match pairs and 602 700 mismatch pairs formed
from the six-view garnet data set: (a) shows match and m@ndistributions estimated with a kernel smoothing metheotby
variance Gaussian was used to limit over-smoothing); (byvsta closeup of (a) in the region where the distributionckrsest; (c)
shows the data points in the region illustrated by (b) (th&iced component, which is random, is a visualisation aid).
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Figure 7.7: Pair of garnet silhouette sets corresponding to the higi€&serror of a matchtop half), and the lowest ET error of
a mismatch(bottom half) For each pair, the top row shows projected epipolar tasgeithin the silhouette set in green, across
silhouette sets in blue, and error distances in red; thetotow shows silhouettes in colour with 12-view CIPs in grey.

143



~o

match

—— match mismatch|
—— mismatch R

>

o

c

()

>

=3

IS

[

0 1 2 3 4 5 0 1 2 3 4

ET error across silhouette sets [pixels] ET error across silhouette sets [pixels]

Figure 7.8 ET errors across silhouette set pairs after pose optimis&r 660 match pairs and 144 540 mismatch pairs formed
from the five-view gravel data set captured using the miretus: (a) shows the region where the distributions are stpég) shows
the data points in the region illustrated by (a) (the velocemponent, which is random, is a visualisation aid).

Figure 7.9 Match matrices formed from the gravel data set. Each elem@mesponds to a silhouette set pair from two runs.
Diagonal elements are match pairs and off-diagonal elesremet mismatch pairs. The three matrices correspond to the thn
pair combinations. Darker regions indicate lower ET error.

Figure 7.9 illustrates the three 22®20 match matrices formed from the gravel data set.

7.5.2 Recognising Stones by Mass

The results observed in the above-mentioned experimedisate that ET error after pose optimisation
provides a potentially accurate way to recognise indiMidiianes. It is interesting to consider another
method that one might use to identify or recognise individtanes on different occasions: the stone’s mass
as measured by an electronic balance.

Figure 7.10 shows ROC (receiver operating characteristicyes computed using mass difference as mea-
sured by an electronic balance as a measure of dissimildiggults are shown for the data set of gravel
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Figure 7.10 ROC curves computed for dissimilarity defined as the diffiee in mass as measured by an electronic balance. The
ROC curves have nonlinear axes to aid visualisation: thfsigletection error tradeoff curve format introduced by t\aet al. [89].

and gemstones. Each stone was weighed with an electroraadsal Each gravel stone was weighed on
three different days (three runs of mass measurements).rungof mass measurements were captured for
the gemstone data. This was carried out by staff of the coynpgaat provided the gemstones. The ROC
curves show the estimated error rates that one would obtaim fatching the stones based on a threshold
on the difference between mass values measured on twoedliffeccasions. The ROC curves are computed
by determining all the measured mass differences for matahd for mismatches across runs. The ROC
curves indicate that using measured masses cannot be upeavite error-free classification. This is be-
cause the variability of measured masses is sufficientlis togcreate differences in measured mass of the
same stone that are in some cases higher than the massrdiffereetween different stones. In the case of
the gravel stones, the data indicate that the equal ermiigapproximately 0.5%, whereas the equal error
rate is approximately 3% for the gemstone data. The gemstat@eproduce larger errors partially because
the mass variability is not as large as for the gravel datxrethre many cases where pairs of gemstones have
approximately the same mass, and are therefore prone @ tmesclassified as matches (a false acceptance).
The ROC curve for the gemstone data indicates that to atthiw false rejection rate (say 0.1%), one
must tolerate a very high false acceptance rat8Q%). This is because the mass measurements contain
several gross errors (the measurements were possiblyréatigrtranscribed by the data capturer). A few
large measured mass differences for match pairs resukkingbessity of a high tolerance for measured mass
differences if one is to ensure that the false reject ratamesriow. This will result in a high false acceptance
rate as many mismatch pairs will be misclassified as matcHes principal reason for presenting the ROC
curves in Figure 7.10 is to demonstrate that identifyingnatoby individual mass is infeasible for the data
sets considered in this thesis.
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7.5.3 Running Time Experiments

Section 7.3 presented an algorithm for computing ET erreedian an orthographic projection model. This
approach was designed to speed up the computation of ther&T €he results presented here quantify the
speedup that one obtains using the orthographic modehithstiethe perspective model.

Table 7.1 shows the mean running time for optimisation frasimgle starting point for different optimisation
types. Results were computed using 246 pairs of six-vidwogitte sets of garnets.

imaging | tangency Jacobian mean
model location computation time
orthographic| lookup analytical 4.6ms
orthographic| scan analytical 11.6ms

orthographic| lookup | forward difference| 8.6 ms

orthographic| scan | forward difference| 28.6 ms
perspective | lookup | forward difference| 73.6 ms
perspective| scan | forward difference| 144.6 ms

Table 7.1 Mean running time per optimisation for various methodsoKup’ means the edge-angle lookup was used and ‘scan’
means that each vertex of the polygon was visited to determaingencies. Times are computed using 6-view silhouetseofe
garnets with a stopping criterion requiring an error returcof no more than 1% reduction of the RMS residual ET err@rdhree
Levenberg-Marquardt steps. A 3.2 GHz Pentium 4 machine wed.u

The results demonstrate the speedup that is achieved itigerachen using the proposed modifications to
compute ET error. A speedup of a factor of 30 is achieved twebasic perspective model without tangency
lookup. Tangency lookup increases the speed of the peigpdetsed method by a factor of two. A further

speedup of a factor of approximately eight is achieved bychivig to an orthographic model. The use of an
analytical expression for the Jacobian matrix providesthéu speedup of more than a factor of two.

7.5.4 Performance of CIP-Based Error Formulations

Silhouette inconsistency formulations based on the ClBtcaimt were presented in Section 7.4. To compare
the performance of the CIP-based formulations with ET ethergarnet images were downsampled to reduce
the silhouette boundary accuracy, and in so doing to craatvarlap between the match and mismatch
distributions for ET error. Each pixel in 3232 blocks of pixels was replaced with the mean intensitye/alu
of the 32x 32 block. This mimics what would be obtained using a cametia ver resolution. Figure 7.11
shows an example of a downsampled silhouette set.

Pose optimisation as described in Section 7.5.1 was apfiedatches and mismatches formed from the
first two runs of the downsampled garnet data. (Only two ruessvused because of the long running time
required for these experiments.) The experiment was regaating different subsets of camera views to
investigate the effects of varying the number of cameras.
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Figure 7.11 An example of a six-view image set of a garnet afterx32 downsampling. Extracted polygonal boundaries are
shown in colour.

Where parameter values needed to be chosen (e.g., sikhaasterisation resolution for Boyer error, and
voxelisation resolution for nonconvex CIP error), the esllwere chosen so that any attempt to further
increase the accuracy would result in negligible improvaeimie The approach to parameter value selection
therefore sacrifices speed in favour of matching accuracy.

Figure 7.12 shows ROC curves computed after ET-based paieiggtion using different CIP-based for-
mulations and ET error. Boyer error was not computed in tegperiments because of its prohibitively high
running time. The plots show ROC curves based on an additimrasure of dissimilarity: earth mover's
distance (EMD) between caliper distributions of the VEMHiSTmethod will be described in the next chap-
ter. Unweighted nonconvex CIP refers to nonconvex CIP eworputed without the distance transform: the
silhouette area not covered by the CIP is used without wigighincovered regions according to the distance
from the boundary.

The plots show that greater accuracy is achieved as the maht@meras is increased, because this increases
the number of consistency constraints imposed by the sttes within a set. Despite incorporating more
information than ET error, Figure 7.12 indicates that in huases the CIP-based error formulations produce
worse ROC curves than the ET error. The plots suggest thatltRdbased methods only outperform ET
error (in terms of accuracy) for certain operating pointthefROC curve for the 3-camera case.

The poor performance of the CIP-based methods (partiguiarimore than three cameras) may be a conse-
guence of the following:
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148



1. Asthe number of well-distributed views is increased,dbwestraints imposed by the epipolar tangents
become closer to the constraints imposed by the CIPs. Thispmated out by Hernandez [39].
The potential advantage of using a CIP-based measure afsiatency is therefore diminished as the
number of views considered is increased.

2. CIP-based errors require the cone intersection to be gtmdp The cone intersection is sensitive
to noise, since if any silhouette indicates that a 3D regibapace is empty it is considered to be
empty. This noise sensitivity is analogous to using a marinmather than a mean of some feature
to characterise a class of objects. For instance, one migleicethe maximum caliper diameter of a
silhouette to be more noise sensitive than the mean calipereder.

3. Stones tend not to have deep concavities that are visine Widely disparate views. This limits the
potential of nonconvex CIP error to incorporate informattbat cannot be captured by ET error (or
convex CIP error).

Figure 7.12b suggests that CIP-based error can provideisuperformance to ET error in at least some
situations. Figure 7.13 uses bootstrap replications tstilaite that the observed differences between the
ROC curves are not likely to be due to chance alone. When deriisg the statistical variability of a curve
estimated from samples, Efron [35] recommends using baptsamples (i.e., repeatedly drawmgamples
from the originaln samples with replacement) for a “quick and dependable rgcifithe statistical variability

in the original curve.” The idea is that the variability okthootstrap curves approximates the variability that
one would obtain if one carried out the same experiment (different random samples) many times. Since
error values are not independent, the ‘subsets bootstrafiiod of Bolle et al. [10] was used. The method
groups error values in an attempt to reduce dependence ds asygossible. The plot indicates that the
observed superior performance of the CIP-based methobe impper region persists over twenty bootstrap
replications.

The superior performance of CIP-based methods for cerfsrating points in the three-view case is clearly
of little practical significance, and thus far the CIP-basezthods appear to be of little use.

In a further attempt to investigate whether CIP-based nustimight outperform ET error in certain situa-
tions, synthetic data sets were used. The first set was drérata refined visual hull models of 100 uncut
gemstones that were selected for their degree of noncdyvéakie stones are scaled along their three princi-
pal axes so that each stone has unit convex volume and pecdlameter along the three principal directions
are in the ratio 2 : 3: 4. Giving the stones the same gross strapees that false acceptance errors occur.
The synthetic nonconvex stones are illustrated in Appe@ddn page 225. Nonconvex stones were created
as these have the potential to demonstrate the superidriggnzonvex CIP error over convex CIP error.

A further set of synthetic stone shapes was generated bastt @wonvex hulls of the refined visual hull
models of the first 200 garnets. Again, the stones are scéded their three principal axes so that each
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Figure 7.13 Twenty bootstrap replications of the ROC curve shown iruFegr.12b.

stone has unit convex volume and its caliper diameter albaghree principal directions are in the ratio
2:3:4. These stones are illustrated in Appendix C on page 226

Synthetic images were generated from the synthetic stonesskerising the polygonal projections. Various
camera configurations were simulated. The camera confignsaére based on the optimised frontier point
criterion (as described in Chapter 5, and illustrated inuFéds.5 on page 86).

ROC curves computed from the synthetic data are shown irr&igd4. Boyer error was computed for the
nonconvex stones. The plots show similar behaviour to thedata: CIP-based methods outperform ET
error only for small numbers of cameras (fewer than six), iarttiese cases the outperformance is only for
certain operating points on the ROC curve.

7.5.5 Effect of Image Resolution and Camera Configuration

Synthetic data sets were further used to investigate tleetsfbf camera configuration and image resolution
on match and mismatch distributions of ET error after poggaient.

Camera configurations based on the optimisation critesardeed in Chapter 5 were used. In addition, var-
ious six-camera configurations were investigated to atstthe importance of the configuration of cameras
for a fixed number of cameras. The additional six-cameragpsettere generated by varying the elevation
angle of cameras positioned in a semicircle. Three exangpéeshown in Figure 7.15.

Figure 7.16 shows the match and mismatch ET error valuesiffereht camera configurations and factors
of resolution reduction. Many of the camera configuratidnewsa similar trend: as the image resolution
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151



P IC [©] DOl &

Figure 7.15 Six-camera setups with elevation angles of @@p row), 30° (middle row) and O (bottom row)

is decreased, the distribution of match errors rises in digable fashion, and the distribution of mismatch
errors stays in roughly the same position, rising only shgh

There are, however, some pathological cases: in some casesas with coplanar optical axes produce low
ET errors for both match and mismatch pairs. This is becdwesegipolar tangencies occur in approximately
the same position for coplanar camera setups. (The extevhitdh the epipolar tangencies are not exactly
coincident is influenced by the degree of perspective disturif the cameras are moved back to infinity,

the epipolar tangencies will be exactly coincident.) Thagptherefore clearly illustrate the undesirability of

the coplanar camera configuration for matching.

In the case of well-distributed cameras, camera configamatbased on minimising the most isolated viewing
direction, and on minimising the sum of distances betweentier points produce similar results. This is
because any well-distributed camera setup is likely to peedepipolar tangencies that are well-separated
from one another, and whose residual error values are ainaegbendent from one another.

Figure 7.17 illustrates the match and mismatch error valuedifferent six-view configurations. The plots
demonstrate that the configuration of cameras is imporfarg.camera configurations correspond to differ-
ent elevation angles. For low elevation angles, the cordigunr is close to the coplanar configuration, and
poor separation between match and mismatch error valubsésved. As the elevation angle is increased the
separation improves, and then degrades again as the etematjle becomes large and the viewing directions
converge.
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Figure 7.16 Plots of match values (red) and mismatch values (blue)ifferdnt camera configurations. Different levels of quanti
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configured to fulfil the frontier point criterion (frontierhe direction isolation criterion (isolation), or to has@planar optical axes

with even angular distribution about 18@coplanar).
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7.6 Summary

It has been demonstrated that attempting to align silhewstt pairs by minimising ET error provides a
means for determining whether the pair is a match or a mismaethods for improving the efficiency and
the accuracy of the approach have been investigated.

To improve the matching efficiency, equations that make dsanoorthographic projection model were
derived. The approach is valid for cases in which the storsmiall with respect to the distances to the
cameras. This is the case with data sets captured usingtharsiera setup. The orthographic-based method
runs approximately 30 times faster than the perspectigedaethod.

In an attempt to improve the accuracy of alignment-based:irag, measures of inconsistency based on
the CIP constraint were investigated. Since the CIP cdnsisastronger than the ET constraint, CIP-based
methods potentially make use of more information in theosi#fites to discriminate between matches and
mismatches. However, unlike the ET error, where pairwigeajection errors are accumulated, CIP-based
methods make use of a cone intersection that is computed dhonwews simultaneously. This makes the
methods more sensitive to noise. Experiments carried diit syinthetic data and downsampled real data
show the CIP-based errors outperformed ET error in termsaifracy only for certain operating points of
the ROC curve for setups consisting of fewer than five camérhs CIP-based methods are therefore not
considered any further in this thesis.

ET-based alignment was applied to all pairs across runféRimirror 5-view gravel data set (using a per-
spective camera model) and the 6-camera garnet data saj (bsi proposed orthographic approximation).
For the gravel data set, all 660 match pairs were found to kabsetantially lower ET error than any of the
144540 mismatch pairs. For the garnet data set, all 2460mpaics were found to have substantially lower
ET error than any of the 602 700 mismatch pairs. This indgctiiat ET-based alignment is an accurate ap-
proach for distinguishing between match and mismatch patithe types of data and camera configurations
considered in this thesis.

Synthetic data sets were used to investigate the effecffef@t camera configurations and different image
resolutions on match and mismatch distributions of ET edgrexpected, with insufficient image resolution
and too few cameras, there is overlap between the match amdatuh distributions, and such a setup will
produce classification errors. Configurations in which agitexes are coplanar, or close to coplanar are
observed to result in distribution overlap that does notioéar well-distributed cameras at the same image
resolution.
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Chapter 8

Dissimilarity from 3D Shape
Approximations

8.1 Introduction

Alignment-based matching (as described in the previouptehgis accurate, yet slow, since time-consuming
nonlinear optimisation must be applied for each comparidotwo silhouette sets. Although alignment-
based matching is not prohibitively slow for verificatiorska (i.e., determining whether a single pair of
silhouette sets is a match or a mismatch), the method is two tsl apply to all pairings for batch match-
ing. There aren” pairings that can be made between silhouette sets from tn@® atin stones. A naive
approach, where alignment-based matching is applied fmalhgs forn = 1000 stones, would take almost
a week to process assuming approximately 0.5 seconds peflp8i starting points and an orthographic
approximation).

To address this issue, a fast signature-based method iimragisiy the dissimilarity between two 3D shapes
is proposed. The method uses the idea of shape distributimagluced by Osada et al. [103, 104], along
with the compact representations of distributions thatriRulet al. [112, 113] refer to assignatures Likely
matches can be identified with the signature-based methibrhsthe more time-consuming alignment-based
matching need only be applied to a small number of cases. ifjhatare-based method requires less than
one microsecond to assign a dissimilarity value to a siltteuset pair (after once-off preprocessing has
computed a signature for each silhouette set). This alldMpaaings between two runs of = 1000 stones

to be considered in less than one second.

In this chapter, the performance of the proposed signdtased method is quantified in terms of accuracy
when applied in isolation (i.e., without alignment-basedtching) to verification and identification tasks.
The next chapter shows how the signature-based method caonti@ned with alignment-based matching
to efficiently solve the batch matching problem.

157



Broadly, the proposed signature-based method for congpulissimilarity is carried out as follows. The

VEMH is computed from each silhouette set as an estimateeaBihshape of the convex hull of the corre-
sponding stone. Caliper diameters are sampled from eacht/EMIifferent directions to create a caliper
diameter distribution for each silhouette set. The calgi@ameter distribution is approximated with a signa-
ture consisting of a vector of a small number of elementssiDigarity between pairs of signatures is rapidly
computed using the earth mover’s distance (EMD).

8.2 Related Work

There is a vast body of literature describing different apphes for defining dissimilarity between 3D
shapes. Several survey papers compare the different nsefpbdl24]. The methods are broadly classified
into graph-based and feature-based methods.

Graph-based methods (such as determining the skeleton afjaat) are appropriate for complex shapes,
and are typically computationally inefficient. Since stoaee simple shapes, graph-based methods are not
an appropriate means for matching.

Local feature-based methods, such as shape contexts, bameshown to be effective for shape retrieval,
even in cases where only a portion of the object is availgiddi@l matching). However, since these methods
are typically inefficient, and since local features canrmfibcurately estimated from sparse silhouette sets,
they were not considered.

Global feature-based methods compare features (suchw@se@nd moments) or distributions of features
computed from the 3D shape. Since global features or fediatébutions can be rapidly compared, these
approaches have been identified by the survey papers as gteefficient approach to matching, and are
appropriate for use as pre-classifiers. The shape distibframework of Osada et al. has been selected as
the basis of the method described in this chapter because sifriplicity, efficiency, and success in a range
of applications [22, 64, 104]. Although not considered by d¢higinal authors, the framework also facilitates
the use of the compact signature representation for whedirdilarity between distributions can be rapidly
computed.

Because of its speed, the shape distribution framework das bhosen by researchers for specific shape-
lookup applications. Canzar and Remy [22] use shape disiifis as a faster alternative to alignment-based
techniques to look up protein models from a database thagianiéar to a query model. Comparisons of
353766 700 protein shapes were completed in less than anwittu©7% nearest neighbour agreement on
class label. Ip et al. [64] use shape distributions to craajaery-by-example interface to a CAD database
of mechanical parts.

In their original work on dissimilarity measurement usidtape distributions, Osada et al. introduce five
functions that are used to form shape distributions:
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D1 is the distance between a random point on the surface arue tieid;

D2 is the distance between two random surface points;

D3 is the square root of the area of the triangle formed by traedom surface points;

D4 is the cube root of the volume of the tetrahedron formed hy fandom surface points; and

A3 is the angle formed by three random surface points.

The D2 shape function was found to be the most accurate shapedarfor looking up 3D models of
everyday objects (cars, humans, phones, mugs), and wag foyerform better than feature-based lookup

based on moments. In this chapter, these five functions anpa@d with caliper diameter distributions in
terms of matching accuracy.

8.3 Method

The signature-based method uses the VEMH as a 3D approgimattthe convex hull of the corresponding
stone for each silhouette set. The distribution of calipgameters over all directions is approximated by
sampling caliper diameters in a finite number of directiodfgproximately uniform sampling is obtained by

using the vertices of a subdivided icosahedron [61] to $pdioe directions along which to compute caliper
diameters.

A subdivided icosahedron of Levelis formed from a subdivided icosahedron of Lelel 1 as follows.
Each face of the Levél — 1 polyhedron is replaced with a vertex at its centre; alligegtare projected onto
the unit sphere, and the resultant convex hull is the Lewibdivided icosahedron. An icosahedron whose

vertices lie on the unit sphere is the Level 0 polyhedron felbdint levels of subdivision of an icosahedron
are illustrated in Figure 8.1.
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(a) Level O (b) Level 1 (d) Level 3

Figure 8.1 Different subdivision levels of an icosahedron.

The same caliper diameters are obtained along directiawsfin by antipodal vertex pairs of the subdivided
icosahedron, so only one vertex per antipodal pair is used.
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The dot product of a VEMH vertex and the unit direction vectat is used to determine the extemof the
vertex in the direction:
e=v-d. (8.1)

The caliper diamete in directiond is the difference between the maximum and minimum extentesain
the direction:

C = €max — Emin- (8.2)

Rubner et al. [112, 113] point out that distributions can fhieiently approximated asignaturesinstead of
histograms with bins of equal width. Creating signatureslires clustering sample points and representing
each cluster with a single point, typically the centroid loé tcluster. For one-dimensional distributions,
clustering can easily be achieved by selecting histograrma With equal counts rather than equal widths.
The mean values of the sample points in each bin form the siggaBy varying the bin width so that bin
counts are equal, greater weight is given to describing médithe shape distribution that have greater density.
The signature is therefore a more efficient approximatiothefdistribution than a histogram.

Figure 8.2 illustrates the process of forming a 10-elemigmtzsure from a silhouette set for three examples.
Note that the silhouette sets in the first two columns cooedpo the same stone (however, the stone is
oriented differently). The VEMHs and the signatures in thstfiwo columns are therefore similar to one
another, whereas the VEMH and the signature from the thilchoo appear dissimilar since they are formed
from a different stone.

Dissimilarity between pairs of signatures is computed giie EMD, which is the area between the CDFs
(cumulative distribution functions) of the two distribortis.

The EMD between two signatures is efficiently computed bgally computing the area between the two
CDFs implied by the signatures. The PDFs (probability diation functions) of the two distributions are
approximated by unit Dirac delta functions positioned atglgnature element values. The area difference is
computed irO(n) time complexity (fom-element signatures) by traversing the two arrays and agleimg

the area difference between CDFs. Figure 8.3 illustratesdimparison of signatures between a match pair
and a mismatch pair formed from the three examples of Figure 8

Note that Osada et al. [103] investigate various norms betwmth the PDF and the CDF for measuring
dissimilarity between distributions. The compact signattepresentation is not amenable to computing
distances between PDFs, so this approach is not investit/aiee. The EMD is equivalent to the 1-norm

between CDFs. The infinity-norm (i.e., maximum differenbejween CDFs is a commonly used dissimi-
larity measure that is sometimes known as Kolmogorov digtamhis is also not investigated here, since the
compact signature representations limit the number ofreiecvalues that the Kolmogorov distance could
take on. For instance, the dissimilarity between two 2-eletnsignatures could only take on three values: 0,
1and 2.
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Figure 8.2 Three examples of input silhouette séisst row), corresponding VEMHésecond row)and caliper diameter sample
values and signature valu@ird row). The vertical component in the caliper diameter value gkotandom (a visualisation aid).
Larger dots represent signature values computed as the afeamresponding deciles of caliper diameter values (10atige
elements are used). Decile colouring alternates to shoregmondences with signature values. The silhouette dee ifirst column
matches the silhouette set in the second column, but notltreistte set in the third column. ET-based pose optinasatias been
applied to align all VEMHs with the reference frame of thetfaslumn.

8.4 Experiments

8.4.1 Numbers of Samples and Signature Elements

Experiments were carried out to investigate the effect efrtmber of signature elements and the number
caliper diameter samples on the matching accuracy achigiad the signature-based method.

Bradley [16] recommends using the area under the ROC cutd€JAor a single number measure of accu-
racy. The area under the ROC curve represents the prolgahiit the dissimilarity value associated with a
mismatch selected at random will be smaller than the ditiityi value associated with a match selected at
random. Figure 8.4 shows plots of AUC versus number of sigeatlements for the gravel and garnet data
sets. The plots illustrate that further improvements irueacy are small after approximately ten elements
per signature. This indicates that, for the purpose of niagctien signature elements are able to capture
most of the information in the caliper diameter distribatio
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Figure 8.3 Examples of caliper diameter distributions for a maffitst column)and a mismatcksecond column)The match pair

is formed from columns one (green) and two (red) of Figure &2l the mismatch pair is formed from columns one (green) and
three (blue) of Figure 8.2. The first row shows distributiestimated from the caliper diameter samples using a kemebthing
method. The second row shows CDFs derived directly fromaliper diameter samples. The area between CDFs (whichsemise

the EMD) is shown in grey. The third row shows the CDFs imphbgdhe signatures overlaid on the original CDFs. The founti r
shows the area between the signature CDFs in grey. Thissesiethe EMD between signatures. The EMD is smaller in the fir
column (a match pair) than the second column (a mismatch pair
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Figure 8.4 Plot of number of signature elements versus area under@i@zdrrve for (a) the 2-mirror 5-view gravel data set, and (b)
the 6-camera garnet data set. Error bars represent 95% eocdidntervals computed using the subsets bootstrap. &atiedron
subdivisions were used to compute 3646 directions for ealiiiameter samples from each VEMH. Note that nonlinear hage
been used.
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Figure 8.5 Plot of number of caliper diameter samples versus arearduhddrkOC curve for (a) the 2-mirror 5-view gravel data set,
and (b) the 6-camera garnet data set. Error bars repres@nt@sfidence intervals computed using the subsets bootshayes
have been computed using both systematic sampling usimivéidd icosahedra, and random sampling. The following lneis of
samples were used: 16 (corresponding to one subdivision miogahedron), 46 (two subdivisions), 136 (three subiding, 406
(four subdivisions), 1216 (five subdivisions), and 364& &ibdivisions).

Figure 8.5 shows the results of an experiment in which thebmunof caliper diameter samples used to
estimate each distribution is varied.

Results are shown for both systematic sampling (based salenron subdivision) and random sampling
(using a uniform random distribution of points on a spher€he results clearly indicate that systematic
sampling outperforms random sampling using the same nupofteamples. Little further improvement is
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observed with more than 406 samples (from four icosahednbdigisions) in the case of systematic sam-
pling. Subsequent experiments therefore make use of hieslesignatures formed from 406 systematically
selected caliper diameter samples.

Using these parameter values, a 3.2 GHz Pentium 4 machieg askaverage of 1.3 milliseconds to compute
the caliper signature from the VEMH for silhouette sets gegrd using the six-camera setup. Computing the
EMD between two signatures takes an average of 0.5 microdsco

8.4.2 Comparison with ET Error

The EMD between signatures was computed for all match anthatidh pairs for the garnet data set and
compared with the ET error across the same pairs. A plot of BAgiBus ET error is shown in Figure 8.6.
The EMD and ET error values are highly correlated with onettzero The closeup in Figure 8.6b shows
that whereas the ET error separates all match pairs from ati¢npairs, the EMD between signatures does
not. The EMDs are however substantially faster to compue the ET errors: the EMD between signatures
take approximately half a microsecond to compute and therEFsetake approximately half a second. The
EMDs are therefore faster to compute by a factor of a million.
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Figure 8.6: Plot of EMD versus ET error for silhouette set pairs from@heamera garnet data set. The plot on the right is a closeup
of part of the plot on the left.

8.4.3 Different Methods of Estimating Stone Shape

Caliper diameter signatures were computed using the visuband the constant depth rim hull (CDRH) as
alternatives to the VEMH for estimating the convex hull af #tone from its silhouette set. The ROC curves
shown in Figure 8.7 illustrate that greater accuracy isead using the VEMH than the two competing
methods. The CDRH produces the worst results. Efron’s nagtBis] of visualising the statistical variability
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Figure 8.7 ROC curves derived from (a) the 2-mirror 5-view gravel de¢s and (b) the 6-camera garnet data set for caliper
signatures computed using different means to approxinh&&D convex hulls of stones: VEMHS, visual hulls, and CDR{d};
twenty bootstrap curves drawn from the data presented jicjgiwenty bootstrap curves drawn from the data presemi€iol)i
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associated with the curves is illustrated in Figures 8.7t 8rvd: the subsets bootstrap [10] is used to show
20 bootstrap replications (an estimate of what would be rvskif the experiment were repeated 20 times
with new samples). The bootstrap replications indicatettiadifferences between the curves is sufficiently
low that the observed differences cannot be attributedaoct The greater variability present in the bottom
right of the curves is an artefact caused by using many maosenatch pairs than match pairs. Part of the
reason that the plots for the gravel data exhibit greataabity than the plots for the garnet data is that
fewer runs were used (3 runs that provide 3 pair combinat@ngss runs versus 5 runs that provide 10 pair
combinations across runs).

8.4.4 The Shape Functions of Osada et al.

Figure 8.8 shows ROC curves computed using the caliper déandgstribution and the shape functions
suggested by Osada et al. [104]. The caliper diameter lolisimns outperform all of the shape functions of
Osada et al. for both data sets.
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Figure 8.8 ROC curves derived from (a) the 2-mirror 5-view gravel de¢d and (b) the 6-camera garnet data set for caliper
signatures and for the shape functions proposed by OsadldHd4]. One million samples of each shape function of Oseidal.
was used for each VEMH. This value was found to be sufficidatiye so that further increases showed negligible impr@rerim
accuracy.

The shape functions show a wide range of performance, wétldigtance-based\) features degrading as
the numbem of random surface points used to compute each sample isasenle The worst performing
shape function is thA3 feature, which is based on angle distributions rather thstance-based distribu-
tions.

Note that Osada et al. use the functions to identify simiteapgs from existing mesh models. Here, dis-
similarity is based on approximate 3D shapes that are dkffrem silhouette sets. The more accurate
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performance of the caliper distribution indicates that ¢h&per distribution of a stone can be more accu-
rately inferred from the silhouette sets than Osada etshidpe functions (with respect to the variation of the
shape distribution amongst different stones). This doegmay that caliper distributions would outperform
Osada et al.’s shape functions for the 3D model retrievaliedn for which they were designed.

8.4.5 The Effect of Size and Shape

Part of the ability of the signature-based method to disiisty match pairs from mismatch pairs is the size
variability of the stones within each data set. To obtainratication of the performance of the signature-
based method with only shape information, matching wasezhout using normalised signatures. Normal-
isation was carried out by dividing each caliper diametstritiution by its mean. In addition, matching was
carried out using only size information: the mean diametdues were used as 1-element signatures.

Figure 8.9 shows the results in terms of ROC curves. As egfdetite normalised signatures provide lower
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Figure 8.9 ROC curves derived from (a) the 2-mirror 5-view gravel de¢d and (b) the 6-camera garnet data set for caliper
signatures, normalised caliper signatures, and meanecalipmeter values. Normalised caliper signatures are al@ed by
dividing by the mean caliper diameter to create signatulifs umit mean in all cases. This demonstrates the accuraznaible
without scale enforcement after camera calibration, oivadgntly, the accuracy obtainable with shape informatiom not size
information. The mean caliper diameter shows the accurbairmable with size information but not shape information.

accuracy than the original signatures, since size infdondtas been discarded. However, the normalised
signatures outperform the mean caliper signatures for puestating points. This indicates that the caliper
signatures accurately capture some essence of stone shiee than discrimination accuracy being due to
the size variability present in the data sets. The plotscatdi for example, that an operating point can be
chosen (for either data set) so that the equal error ratepiorimately 2%. This means that, for a certain

EMD threshold, the signature-based method would corretalysify a randomly selected match or mismatch
pair with 98% probabilitywithout scale information.
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8.4.6 Feature-Based Dissimilarity

The signature-based method was compared with a few simgiigréebased methods. To justify its additional
complexity over the simpler feature-based methods, theasige-based method should provide superior
accuracy.

Four features were measured from each VEMH: volume anderatimmeters along the three principal
directions. The absolute difference between the two feafatues associated with each pair was used as
a measure of dissimilarity. In addition, the Euclidean atise between a 3-vector consisting of all three
principal caliper diameters was used as a further simpleifedoased method. ROC curves based on the
different methods are shown in Figure 8.10. The plots irtditiaat the signature-based method substantially
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Figure 8.10 ROC curves derived from (a) the 2-mirror 5-view gravel ds¢a and (b) the 6-camera garnet data set for caliper
signatures and feature-based measurements. Dissimikdiefined by difference in volume, and difference in caligemeter
measured along the three principal directions of the VEMtih{ary, secondary, and tertiary). Dissimilarity definedresEuclidean
distance between a 3-vector of the three caliper diamelng ¢he principal directions (three principal) is showmeTROC curve
computed using differences between mass measured on &oeledalance is shown for the gravel data set.

outperforms the simple feature-based methods. Calipaeratir along the tertiary principal direction (short
diameter) is the worst performing feature. Caliper diameteng the primary principal direction (long di-
ameter) outperforms caliper diameters measured alongthiee wvo principal directions. This is consistent
with observations made in Chapter 3 that indicate that &ldagree of variability is associated with esti-
mating short diameters from silhouette sets. Using altliliameters provides better performance than any
one diameter.

The plot in Figure 8.10a also shows the ROC curve derived filoengravel masses measured using an
electronic balance. The plot does not appear stepped kkettter curves. This is because of the discretised
nature of the mass measurements: more than one mass measudifierence corresponds to the same
value. The ROC curve of the mass measurements crosses thelR@Cof the signature-based method,
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indicating that which method is better depends on the ojpgraoint selected. The mass-based approach
performs poorly at low probability of false acceptance. sTisibecause there are 61 mismatch pairs (of the
144 540 mismatch pairs considered) whose dissimilarityesalthat is, differences between the measured
masses of two different stones) are exactly zero. (Theutsnlof the electronic balance was 0.01 grams;
the mean mass was 20.72 grams, and the standard deviatiom iiss values was 6.91 grams.)
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Figure 8.11 (a) Rank versus cumulative match score plot derived usimgus measures of dissimilarity; (b) a closeup of part of
the plot shown in (a).

Rank versus cumulative match score plots [106] show thegptiom of cases in which a query ranks within
the topr matches. For instance, a rankref 5 with a cumulative match score of 0.85 means that the correct
match ranks amongst the top five matches (ordered from ssh&dléargest EMD) in 85% of all cases. The
plots are computed by considering each case as a query inatoidncomparing each query with the other
cases from another run. All combinations of runs are consdjevith cases from each run being considered
as queries and as database entries. Rank versus cumulatigh store plots are useful for quantifying
performance in closed universe [106] scenarios, whereubkeyds known to match one of a certain number
of database entries.

Figure 8.11 shows the rank versus cumulative match scotalptived from the gravel data. This provides
an indication of how well the signature-based approachopmd at the task ofdentifying a stone from

a database of 220 pre-stored silhouettes sets, one of whiaioivn to match the query silhouette set. A
practical system could use alignment-based matching $si€jadatabase-query pairs in an order specified by
signature-based dissimilarity. The plot indicates thatgfobability of the first pair considered by alignment-
based matching being a match is 98%.

The plot shows that the signature-based approach outpesftite feature-based approaches. Although the
signature-based method is more likely than the measured mathod to contain the match in the pairs
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ranked up to one and two, the measured mass method is mdyettkeontain the match in the pairs ranked
up to three and four.

8.5 Summary

This chapter has proposed a simple method based on calggbdiiion signatures for computing a measure
of dissimilarity between silhouette sets. The signatumd the dissimilarity between signatures can be
rapidly computed.

The method achieves its efficiency by using approximation3D shape, rather than relying on silhouette
consistency constraints. This approach places an inhbneitétion on the accuracy that can be achieved
using the method, since there are inherent ambiguitiesénring 3D shape from a sparse silhouette set.

Caliper distribution signatures have been shown to outparisimple feature-based methods (such as vol
ume) as well as the five approaches introduced by Osada et al.

Since the method facilitates rapid ranking of silhouetts Beorder of similarity, the signature-based method
can be used in conjunction with the alignment-based metlesdribed in the previous chapter to identify a
stone from a query silhouette set, by matching a previoushged silhouette set in a database.
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Chapter 9

Batch Matching

9.1 Introduction

Batch matching is finding the one-to-one correspondencigeba silhouette sets from two unordered runs
of the same batch of stones: each silhouette set in the firshust be matched to the silhouette set in the
second run that was produced by the same stone.

This is asquare assignment problesince each of tha objects in the first run must be matched to one of
then objects in the second run. The matching can be specified bhyanpermutation matrixn which each
element is either one or zero (indicating match or mismatzi each row and each column sums to one.

The proposed approach to batch matching makes use of thallescharacteristics of the two measures

of dissimilarity developed in Chapters 7 and 8. alignmesdeal matching, where ET error is the measure
of dissimilarity, and signature-based matching, whereBEMD between signatures is the measure of dis-

similarity. The desirable characteristic of alignmenséxd matching is its accuracy, whereas the desirable
characteristic of signature-based matching is its speed.

Signature-based matching is used to compute a measuresohifigity between all pairings of silhouette
sets in the first run with those in the second run: iatones there ang? pairings. Prior knowledge of the
distributions of dissimilarity values for match and misgiapairings is used to estimate likelihood ratios
for each pairing (indicating the likelihood of being a matcRose optimisation is then successively applied
to the pairing with the greatest likelihood ratio. If posdiogsation from a given starting point (initial
pose estimate) leads to a sufficiently low error, then théngais labelled a match and is removed from
consideration. Otherwise the likelihood ratioupdatedto reflect that a failed pose optimisation from the
given starting point indicates that the pairing is lessljik» be a match. Starting points based on the
principal axes of 3D approximations to the stone are usdidwfed by uniform random orientations. The
proposed greedy algorithm (which processes the pairiniy thé greatest likelihood ratio at each iteration)
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is demonstrated to produce close to optimal performancetestaet of six-view silhouettes of 1200 uncut
gemstones (i.e., the time spent processing mismatchesailt).sron a 3.2 GHz Pentium 4 machine, the
once-off per silhouette set computations take approxim&@ seconds. Computing dissimilarity between
shape distributions takes 0.7 seconds and pose optinmgaties 17 seconds (of which 15 seconds is spent
considering matches and 2 seconds on mismatches).

There aren® comparisons (or pairings) that can be made between silteoseets in the first run and silhouette
sets in the second run. Although the proposed algorithnillisnsterently of at leasD(n?) time complexity,
then? component dominates only for very large This means that batches of more than a thousand stones
can be matched efficiently.

The batch matching algorithm makes use of several key ithedisdgether achieve efficiency:

1. Shape distribution dissimilarity for ranking pairings by | ikelihood of match. EMDs are computed
between estimated caliper diameter distributions for @hthen? pairings between first run silhouette
sets and second run silhouette sets. (EMDs are computeibetfiyc taking less than a microsecond
per pairing.) Likelihood ratios are computed for each paifrom the EMD using prior knowledge of
distributions of EMDs for match and mismatches. A priorityege is used to access pairings so that
the most likely matches can be processed first.

2. Recomputing the most likely match after pose optimisation fom one starting point. Pose opti-
misation proceeds by optimising from a single pose estiraatetime. After pose optimisation, the
likelihood ratio is updated if the associated ET error isvabthe threshold for matches. (Knowing
that a pose optimisation fails from a given starting poinplies that a match is less likely than before
this is known). The pairing is pushed back into the prioritiege with its updated likelihood ratio. If
the likelihood ratio has been decreased by a sufficientlyllsm@unt, then the pairing will remain at
the front of the priority queue, otherwise a new pairing Ww#l selected for processing. This approach
ensures that ET-based pose optimisation is always apgi#itetpairing that is most likely a match
(based on EMD between signatures and number of failed pdsuisations so far).

3. Certainty of a match implies certainty of mismatches. If ET-based pose optimisation leads to an
ET error that is below the match threshold, the pairing i®llgld as a match (i.e., the probabilistic
framework is abandoned and a hard decision is made). Thigsithat all other pairings associated
with the two matched silhouette sets can be labelled as nis@sand removed from consideration.
This amounts to zeroing the remaining permutation materents that share a row or a column with
the matched element. In other words, finding a match implias mismatches have been found too.
(Although possibly obvious, this removal of mismatchesrfroonsideration is an important factor in
substantially reducing the running time of problems in varécone-to-one correspondence exists, and
is therefore explicitly mentioned.)
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4. Good starting points provided by moments of 3D shape approxnations. Pose starting points
are selected using the principal axes of a 3D approximatiohe stone as a guide. The first pose
starting point aligns the principal axes of the two 3D appr@tions and ensures that their third order
moments have the same sign. This starting point leads to a@reF below the match threshold in
approximately 80% of match cases. The next three posengtqutiints align the principal axes in the
three other possible ways. Subsequent pose estimatestladigrentroids of the 3D approximations
and select the orientation component using a uniform rancaation.

9.2 Approach

This section describes the greedy algorithm that was degdigmefficiently solve the one-to-one correspon-
dence problem for silhouette sets.

9.2.1 Design Rationale

The proposed algorithm is based on the assumption that &thing pairs can be aligned so that the ET error
across the two silhouette sets is below a fixed thresholdeyalud that no mismatch pairs can be aligned so
that ET error is below the threshold. This assumption isviilhoise levels are sufficiently low, and stone
shapes are sufficiently dissimilar. (Section 9.3.2 denmatest the consequences of using a data set for which
the assumptions do not hold.) The threshold must be detechiiom a training data set.

The aim of the algorithm is to find thesilhouette set pairs with ET errors below the threshold. éjmuse
optimisation has determined pose parameters that aligairs sufficiently well (i.e., ET error across the
silhouette set pair that is below the threshold), the aloriterminates, since the one-to-one correspondence
has been determined.

ET-based pose optimisation is time-consuming, and for ficiezit matching algorithm it must be kept to a
minimum. Efficiency is achieved by combining two strategies

1. Aslittle time as possible is spent on pose optimisatidween pairs that do not match.

2. As little time as possible is spent optimising from stagtpoints (initial pose estimates) that lead to

insufficiently low ET errors (local minima) for pairs that dwatch.

The first strategy is implemented by selecting, in eachtitarathe pairing most likely to match (based on
the information considered: EMD and number of optimisatitailed so far). Since the most likely match is
selected at each iteration, rather than trying to mininoga tunning time, the proposed algorithngigedy
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The second strategy is carried out by using the principas axel moments of 3D approximations to each
stone to select the starting points that are most likelydd e the correct alignment of matching pairs.

Figure 9.1 shows a flow chart of the greedy algorithm. Noteé tha algorithm could finish aften — 1

start

Segment images, form VEMHs,
compute caliper distributions for all 2z silhouette sets.

Compute the 7° EMDs between caliper distributions.

Map EMD:s to likelihood ratios and push into priority queue.

v

Pop element from priority queue.

v

Is element already classified as a mismatch§

*no

Apply pose optimisation using the next initial pose
estimate associated with the element.

yes

Update likelihood ratio based on *
number of pose optimisations failed so S ful?
far for the current clement Pose optimisation successful?
’ no (Found ET error below threshold?)
Push element back into the priority queue. ¢ yes

Classify element as a match.

Classify all other elements in the
same row or columns mismatches.

v

G ound all n» matches yet?

* yes

finished

Figure 9.1 Flow chart for the proposed greedy algorithm.

matches are found, since the single remaining unmatchetealemust be the match. Instead,raéllements
are matched with ET-based pose optimisation. This resublisviery small increase in total running time.

9.2.2 Initial Likelihoods from EMDs

EMDs between caliper diameter signatures are computedifdr ef then? pairings between silhouette sets
in the first run and silhouette sets in the second run.
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The EMDs are used torder the pairings so that pairings that are the most likely to mate considered
first. A reasonable approach would be to process the paifapgsy pose optimisation) in the order specified
by the raw EMD values. This would, however, require the nundbgpose optimisations to be considered
for each pairing to be specified in advance. Alternativelgjrgle pose optimisation could be applied for
each pairing in turn up to a certain threshold on the EMDyaftgich pairings are reconsidered in turn from
different starting points.

A better approach, however, is to update the likelihood ddialpeing a match based on the additional infor-
mation of the number of failed optimisations that have besmied out for the pair. (A failed optimisation
is one in which a pose with an associated ET error below themthteshold could not be found.) By using
additional information, matches are more likely to be sel@tchan mismatches than if only the raw EMD
values were used. This requires that the EMD values be mataplikklihood ratios so that they can be
updated using Bayes's rule.

9.2.3 Training

To determine the mapping from EMD values to likelihood rstia training set is required. A training
set consists of multiple runs of silhouette sets of a batcétafes for which the correspondence between
silhouette sets is known. The training set is a random sarfinpie the population of stones for which
the batch matching is to be used. The ratio of match densitpismatch density must be estimated for
all EMD values. Many methods exist for estimating prob&pitensity from samples [34]. This problem
also has the additional constraint of monotonicity: a gre@&MD implies a lower likelihood of match.
Arandjelovit describes a method to enforce the constrdintonotonicity [2]. A simple histogram method,
however, was found to produce good results, so more sogditisti methods were not implemented. A coarse
histogram (five bins) was formed for EMD values from matchrgai the training data and for mismatch
pairs in the training data. Ratios of normalised bin coumnthia bin centres were used to form a mapping
from EMD values to likelihood ratios. Piecewise linear mptglation was used to determine values between
the bin centres.

The training procedure also uses the training set to deteraithreshold value on the ET error for matches,
and to estimate the probability of failed alignment for a chgbair afters starting points have been used.

To determine a threshold value, the largest ET error acitbasustte sets for a match, and the smallest ET
error across silhouette sets for a mismatch are estimathd.threshold is chosen to be midway between
these two values.

Since applying pose optimisation from many starting poiatall training set pairs is too time-consuming,

the following method was used. The mismatch pairs are otddeyeEMD between signatures, and pose
optimisation is only applied to the first 2000 mismatch palRese optimisation is applied to the cases only
from the four starting points specified by principal axigyatnent. This approach ensures that an ET error
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value that is approximately as small as the smallest midn&tor can be computed in a reasonable running
time.

The estimate of the largest ET error for match pairs is coetphy applying pose optimisation from the four
principal axis starting points to each match pair. Posamiptition is then applied from a random starting
point to the match pair whose lowest ET error is the largelsts 16 repeated until the match pair with largest
minimum ET error, has had pose optimisation applied fromDl@Mdom starting points. This match pair is
used to estimate the largest ET error across silhouettéosetsnatch.

Once the threshold has been specified, the proportion ofmtatses that lead to an ET error below the
threshold value is computed for starting points based orptheipal axes, followed by random starting
points.

9.2.4 Forming a Priority Queue

Pairings are stored in a priority queue that is prioritisgdhe value specifying the likelihood of match. The

indices of the silhouette sets that make up the pair are algsmated with each element in the priority queue.
These indices are used to reference a permutation mattiistbailt up as the algorithm progresses. When a
match is found, the corresponding permutation matrix efgrisechanged from ‘unknown’ to one, and other

elements in the same row and column are zeroed. When an dldmereferences a zero in the permutation
matrix is at the front of the priority queue, it is popped frtime queue and no pose optimisation is applied
since the pair is already known to be a mismatch. The numbfilefl optimisations that have been applied

to the pair is also associated with each element in the prigtieue.

9.2.5 Pose Optimisation

Pose optimisation is applied to the pair of silhouette sesoeiated with the front of the priority queue
(provided that this element has not already been labelledrasmatch, in which case it is popped and the
next element is considered). Pose optimisation attemgkstezmine the relative pose between two silhouette
sets with the assumption that the sets were produced by rine St@ne.

The starting points (initial pose estimates) for pose oistition are based on the principal axes and moments
of inertia of the VEMHSs from each silhouette set. Choosing plose that aligns the principal axes of the
3D stone approximations and that ensures that the third andenents have the same signs, leads to an ET
error below the match threshold value in approximately 8G%ases when the pair is a match. A pose
in which the translational component of pose is chosen soctraroids from the two 3D approximations
coincide, and the rotational component is a uniform randotation, leads to the correct alignment in only
about 10% of cases. After considering all four possible miggments based on the principal axes, the
correct alignment is found in all but about 2% of cases (astithted in Figure 6.8 on page 111).

176



The first four initial pose estimates for a pair are therefonesen to correspond to the four poses that
align the principal axes. The pose that keeps the signs ahtreeorder moments unchanged is first. The
second two poses change only one sign of the third order mtsmaAfier four poses have been considered,
uniform random orientations are used for the following pogesystematic orientation sampler described in
the robotics literature [142] was considered, but soméaingxperimentation showed no evidence of better
results.

Note that the one-to-one matching constraints remove tbe teedecide on the number of pose optimisations
to apply: optimisations are applied until all the matches faund. Compare this with the situation of
searching for a tag stone that may or may not be present irch bastones: in this case a decision must be
made to stop applying pose optimisation after it has beeleapfpom a certain number of starting points.

9.2.6 Updating Likelihood Values

After a failed optimisation, the likelihood ratio assoeidtwith a pair is updated to reflect both the associated
EMD value and the number of failed optimisations.

The probability of a match given a certain number of staniaipts from which optimisation has been applied
must be estimated from a training data set. It is assumedimhisation will always fail with mismatch
pairs. The proportion of cases that fail after one, two,ehe:nd four pose optimisations is computed from
the training data (using the pose ordering as described Gtidde9.2.5). If the probability of failed pose
optimisation from a single pose with a random orientatiomponent isp;, the probabilityp,, of failure for

all of mrandom starting points is

Pm = PT" (9.1)

The value ofp, will vary for different silhouette set pairs. As an approxition, the mean value g, is
estimated from the training set, and Equation 9.1 is usedtimatep,.

The posterior oddB(Hmatcdatd /P(Hmismatcdata) of an element being a match is given by Bayes's rule:

P(Hmatcrjdata _ P(datdHmatch) P(Hmatct)
P(Hmismatcr{data - <P(da'[deismatch)> <P(Hmismatch)> ) (9.2)

whereHmatch is the match hypothesis andhhismatchis the mismatch hypothesis. Note that the prior odds
P(Hmatch) /P(Hmismatc) @re the same for all elements (the stones are assumed to aedom order), so
ordering by the likelihood rati®(datdHmatch) /P(datdHmismatch iS the same as ordering by the posterior
odds.

The updated likelihood ratinpgatediS computed from new observations as follows:

r _ P(datdHmatch)
updated p(dathmismatd') ¢

(9.3)
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wherery is the likelihood ratio computed from the EMD value. Heres thata specifies the number of failed
optimisations so far. Sinde(datdHmismatcr = 100%,

lupdated= Psld, (9.4)

whereps is the proportion of match cases for which optimisatiorsfailall cases after usirgstarting points.
Fors> 4, ps is estimated using

Ps(S) = ps(4)p5 . (9.5)

Note that likelihood ratios are computed without using the-to-one correspondence constraint. Making
use of this constraint does not aid efficiency, since eachingarequires evaluation of a function of val-
ues associated with all other pairings. Knowledge of thetorene constraint is therefore discarded, and
likelihood ratios are computed without considering valassociated with other pairings.

9.3 Experiments

This section describes a set of experiments that were dardeusing a @+ implementation of the proposed
algorithm. The experiments aim to quantify the behaviouhefproposed algorithm in terms of running time,
and to quantify the relative importance of the various congmbs in keeping the running time as small as
possible.

Experiments were carried out using a data set of 1423 uncustpees (pictured in Appendix C, pages 222—
224). Ten runs of six-view image sets were captured, yigldirniotal of 1423x 10 x 6 = 85 380 images.
Computations were carried out on a 3.2 GHz Pentium 4 maclkioeeach trial, runs corresponding to 243
randomly selected stones were used as a training set, ¢ethénremaining 1200 stones as a test set. All
45 run pair combinations of 243 stones were used for trajrpngviding 10 935 match pairs and 2646 270
mismatch pairs across runs. For each trial, two runs weeetsgl at random from the ten available runs to
form a test set of two runs of 1200 silhouette sets.

9.3.1 Preprocessing Running Time

Table 9.1 gives a breakdown of the mean running time for thiews preprocessing components. Ten signa-
ture elements were computed for each silhouette set usirgstdivisions of an icosahedron to determine
the caliper sampling directions. The results show a meagegging time of 20.7 ms per silhouette set. The
once-off preprocessing per silhouette set is thereforféciiftly fast that it can be carried out online as the
stones are fed through the six-camera setup at a rate oftleassper second.
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. Running Percentage

Computation Time of Total

segmentatior 9.0ms 43.5%

convex viewing edges 5.3ms 25.6%

3D convex hull 3.2ms 15.5%
2D convex hulls 1.5ms 7.2%
caliper signatures 1.3ms 6.2%
moments 0.3ms 1.4%
edge angle data structure 0.1 ms 0.5%

\ Total| 20.7ms | 100% |

Table 9.1 Mean running time for preprocessing a 6-view silhouette se
9.3.2 Batch Matching with the Proposed Greedy Algorithm

The proposed batch matching correctly matches silhouetteagross two runs of 1200 stones in approxi-
mately 68 seconds. The once-off per silhouette set prepsotgtakes approximately 50 seconds. Comput-
ing dissimilarity between shape distributions takes axipmately 0.7 seconds and pose optimisation takes
17 seconds (of which 15 seconds is spent considering maacite® seconds on mismatches).

Varying Moments and Shape Approximation Methods Used

A set of experiments was carried out to determine the effefdise number of moments used to form initial
estimates and the shape approximation method used.

Using only first order moments (moments up to order 1) meaimg umly the centroids of the shape ap-
proximation (VEMH, visual hull, or CDRH) to form the positial component of initial pose; the rotational
component is random.

Using first and second order moments (moments up to order R@snese of the principal axes of the shape
approximation for the first four initial pose estimates. Towar possible alignments of the principal axes are
considered in random order.

Using first, second, and third order moments (moments upderd@) uses the third order moments to order
the four possible alignments of the principal axes as desdrin Chapter 6.

Table 9.2 shows the mean time over 30 trials spent on poseisption. The same starting point selection
and shape approximation methods used for testing were akswb for training in each case. The results
indicate that the VEMH produces shorter running times thanvisual hull and the CDRH. Using more

moments for initial pose estimates reduces running times.
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\ H VEMH \ VH CDRH \
moments up 273.5 515.6 1796.6
to order 1 (208.7, 64.8)| (207.4, 308.3)| (210.4, 1586.2
moments up 30.4 65.3 297.1
to order 2 (22.0,8.4) | (27.4,37.8) | (39.9, 257.2)
moments up 17.4 38.7 198.0
to order 3 (15.0,2.4) | (21.4,17.2) | (35.6,162.5)

Table 9.2 Mean running time (in seconds) spent on applying pose dagdition for batch matching of 1200 silhouette sets of uncut
gemstones across two runs. Times spent on matches and oatcties are shown in brackets.

Running Time as a Function of Number of Stones

The next set of experiments investigates how running timaffected by varying the number of stones.

Random subsets of up to 1200 stones were selected as test sets

Figure 9.2a shows a plot of number of stones versus runmmgtising the VEMH and moments up to order
3 for determining starting points.
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Figure 9.2 Running time for batch matching different numbers of ston@) using the VEMH and moments up to order 3, (b)
using the CDRH and moments up to order 1. The running timeistsnsf time spent setting up the priority queue and applying
pose optimisation to matches and to mismatches.

Setting up the priority queue takes only a small amount ogfiyet populating the priority queue is of
O(mlogm) complexity form elements. Since there are= n? elements fon stones, the time complexity is
O(r?logn?); setting up the priority queue will become the most time conisig component for sufficiently

largen. Applying pose optimisation to match pairs takes time propoal to the number of stones. However,
for the values tested here it forms the largest componertieofunning time. Although the time spent on
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mismatches i©(n?), for values ofn tested, the running time is small. For valuesiefp to 1200, the running
time is therefore approximately proportional to the numifestones.

The experiment was repeated using the CDRH and moments upléo d (only random rotations were
used). This was done to observe the quadratic dependenhe btifrte spent optimising mismatch pairs on
the number of stones. The results are shown in Figure 9.2bgliadratic dependence is more apparent than
in Figure 9.2a. A larger proportion of running time was spagrisidering mismatch pairs than match pairs
for larger numbers of stones.

Using Downsampled Input Images

Image downsampling was used to investigate the behavideaitoh matching in cases in which image noise
is high enough that some ET errors across a silhouette $etnfahe wrong side of the threshold. Since
the proposed batch matching algorithm applies pose ottiais to pairs until all matches are found, the
algorithm will fail to terminate if there are insufficientipgwith ET errors below the threshold. A limit on
the time spent on pose optimisation must therefore be intptmskorce termination.

Table 9.3 shows the error rates achieved for different a=goédownsampling and for different time limits.
(An error is incurred if a silhouette set is matched to thengrsilhouette set or is not matched at all; the

Time Limit [seconds]

5 | 10 | 20 | 40 [ 80 | 160
original resolution|| 54.4%| 22.0%| 0.5% | 0.0% | 0.0% | 0.0%
2x 2 binning || 57.1%| 26.3%| 0.5% | 0.0% | 0.0% | 0.0%
4 x 4 binning || 53.2% | 14.8%| 0.5% | 0.5% | 0.4% | 0.4%
8x 8 binning || 41.8% | 22.9%| 9.6% | 8.7% | 8.7% | 8.8%
16 x 16 binning || 61.6% | 39.2% | 26.8% | 14.4% | 12.6% | 12.7%
32x 32 binning || 76.8% | 65.6% | 60.8% | 60.1% | 60.1% | 60.1%
64 x 64 binning || 96.0% | 95.5% | 95.5% | 95.5% | 95.5% | 95.5%

Table 9.3 Mean error rates over 30 trials for batch matching two rur260 stones with a time limit imposed on the running time
spent on pose optimisation. Results are shown for diffdeamis of downsampling (pixel binning). Each error rateresponds
to batch matching of two runs of 1200 silhouette sets of ugembstones. Images were segmented using the subpixeltiesolu
method described in Appendix A.

error rate is the number of errors divided by the number afiefd There is little reduction in the error
rate between 40 and 80 seconds, indicating that furtherhestare unlikely to be found. At levels of
downsampling greater thanx22 binning, the silhouette sets are not all correctly mataledor even the
largest time limit. The error rate increases as the degr@aage downsampling is increased.

The approach of imposing a time limit may be useful for casbere image resolution is poor. Image
resolution may be insufficient for all match and mismatcloesrito be on opposite sides of the ET error
threshold; however, a 100% correct matching may not be asBitgeThis situation can occur in cases where
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one is interested in estimating statistical shape pragedf a batch of stones using merged silhouette sets.
If a small number of silhouettes is not matched, or is inailyematched, this may have negligible effect on
the shape property estimates, especially since mismapiegiwill tend to be of similar shape.

9.3.3 Batch Matching with Caliper Diameter Distributions

An experiment was carried out to investigate the error rates running times achievable using only the
likelihood ratios derived from EMDs between caliper diaenatistributions (i.e., not using ET-based pose
optimisation.) The same likelihood ratio values that wesmputed for the experiments described in Sec-
tion 9.3.2 were used as input.

The maximum likelihood permutation is the permutation tresults in the highest product of likelihood
ratios. To compute the permutation, the logarithm of liketid ratios is used, so that the sum can be max-
imised, rather than the product. Finding the permutatioa sfluare matrix that minimises summed cost is
a well-known combinatorial optimisation problem that candmlved using the Hungarian Method [23]. A
Matlab implementation of the Hungarian Method (provided\igias Borlin of Umea University, Sweden)
was used to determine the permutation that maximises theostima logarithm of likelihood ratios.

Results are shown in Figure 9.3. Each data point corresptinéda experiment in which 10 runs of 223
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Figure 9.3 Plot of number of test stones versus error rate for batclelmag based on caliper distribution using different method
for approximating stone shape. Two methods are used fomdigtiag the permutation matrix: the Hungarian Method, aglécting
the row with the minimum EMD for each column of the permutativatrix.

randomly selected stones are used as a training set andstheetef stones is randomly selected from the
remaining 1200 stones. The two runs used as the test setdiodasa set were randomly selected from the
10 available runs. For each training and test set, separatdts were computed using the VEMH, visual
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hull and CDRH for shape approximation. The match permutatias computed using both the Hungarian
Method, and a simpler minimum distance method that seléetgaw with the minimum EMD for each
column of the permutation matrix.

The results indicate that the batch matching using only EM&mot be carried out without error for the
data sets considered. The VEMH outperforms the visual diich in turn outperforms the CDRH for
shape approximation. The Hungarian Method outperformsrimemum distance method for forming the
permutation matrix from a square matrix of EMD values. Fdchanatching of 1200 stones, the most accu-
rate approach (VEMH for shape approximation and the Huagavlethod for computing the permutation)
achieves an error rate of approximately 5%.

These experiments demonstrate that the information ¢wdan the EMD values is an important aid to the
batch matching process, but is alone insufficient. ET-bpssd optimisation must also be used for matching
that is both efficient and correct.

9.4 Summary

An algorithm has been designed and implemented for effigiemhtching two runs of silhouette sets of the
same batch of stones. Various approaches were combineduoeegfficiency:

1. Likelihood ratios based on rapidly computed EMD valuesveen estimated caliper distributions are
used to identify the pair (of those still under considematithat is most likely a match.

2. ET-based optimisation is applied to the most likely matelir from a single starting point before
updating the likelihood ratio for the pair if the pose opsation fails.

3. Ifamatch is found (alignment with sufficiently low ET eracross the two silhouette sets), then pairs
that are implied to be mismatches are removed from congidera

4. Moments of 3D approximations to the stone computed froirs zeie used to select initial pose esti-
mates most likely to lead to correct alignment of the twoaiktte sets.

On a test set of 1200 uncut gemstones, pairs of runs of six-sil@ouette sets are matched in approximately
18 seconds on a 3.2 GHz Pentium 4 machine. The once-off peusilte set processing takes approximately
50 seconds; the computations are sufficiently fast to be atedponline as the stones are passed through
the six-camera setup. This represents a substantial irprent on a naive approach where alignment-based
matching is applied to all pairs (such an approach would tedeks to complete). The proposed approach
is also superior to the naive approach in that the numbeladiirsg points to consider for aligning each pair
need not be decided in advance.
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For correct matching, the proposed method requires themmimi ET error for all match pairs to be below a
pre-specified threshold (determined with a training set)l, the error for all mismatch pairs must be above
this threshold. Although this is the case for the data setscamera configuration considered, this is not
guaranteed to hold. If the criterion fails to hold, then tkgogathm may fail to terminate. To force termina-
tion, a limit can be imposed on the time spent on pose opttinisaThe effects of applying the algorithm
to cases in which silhouette set quality is insufficient tcetrtee criterion has been demonstrated by using
downsampled versions of the original images. As the timd igrincreased, improvements in the error rate
become negligible. As the degree of downsampling is inexkathe error rate increases.

Experiments that use the Hungarian Method to estimate thehrparmutations using likelihood ratios based
on EMDs between signatures, and not using ET-based alignmeaduced errors (a correct classification
rate of approximately 95% is achieved for matching 1200osiéite sets across two runs). This justifies
combining the signature-based matching with alignmesetlamatching to achieve results that are both
correct and efficiently computable.
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Chapter 10

Comparing Silhouette-Based Sizing with
Sieving

10.1 Introduction

Particle shape analysts are interested in (1) emulativipgiavith silhouette-based methods, (2) quantifying
the repeatability of silhouette-based sieve emulatiod, @) investigating the effect of individual particle
shape on the sieve aperture through which the particles[$2sE09]. This chapter describes an experiment
which uses the methods developed in this thesis to addiabses of these issues.

The repeatability of sieve sizing cannot be evaluated byrgjeparticles individually. The sieve bin that each
particle ultimately lands in is a function not only of paltichape, but also the length of time over which the
sieves are shaken, and the presence of other particles snetres.

Knowing which sieve bins each particle lands in over mudtipins of batch sieving provides (1) an un-
derstanding of the shape characteristics that determmelassification and bin classification variability,
and (2) a more accurate quantification of repeatability tfidnistograms alone were considered. By ap-
propriately quantifying the repeatability of sieving, @rcbe directly compared with silhouette-based sizing
methods. Demonstrating that silhouette-based methodst déeast as repeatable as sieving is an important
step in having such methods accepted by particle shapestmaly an alternative to sieve sizing.

The minimum enclosing cylinder of a silhouette-based 3Draximation to the stone shape (both the VEMH
and the visual hull are tested) is used for sieve emulatidms @pproach is based on the assumption that
the minimum enclosing cylinder of a stone provides a good@pimation of the smallest circular sieve
aperture through which the stone may pass. By comparindltineistte-based estimate of minimum cylinder
diameter with the sieve bins in which each stone is actualindl to land up in, the accuracy of the silhouette-
based sieve emulation can be quantified.
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The experiment described in this chapter was carried outlesvs. A data set of 494 garnets was sieved
fifteen times using a stack of sieves with five bins. (The 4%fest are illustrated using refined visual

hull models in Appendix C on page 227.) The five sieve bins apausated by circular sieve apertures with

diameters of 4.521 mm, 5.410 mm, 5.740 mm, and 6.350 mm. [ebrafdhe fifteen sieving runs, the garnets

were manually sieved for 30 seconds. After each run of sjguime garnets were passed through the six-
camera setup in five sub-batches according to the sieve bwhich they landed. This means that the sieve
bin corresponding to each six-view silhouette set is knoBynmatching the silhouette sets that correspond
to the same stones across the fifteen runs, the bin in whi¢dhstace landed for each run is determined.

The experiment allows the performance of the matching ghaeeto be evaluated too. Although the stone

identity associated with each silhouette set is not knowardivence, consistency constraints across multiple
runs can be used to evaluate matching performance. Fongestd A matches B, and B matches C, then A

must match C.

10.2 Batch Matching

For the purposes of matching the stones across runs, batchimgawas applied to batches of silhouette
sets from each run and the run’s immediate successor. Resmiag (computing signatures and moments
from the raw image sets) requires approximately 20 ms phowdtte set. Although for this experiment
preprocessing was carried out offline, it is sufficientlyt tasbe carried out online as the stones pass through
the feeder at a rate of approximately 10 stones per secontkr Bifeprocessing, batch matching across
two runs of the 494 stones requires approximately threensiscof processing time. (This is faster than
matching the same number of gemstones because the gamitssacompact and therefore alignment tends
to require fewer optimisations.) The batch matching isdéf@e substantially faster than sieving the stones
and feeding them through the six-camera setup, and canyclearconsidered to be sufficiently fast for
practical experimental purposes.

Batch matching was applied to all run pairings to check &tescy. There ar(alzs) = 105 pairs of runs that
are formed from the 15 runs. The data set of 246 garnets wasassiaining data to determine parameters
for the experiments described in this chapter.

A necessary condition for correct matching is that the matchesults are consistent across runs. If a
silhouette set from Run A matches one from Run B and one from@®&uhen the silhouette sets from Run B
and Run C must match each other. By adding up the number of @asehich triplets of pairwise matches
are consistent, a measure of consistency can be made. Tbeﬁ@)a: 455 triplets of runs and 494 cases in
each run, yielding a total of 456494= 224770 triplets.

All 224770 triplets were found to be consistent for the batthtching. This result was compared with
other simpler approaches to matching. Table 10.1 showsthats for different matching methods that were
tested. The first column of the table (Minimum Dissimilayighows results for matching using the minimum
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Matching Minimum Square
Method Dissimilarity | Assignment
caliper signatures 94.0% 98.8%
caliper, three principa 76.0% 84.0%
VH min cylinder diameter 62.9% 19.8%
VEMH min cylinder diameter 63.0% 24.5%
VH nonconvex volume 63.1% 26.7%
VH convex volume 63.5% 25.5%
VEMH convex volume 63.4% 27.7%

Table 10.2 Percentage of consistent triplets of pairwise matchegpooead using different matching methods.

dissimilarity case in the other run as the match. The secohamn (Square Assignment) shows results for
matching using square assignment, which selects the patiotuthat results in the maximum sum of log
likelihood ratios (described in Section 9.3.3).

The first row of the table shows the results of matching usisgimhilarity based on the caliper signatures
described in Chapter 8. The second row of the table usestsdasated on dissimilarity defined as the
Euclidean distance between three caliper diameters of ElY. The remaining rows of the table define

dissimilarity using the differences between minimum esitlg cylinder diameters and difference between
volumes for visual hulls and VEMHSs.

The table indicates that, unlike the proposed batch majamiethod, none of the other methods is perfectly
consistent. Consistency is a hecessary but not sufficieritbon for correct matching. If A is similar to B,
and A is similar to C, then B is likely to be similar to A evenliet measure of similarity is inaccurate. For this
reason, the first column shows consistency values of overfe@%&latively poor approaches to matching,
such as choosing the case in which the difference betweemunim cylinder diameters of the visual hull is
a minimum. (A computer simulation in which 15 runs of 494 ramdmeasurement values were drawn from
a uniform distribution, and minimum dissimilarity was ufedmatching, resulted in 62.5% of triplets being
consistent.)

Table 10.2 shows the percentage of cases that are correatbhed for the various methods. These are
computed on the assumption that the proposed batch matofeétigpd produces correct results. The table
indicates that matching based on a single shape propergrper poorly, with VEMH-based estimates
outperforming visual hull-based estimates. Note that fidssible to have a greater percentage of correct
matches than consistent triplets: the 20894 = 51870 matched silhouette set pairs do not correspond
directly to the 455« 494= 224770 triplets.
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Matching Minimum Square
Method Dissimilarity | Assignment
caliper signatureg 96.6% 99.4%
caliper, three principa 79.1% 87.7%
VH min cylinder diameter 3.6% 3.2%
VEMH min cylinder diameter 5.7% 5.3%
VH nonconvex volume 6.5% 6.0%
VH convex volume 6.8% 6.4%
VEMH convex volume 7.8% 7.3%

Table 10.2 Percentage correct matches as classified by the ET-baggdrbatching.

10.3 Silhouette-Based Sieve Emulation

This section investigates sieve emulation using the mininemclosing cylinder of a 3D approximation of
the stone. The same silhouette sets that are used for batchingaare used to approximate 3D shape.

A analogous approach is used by Fernlund et al. [43] who geogi method for emulating square-aperture
sieves. They compute the minimum enclosing square fromvalladble silhouettes of each stone. This is
used to approximate the smallest infinite-length prism w&itguare cross section that encloses the stone.

10.3.1 Computing the Minimum Enclosing Cylinder

The minimum enclosing cylinder of a 3D point set is the snsiliiameter cylinder of infinite length that
completely encloses the points. Various methods for esitigiéhe minimum cylinder have been developed
in the field of computational geometry, but implementingsthenethods is non-trivial [24,116]. The method
proposed here instead uses a conjugate-gradient miniomisalgorithm to minimise the cylinder radius
from many starting points corresponding to different dimats. An efficient minimum enclosing circle
algorithm [135] is used to compute the minimum cylinder wadior each direction, by projecting all points
onto a plane that is perpendicular to the direction of thindgr axis. The derivative of the cost function is
required by the conjugate-gradient minimisation algonitir his was calculated using an azimuth-elevation
representation for directions. To computed the partiaivdgves, only the support points of the circle on
the plane need be considered. Since a circle is supportedth®r évo or three points (barring cases in
which an infinitesimal perturbation of the points changesrnbimber of support points), both cases need to
be formulated. The Matlab Symbolic Toolbox was used to campusolution, which was verified using a
forward difference approximation. (The resulting C codetfe derivative computation is tens of thousands
of lines long.) One hemisphere of a subdivided icosahedsamsed to create direction samples. Some
computer simulations were carried out to determine a setu@frpeters (number of direction starting points,
number of descent iterations, number of optimisations frobest starting points) with desirable speed-
accuracy tradeoff characteristics.
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10.3.2 Experimental Results

Minimum enclosing cylinders were computed from the 15 ruh433t silhouette sets using the visual hull
and the VEMH to approximate the stone shape. The minimumagtiwas expected to provide a reasonable
estimate of the minimum sieve aperture that the correspgratone can pass through. This provides a means
for predicting the sieve bin that the stone would land in fritensilhouette set. The minimum cylinder is
used as an approximate means for predicting sieve bingiceatones (e.g. banana-shaped stones) may pass
through sieve diameters that are smaller than their minireylmder diameter. A similar observation is made
by Rao [109] also in the context of silhouette-based parseting: “[T]here is a chance that the particle can
weave, wiggle and make its way through. .. under the vigosiese shaking process...” Although Rao
makes use of square-aperture sieves, the observation aflyegalid for the circular-aperture sieves used
here.

The minimum enclosing cylinder diameters were used to ifjasach silhouette set into one of five bins
using the sieve aperture diameters as bin boundaries. Bpenpions of cases in each bin over all 15 runs is
given in Table 10.3. These values give an indication of ther@xo which the silhouette-based methods can
be used to emulate sieving.

| BnNo. | 1 | 2 | 3 | 4 | 5 |
Sieving | 14.1%] 32.6%] 19.1%] 16.9%| 17.2%

Min Cylinder VH | 7.5% | 31.8%| 13.3%| 25.4% 21.9%
Min Cylinder VEMH | 10.6% | 32.5%| 15.1%] 22.7% | 19.2%

Table 10.3 Mean proportion of cases in each of the five bins

Histograms for the sieving and silhouette-based emulstésa shown in Figure 10.1. The histograms give
an indication of the extent to which the silhouette-basethous can emulate the sieving process, as well as
an indication of the repeatability of the different sizingtimods from run to run.

To investigate the extent to which the minimum cylinder déden of a stone is a good estimate of the smallest
sieve aperture that the stone can pass through, 90-viewhhsills were formed for each stone by merging
silhouette sets (as described in Chapter 6). The minimumdsfls of the 90-view visual hulls are assumed
to be good estimates of the minimum cylinders of the cornedjpgy stones. Each stone’s minimum sieve bin
over the 15 runs was used as an estimate of the smallest of/¢ghieirfis that the stone could land in, i.e., it
was assumed that if the stooeuld pass through a sieve aperture, thedid pass through on at least one of
the 15 runs. Figure 10.2 shows histograms of the minimunmdgli diameters for stones corresponding to
each of the five bins. Vertical lines indicate the locatiohthe four bin boundary aperture diameters. Since
the minimum cylinder diameter cannot be smaller than thdlsstaircular aperture through which a stone
can pass, the histograms are all expected to lie to the righedower bin boundary. Figure 10.2 shows that
this is indeed the case: the histograms lie to the right ofvdrtical lines that represent the sieve aperture
diameters. This means that all stones passed through alleggewider than their minimum cylinders on at
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least one of the 15 runs. Parts of the histograms that overappper bin boundaries correspond to cases in
which the stones have passed through an aperture smaltethigia minimum cylinder. The figure indicates
that there are cases of stones passing through apertures 1084 smaller than the minimum enclosing
cylinder. Note that a stone that passes through an apef®estnaller than its minimum enclosing cylinder
may pass through an aperture even smaller than this. Thisatleat the ratio of minimum cylinder diameter
to smallest possible sieve aperture diameter (i.e., cerinigl sieves of any diameter rather than the four used
in this experiment) is likely to be larger than 1/(1-10%).

Figure 10.3 illustrates the fives stones whose minimum digwes smaller than the minimum cylinder
diameter by the largest amount. These stones must exhibi¢ slegree of concavity, since convex stones

Figure 10.3 Refined visual hull models of stones whose minimum sievasbémaller than the minimum cylinder diameter by the
largest amount.

cannot pass through a sieve aperture of smaller diametethieaninimum enclosing cylinder. It is visually
apparent that the concavities on these stones allow the siqrass through a sieve aperture smaller than its
minimum enclosing cylinder.

No attempt was made to improve the estimate of the smallegt siperture through which a stone can pass
by accounting for possible changes in the direction of nmoée the stone passes through a sieve aperture.
However, it is interesting to note that for a convex-shapeetare (such as the circular or square apertures
used in practice), the line hull of any shape that can passudfr the aperture (with possible changing
direction of motion) can pass through the aperture too. Ehlsecause synclastic concavities (such as a
dimple in a golf ball) do not affect whether a shape can passgh a convex-shaped aperture. It is therefore
possible, in principle, to determine whether or not a 3Ddsodin pass through a convex-shaped aperture, by
considering only its silhouettes from all viewpoints.

10.4 Comparing Histogram Repeatability

Particle shape analysts have historically made use ofdretas, which are the natural output of sieving to
guantify the size characteristics of a batch of particleBas been argued that particle volume measurements
are often preferable to sieve size measurements for theopeirpf characterising particle size [133]. To
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switch from sieving to silhouette-based volume estimatescharacterizing size, particle shape analysts
require that histograms of volume estimates are at leagp@satable from run to run as histograms derived
from sieving.

This section considers how the problem of comparing histogrepeatability can be meaningfully framed,
and then provides the results of an experiment that indidhtet both silhouette-based sieve emulations and
volume estimates provide more repeatable histograms liessidving runs carried out for the data set of 494
garnets.

10.4.1 Method for Comparing Histogram Repeatability
Summing Bin Count Variances: ZVAR

The variation of histogram bin counts from run to run progidgemeans for computing repeatability. For
a perfectly repeatable system, the bin counts will not vaoynfrun to run. The repeatability of two mea-
surement systems can be compared using the sum of bin causrtees over multiple runs of histograms
produced by the two systems using the same sample of stohesumm of bin count variancesVAR, for r
histograms produced by a measurement systemmliihs is given by

n
ZVAR =) VAR(bj), (10.2)
=1

wherebj is a vector of length containing the counts of thigh bin, and VAR gives sample variance. Lower
2VAR indicates greater repeatability.

Individual Stone Contributions

If ZVAR is to be determined by binning individual measuremetiisn different combinations of histograms
are possible. For instance, the first histogram may use tsenfieasurement of the first stone and the
first measurement of the second stone, or it may use the seeeasurement of the first stone and the first
measurement of the second stone. All possible combinatienequally valid, since each stone measurement
is made independently of all others. The variation onINAR statistic due to the specific combination of
measurements used to form the histograms can be reduceoutvitiiroducing bias by summing the bin
variances for the measurements corresponding to eachisttiniglually.

Forn measurements of a stone, the contribution of a bin t&iER statistic is

. . L. kn—k?
bin variance contributiop= ———, (10.2)
n(n—1)
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wherek is the number of times the measurement falls into the bin. Bihesariances for all bins and all
stones must be added to form theAR statistic.

Naive Bin Boundary Specification

To compare the repeatability of histograms formed fromasiiite-based estimates of properties such as
volume with sieve histograms, the numbers of bins must balequd the probability of assigning a case
to corresponding bins must be the same. (If this were notdke then bin boundaries could be chosen to
create arbitrarily loneVAR values.)

In order to determine the bin boundaries for the silhouletsed estimates (for which the individual measure-
ments are available), the total proportion of measuremantach of the sieve classes must be calculated.
The bin boundaries must be positioned so that the same piapaf the total measurements are classi-
fied into the corresponding classes. It is not, however, agsttforward matter of ensuring that the same
proportion of measurements fall into each class.

Consider Figure 10.4. Each of four stones, representedéy th, x ando symbols, has been measured

Class 1 Class 2 Class 3 Class 4

HAHHH >e+o<>< ik*ik*|* @O @
1

Stone Measurement Values

Figure 10.4 Class boundaries cannot be determined using the stoneevamneasurements are to be classified with the boundaries.

seven times. If the histograms with which the measuremestéByis to be compared have class probabilities
of 5/28, 6/28, 9/28 and 8/28, then the class boundaries shewaertical lines in the figure would divide the
measurements so that the proportions correspond to therotasurement system. This method introduces
a bias, since no matter how tightly the measurements froim&aoe cluster, measurements will be assigned
to different bins resulting in an apparently poor repeditgtstatistic for a repeatable system.

Leave-One-Out Bin Boundary Specification

To classify measurements without introducing this biaspaié-one-out approach is used. The measurements
corresponding to each stone are classified individualipguhe measurements of the remaining stones. The
procedure is illustrated with an example. Consider an éxyst in which five stones are each measured
eight times using a particular device. If the device is to mpared with a system that outputs histograms
with bin probabilities of 25%, 45% and 30% for bins #1, #2 aBddispectively, then measurements can be
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Figure 10.5 An example of classifying measurements into bins basedh®mieasurements of the remaining stones and the mean
histogram of the of the other measurement system.

classified according to the bin boundaries as determinedyimré 10.5. In this example, the eight measure-
ments for a particular stone are represented by the opdassbown in Figure 10.5. The bin boundaries for
determining which bin each of these eight measurementsifdath are determined from the sets of repeated
measurements for the four remaining stones. The mean oighereeasurements for each of the four stones
is computed (shown as black dots) and define the cumulatieapility distribution. The bin boundaries
are then determined from this cumulative distribution drel¢ight measurements for the single stone being
binned are classified into the corresponding bins. Five@htleasurements are binned into Bin #2 and three
of the measurements are binned into Bin #3. The histogranedaints for each run (or measurement) are
shown in Table 10.4. The variance for each bin can be catmilasing Equation 10.2. This particular stone
contributes a total 0f9/56 to theXVAR statistic.

Bin#1 Bin#2 Bin#3

Run #1 0 1 0
Run #2 0 0 1
Run #3 0 1 0
Run #4 0 0 1
Run #5 0 1 0
Run #6 0 1 0
Run #7 0 1 0
Run #8 0 0 1

VAR 0 15/56 15/56

Table 10.4 Histogram bin counts for single stone and correspondimgritutions toZVAR statistic

Note that forn stones, extrapolation is required to define bin boundadexdimulative bin probabilities
below 1/n and abovegn— 1)/n. For a large number of stones, this situation is unlikelydoun. For cases
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in which the situation does occur, the contribution of th@bmumber of measurements that do fall outside
the range can be discounted and IMAR weighted accordingly.

10.4.2 Experimental Results

The ZVAR statistic can be estimated more accurately from indigidneasurements than directly from his-
tograms. However, this is under the assumption that theiohthl measurements are independent of the run.
The assumption may not be valid for sieving, with individua¢asurements being affected by the sieving
vigour for each run. Nevertheless, theéAR statistic provides a useful means for comparing siltitmibased
measurements with the inherently quantised sieving measnts in the sense of individual measurement
repeatability. In addition, if a silhouette-based methad be shown to be more repeatable in the sense of
individual measurement variability, then it must also berenepeatable in the sense of direct histogram
variability, since the run-dependent influence cannotehese variability.

300
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Figure 10.6 Histograms o2VAR values computed directly from sieve histograms with@@@als of random permutations of the
15 bin values for each stone. TA®AR value of 393.0 computed from the original data is indéchtvith a vertical line.

Figure 10.6 illustrates the effect of randomly permuting ftb bin values for each run on the computed
>VAR statistic. This removes the run-dependent variabiitynponent. Each of the 1000 trials produced a
2VAR value much lower than that computed from the originainpetation, providing strong evidence that
there is a large degree of run-dependence on the bin values.

To test the validity of the implementation of the method fstimatingZVVAR from individual measurements,
a computer simulation using synthetic data was set up. Biegewere computed for 15 runs of 494 stones,
using proportions of bin occurrences for the real data toveehe distributions from which random values
were drawn. The experiment was repeated 250000 times, gthVMAR statistic being computed directly
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from histograms and also from individual measurementsdicherial. The mean and standard deviations of
these values are given in the first and second rows of Talbiie M@te that the mean values are similar for the

\ Method | Runs | Trials [ Mean | STD |
2VAR from histograms 15| 250000| 57.426| 12.435
2VAR individual measurements 15| 250000| 57.385| 1.639
2VAR from histograms| 100000 10 | 57.472| 0.140
>VAR individual measurements 100000 10 | 57.389| 0.017

Table 10.5 Results of a computer simulation in which tA¥AR statistic was computed directly from histograms andrfriodi-
vidual measurements for 494 cases. Values were generatacgpfiobabilities determined by the proportions of bin ocences for
each of the 494 garnets over the 15 runs of sieving.

two methods, but the values computed from the histogram shimwch larger spread than those computed
from the individual measurements. This indicates that tebestimate 0EVAR is obtained using individual
measurements. To ensure that the correct quantity is bedaguned, th&VAR statistic was computed for

a large number of runs. The results of 10 trials of 100000 ewagyiven in the third and fourth rows of the
tables The results indicate that estimatfidAR from a small number of runs (15 runs) does not introduce
substantial bias with either the histogram or individuabsi@ement methods.

Comparing the silhouette-based measurements with siewggsurements requires the sieving measure-
ments to be binned. Bin probabilities must be the same asid¢lre bin probabilities for a meaningful
comparison.

A computer simulation was carried out to test the validityraf implementation. A normal distribution was
created from which 494 sample values were drawn. Norma#liriduted noise of fixed standard deviation
was then added to create 15 noisy measurements for eacheseathp. The samples were then binned into
five bins using four bin boundaries. These data represerdi¢hre measurements. TR®AR statistic was
computed from these measurements using the individualureragnt method. A new set of measurements
was then drawn from the same distributions. These repraflantiette-based measurements with the same
inherent repeatability as the simulated sieve measuram€&heZ VAR statistic was computed for these mea-
surements using the simulated sieve data to assign theadhtast using the leave-one-out approach. Note
that the bin boundaries are not used, and in general will lningless when comparing the repeatability of
two measurement systems that may be measuring differemt gtmperties (e.g., mass, volume, hardness,
electrical conductivity). In addition to the data genedatieom the same distributions, data were also gen-
erated using measurement noise distributions with 1.1 addirfies the original standard deviations. The
2VAR statistic should indicate that these measurementsaserépeatable and more repeatable respectively.
Mean and standard deviationsXfAR values for 500 trials are shown in Table 10.6. The resot&ate that

the leave-one-out method produceEVAAR statistic that is in close agreement with the directlynputed
>VAR statistic from an equally repeatable measurement systéhe>VAR values also correctly reflect the
lower and higher repeatability of the simulations of the twler measurement systems with different noise
characteristics.
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Data | Mean | STD |

Original Binned Datal 59.92| 3.88

Data with same measurement ST[39.59 | 4.34
Data with 11x measurement STID 65.44 | 4.62
Data with 09x measurement STID 53.93| 4.02

Table 10.6 Results of a computer simulation in which th¢AR statistic was computed by binning individual measuretaeising
the leave-one-out approach. The mean and standard desidtio 500 trials are shown. Size and noise variation valuesew
based on minimum cylinder diameter values computed fromé¢hbdata set. The four sieve aperture diameters were udgid as
boundaries.

>VAR statistics were computed for the sieving data and vargillhouette-based estimates of shape proper-
ties. Results are presented in Table 10.7. The 95% confidetezgals were computed using the bootstrap

95% Conf. Int.
Measurement >VAR | lower | upper
bound | bound
sieving| 61.5 53.9 | 69.6
VH min cylinder diameter; 64.0 53.7 | 775
VEMH min cylinder diameterp 35.3 27.1 | 46.4
VH nonconvex volume 30.4 256 | 43.6
VH convex volume| 29.8 248 | 415
VEMH convex volume| 24.1 20.0 | 36.5

Table 10.7 ZVAR statistics for sieving and various shape features nreasiiom silhouette sets.

percentile method [36] with 2000 bootstrap samples per.chlste that the sievingVAR values that are
computed from individual measurements are substantialyt than the values computed directly from his-
tograms (see Figure 10.6 in which the mean value of the histog will tend towards the values in Table 10.7
as the number of trials is increased).

Although the sievingzZVAR values which are computed from individual measuremevdsld provide an
underestimate of the actual sum of bin variances one woukzirobver repeated sieve runs (since the run-
dependent component of variability is not considered)y {h®vide a useful means of comparing the re-
peatability of the inherently quantised sieve measuresneith shape features derived from silhouette sets
on an individual measurement basis.

TheXVAR values indicate that visual hull volume is more repeklgdiban sieving in terms of individual mea-
surements. Since visual hull repeatability is not run-deleat, while sieve repeatability is run-dependent,
visual hull volume histograms are also expected to be m@eatable than sieving histograms.

The table confirms observations of measurement repedyabifplied by matching accuracy (see Table 10.2):
(1) VEMH-based measurements tend to be more repeatablevithaal hull-based measurements, (2) vol-
ume measurements tend to be more repeatable than minimimdarymeasurements.
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Only the minimum enclosing cylinder of the visual hull apgeto be less repeatable than the sieve-based
measurements on an individual stone basis. This suggesthi&minimum enclosing cylinder of the VEMH
(rather than the visual hull) should be used to emulatersjevi

The contribution that each stone makes to IMAR statistic can be used as a measure of how likely the
stone is to land in different bins on different runs. Preshbiyahe shape of a stone plays an important role
in determining the likelihood that a stone will have a termjeto fall into different bins on different runs.
Figure 10.7 illustrates the five stones that produced thgesrcontribution to the sievingVAR statistic.
The 3D shapes do not seem to provide any obvious clues as tthebg stones have a tendency to fall into

Figure 10.7 Refined visual hull models of stones that tend to fall ineti#nt bins as measured by contributiorEdAR.

different bins. However, the stones do exhibit some prainsswhich may cause the stone to become stuck
in an aperture in certain orientations.

Also note that a stone whose minimum sieve aperture is juptiahan an actual sieve aperture will have
less of a tendency of fall into different bins on differenhsu(as it will easily pass through the bin’s upper
boundary but cannot pass through the lower boundary). Tiualdain boundaries also therefore play a role
in determining theVAR contribution for a stone.

10.5 Summary

An experiment in which 494 garnets were sieved 15 times hais peesented. The experiment makes use of
the main shape, calibration, and recognition methods dpedl in this thesis to compare sieve sizing with
silhouette-based estimates of shape properties.

The proposed batch matching method (see Chapter 9) has beemstrated to produce perfectly consistent
matches over all run pairs. This is in contrast to other sempiethods that all exhibit inconsistency, thereby
providing justification for the additional complexity ofeatproposed batch matching method. Matching a
pair of runs of 494 stones takes approximately three secfndsldition to the preprocessing that can be
carried out as the stones are passed through the systenturirtieg time is therefore, for practical purposes,

insignificant.
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The minimum enclosing cylinder estimator has been used tdaesieve measurements. Histograms of
sieve measurements were compared with those of silhobasied sieve emulators. Refined visual hull
models formed from 90 views (15 runs of six-view sets) dertrated the limitations of using minimum
cylinders to predict sieve bins. (Note that batch matchirayiples an efficient means of obtaining the 90-
view visual hulls: without batch matching, each stone wdudde to be individually passed through the
camera setup 15 times; batch matching allows the stones fa$sed through in batches, substantially
speeding up data capture.) Cases were found in which thenmimicylinder diameter of a 90-view visual
hull was up to 10% larger than the sieve aperture of the sgomiimum bin. However, the minimum
cylinder diameter was larger than the minimum bin’s loweuntary diameter in all cases.

The sum of bin count varianceZ\(AR) has been introduced as a means for comparing the rdglista

of silhouette-based shape properties with sieving, whicllygces histograms as output. Volume estimates
based on visual hull volume, and sieve emulation based omthienum enclosing cylinder of the VEMH
have been shown to be more repeatable than sieving for theedptured using a batch of 494 garnets.
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Chapter 11

Conclusion

11.1 Summary of Contributions

This thesis has extended the capabilities of multi-vielwaiktte based particle analysis by incorporating sil-
houette consistency constraints. Three problems havedusbrssed: (1) camera calibration, (2) estimating
shape, and (3) recognising individual stones.

To provide practical tools to particle shape analysts, ingntime efficiency has been considered: com-
putations which require hours or days to complete are intipedc ET error and the VEMH have played
an important role in the design of efficient methods throughbis thesis. ET error is an efficiently com-
putable measure of silhouette consistency, and a VEMH idfameatly computable estimate of the shape
that produced a silhouette set.

11.1.1 Calibration

The configuration and calibration of two image capture sehgve been addressed. The first, the two-mirror
setup, is a low cost setup that can be easily created usidgyr@aailable equipment. The second, the six-

camera setup, is a high throughput system that can be uskdderbatches of stones in either an industrial
or a laboratory setting.

The Two-Mirror Setup
The two-mirror setup is used to capture five silhouette viefs object in a single image. It has been shown

that the setup can be calibrated using only constraints segbdoy silhouette bitangents. This approach
therefore adds to the array of silhouette-based self+editn methods described in the computer vision
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literature. These approaches include setups that impostraots based on known circular motion [93] and
prior knowledge of camera orientation [102].

Calibration involves determining the camera pose andnatgrarameters as well as mirror poses; there is
therefore no need for accurate positioning of any apparafire two-mirror setup provides a convenient
approach to capturing multiple calibrated silhouette gi@fistones for shape-from-silhouette reconstruction
without using specialised equipment. Its use is not, howdiraited to stones: it can be used for shape
reconstruction of arbitrary objects. Experiments have alestrated that calibration is sufficiently accurate
that silhouette noise is a greater contribution to incdesisy across silhouettes than calibration parameter
errors.

The Six-Camera Setup

Two different heuristics were considered for determinimg ¢amera configuration for the six-camera setup:
one requires maximising the distribution of frontier psioh a sphere, and the other minimises the isolation
of the direction that is furthest from any viewing directioBoth heuristics are designed to provide good

results over a range of silhouette-based applicationgr{atihg shape, volume, and matching), and both
indicate that six cameras should be configured so that vgedirections are perpendicular to the parallel

face pairs of a regular dodecahedron. This is thereforedhfiguration that is used.

The six-camera setup is calibrated using several runstuigitte sets of a ball. Initial parameter estimates
are computed by generating approximate point correspaedensing the centres of the ball projections.
The method is based on the work of Tomasi and Kanade [129].c@liieration parameters are then refined
by minimising ET error, and scale is enforced using the kneiza of the ball.

Merging Silhouette Sets

A method for aligning silhouette sets in a common referenamé by minimising ET error has been intro-
duced. This is external calibration: the poses of the casnenast be specified, but the internal parameters
are known. The method allows silhouette sets containingge laumber of views of a stone to be constructed
from setups that produce a small number of views (such asubertirror setup and the six-camera setup).
A larger number of silhouettes provides more constraintstone shape, which provides the potential for
more accurate estimates of shape properties.

11.1.2 Recognition

The main recognition goal of this thesis is efficient batchtahimg: an algorithm to compute the one to
one correspondences between two unordered batches afattbsets of the same batch of stones. Batch
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matching is useful for tasks such as reconciling class $aedigned to each stone using batch classification
methods such as sieving (in which stones are classifieditegeather than individually). The design of a
batch matching algorithm was split into three component3: gdlignment-based matching, (2) faster, but
less accurate signature-based matching, and (3) a fratkéwvaombine the accuracy of alignment-based
matching with the speed of signature-based matching taeceraefficient batch matching algorithm.

Alignment-Based Matching

Alignment-based matching simply applies ET-based posenggation to a pair of silhouettes. If a suffi-
ciently low error is achieved, then the pair is classified asaéch, otherwise it is classified as a mismatch.
A formulation of ET error based on an orthographic projettisodel was introduced to improve computa-
tional efficiency. The method was applied to the 2-mirroii@avgravel data set and the 6-camera garnet data
set. All mismatch pairs considered were found to producstsmiially larger ET errors after alignment than
any of the match pairs considered. Various CIP-based esrordlations were found to produce no practical
improvement on matching accuracy when tested on downsdnpkge data. Used alone, alignment-based
matching provides a means for verification: a silhouettebatstone can be compared with a silhouette set
on record to confirm that the two silhouette sets correspotlet same stone.

Signature-Based Matching

Signature-based matching uses signatures that apprextmaiCDF of a stone’s caliper diameter distribu-
tion. The EMD between signature pairs is used to quantifiyr thesimilarity. The EMD between signatures
can be computed i®(m) time complexity form-element signatures (typicalm= 10), and in practice takes
less than one microsecond to compute. This makes it pratdicampute dissimilarity values between il
pairings across two runs afstones (for realistic values of a batch of stones will contain several thousand
stones at the most). Although signature-based matchingderedoped primarily as a component of batch
matching, it can also be used for identification. To idengifguery silhouette set from a database of stored
silhouette sets, the query-database pairings can beyapitted in order of dissimilarity specified by EMD
between signatures. The slower alignment-based matchitigein applied to pairs in order of dissimilarity.
Tests applied to the 2-mirror 5-view gravel data set resulhé correct match being ranked first by EMD in
98% of cases, and the correct match is always within the tep fiv

Batch Matching

A simple probabilistic framework was used for batch matghi&ach silhouette set pair across two runs is
assigned a likelihood ratio (indicating the likelihood @filhg a match). The pairs are pushed onto a priority
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gueue that is prioritised by likelihood ratio. Alignmerad®ed matching is used to make a hard (i.e., non-
probabilistic) decision for each pair and starting poinbgidered: match or unknown. Once all matches
are found, the algorithm terminates. Efficiency is achiebgdeducing the likelihood ratio using Bayes'’s
rule and pushing the pair back into the priority queue afteuasuccessful optimisation. This is a greedy
algorithm: pose optimisation is always applied to the pai atarting point that is most likely to result
in successful alignment. A data set of two runs of six-vielhaiette sets of uncut gemstones is correctly
matched up in approximately 68 seconds on a 3.2 GHz Pentiurachime. Of this, 50 seconds is spent on
preprocessing that can be computed online as the stonethpaisgh the six-camera setup.

11.1.3 Shape

The VEMH has been introduced as an alternative to the visulafdr estimating the shape of the convex

hull of a stone from its silhouettes. The VEMH can be used tionede the caliper diameter of a stone in a
given direction. This has been used for recognising stdmésds also of use to particle shape analysts who
use estimates of the short, intermediate, and long diamfdea broad range of applications.

The accuracy with which commonly-used shape propertieg(lmtermediate, short diameters and volume)
can be estimated from silhouette sets has been quantifiedfioimage capture setups considered. Merging
silhouette sets to create a single large silhouette set tdree rom silhouette sets containing a smaller
number of silhouettes has been shown to improve the accimastimating these shape properties.

The extent to which the minimum enclosing cylinder can b&luseemulate sieving has been investigated in
an experiment which makes use of the calibration, recagnitind shape methods developed in this thesis.
The sieve bin associated with each of 494 garnets acrossnk5ofusieving was determined using batch
matching. The bins associated with most stones are conisigith the minimum cylinder diameter, limiting
the smallest sieve aperture through which the stone can pdss/ stones landed in bins bounded by circular
apertures with diameters smaller than the minimum cylinidelicating that these stones may have changed
their direction of motion as they passed through the apertBoth visual hull-based volume estimates and
silhouette-based sieve emulation were found to produce nepeatable histograms than sieving for the data
set of 494 garnets.

11.2 Future Work

There are many ways in which the work described in this thessisbe extended. Some ideas follow.

This work has been limited to considering silhouette imagfestones. Front-lit images from colour cameras
will provide information about the colour and surface tegtof stones. This information may enable esti-
mation of particle properties that are not available frolinasiettes. Stereo vision techniques may be able to
reconstruct concavities that cannot be captured with sdties.
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There has recently been interest in the discrete elementlimad community in using silhouette-based
methods for model validation [107]. Li et al. [79] use comgngimulations with discrete element modelling.
They are interesting in the efficiency of the sieving proasa function of sieving time and intensity. The
methods presented in this thesis may be useful for valigatiis type of computer simulation with real
experiments. For instance, the results of a computer stianlaf sieving (using 3D shape models computed
from a real batch of stones) can be compared with the resigitate achieved in practice on a stone by stone
basis.

Some initial work indicates that ET-based alignment ofaiktte sets may be adapted to align silhouettes of
a stone before and after the stone is chipped. Figure 11visstio example.
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Figure 11.1 A refined visual hull model of a stone formed by merging fivei®~ runs is shown in red. A portion of the stone
was subsequently chipped off. A refined visual hull modelhef thipped stone formed by merging five 6-view runs is shown in
yellow. The original stone is also overlaid on the brokersigr to aid visualisation of the chipped piece. Silhouettethe stone
are shown in black with the CIPs formed from all silhouettesrtaid in grey. Each row of silhouettes corresponds to aetamiew,
and each column, a run. The stone was chipped between rurds & a@IPs therefore do not cover portions of the original ston
corresponding to the chipped piece: these portions ar&.blac
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To specify all silhouettes in a common reference frame, ppienisation using a modified version of ET
error that accounts for the chipping was used. (The modificaassumes stone projections can become
smaller, but not larger between runs 5 and 6.) This providegobtential to analyse the shape and location of
chipping during certain industrial processes, and to misagstones even if they are chipped. Understanding
the nature of breakage is important when dealing with highevgemstones. By identifying the shape and
location of chips broken from real stones, it may be posdiblealidate computer simulations that attempt
to predict the breakage occurrences. Since constraintslative pose are weaker after breakage, it may be
necessary to use more silhouettes or to incorporate CIRradnts in addition to ET constraints.

Gemstones are manually classified into different shapsesd®r valuation purposes. It is possible that some
of the recognition methods developed in this thesis couledbended to automate the shape classification of
gemstones.
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Appendix A

Threshold-Based Subpixel Segmentation

The methods developed in this thesis use as input polyganaidaries that separate the foreground and
background regions in images. This appendix describesiltimustte boundary extraction algorithm used
to segment the images captured by the six-camera setuplsisar Chapter 5. Since images are captured
under controlled lighting conditions, a simple threshbised segmentation effectively separates foreground
from background.

An empty background image is stored for each of the six casrsyahat background subtraction can be ap-
plied. This reduces the effect of any intensity variatiothefbackground over an image. Otsu’s method [105]
is applied to the difference images to determine threshdltie method selects a threshold to minimise the
intra-class variance of pixel intensity values for backm and foreground. In practice, the extracted bound-
aries are found to be insensitive to the precise threshdlet wnce backlights ensure that background pixels
are substantially brighter than foreground pixels.

The algorithm achieves efficiency by using a strategy thasdmt visit each pixel. This can be done because
the boundary of only one connected region is sought per iniage the prior knowledge that each image
contains exactly one stone silhouette is used). Only dsiteels are classified as foreground or background.
This is done by subtracting the pixel intensity value of taekground image from the pixel intensity value
of the foreground image and comparing the result with thedftkeeshold value. This allows segmentation
to be carried out without visiting each pixel. After a pixekolution boundary is extracted, the boundary is
traversed once more to compute a subpixel resolution boynddng linear interpolation of pixel intensity
values. The resultant boundary is equivalent tortfagching squareboundary. (Marching squares is the 2D
analogue of marching cubes [84].)

Broadly, the algorithm proceeds as follows:

1. Find a pixelinsidethe silhouette.

2. Walk downwards to find the boundary of the silhouette.
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3. Traverse the silhouette to determine its pixel resatutioundary.

4. Traverse the silhouette again to determine its subppsalution boundary.

A.1 Finding a Starting Point

The first step of the algorithm is to find a pixel that is suffithg dark (i.e., a foreground pixel). This is
carried out by considering grid point vertices at succedgifiner resolutions until a foreground pixel is
found. The first point is the image centre. This point belaiogbe Level 1 Grid. The Level 2 Grid is formed
by points in the centres of the four rectangles defined byrfage corners and the first vertex. There are
therefore four Level 2 vertices. Vertices belonging totiertgrid levels are defined in a similar manner using
the rectangle centres of the grid’s predecessor. Figurdlastrates the point locations for grids up to Level
5. There are 2" point locations for a grid of leve.

The procedure of looking for a foreground pixel ensures tbatpixels are visited. Figure A.2 shows an
example. In this case, ten grid points are considered befstdficiently dark pixel is found.

Once a dark pixel has been found, the algorithm searchesbaclkground pixel. This is done by moving
downwards one pixel at a time as can be seen in the examplgumeFA.3.

A.2 Pixel-Resolution Boundary

Once a pair of foreground and background pixels has beerfdbair shared edge is used as the first edge
of the boundary polygon, and the leftmost vertex of this edgesed as the first vertex of the polygon (see
Figure A.3).

The polygon is then traversed by moving from pixel cornerikelpcorner, keeping the silhouette to the left.
At each step the boundary can proceed either left, stralgrady or right. This is determined by considering
the two pixels ahead of the current polygon edge &head left pixelnd theahead right pixél. The rules
for determining the direction of the next edge from the aurexige vertex are given in Table A.1. The rules
imply that the foreground is 4-connected and the backgrasiBeconnected. However, in practice, there are
rarely images for which a 4-connected foreground diffepsfian 8-connected foreground.

ahead left pixel ahead right pixel  direction
foreground foreground right
foreground background | straight ahead
background foreground left
background background left

Table A.1: Determining the direction of the next edge from Hieead left pixeand theahead right pixel
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Figure A.1: Example showing point locations considered when seagdioina foreground pixel. The grid level number associated
with each point is shown next to each point.

Figure A.2: A segmentation example. Grid points used to locate a foregt pixel are in blue with the level number shown. The
vertical path from the starting point to the boundary is iear, and the silhouette boundary is red.

Figure A.3: A closeup of part of Figure A.2. The vertical path from theefground starting point to the boundary is shown with
green dots. The boundary is in red. A yellow circle indicdtesstart of the boundary, and a yellow line segment indictite first
edge of the polygon representing the boundary.
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Upon return to the starting point, the pixel resolution badany has been found.

A.3 Subpixel Boundary

Figure A.4 shows an example of a portion of a subpixel boundHne original boundary (shown in green)
runs across pixel edges and is therefore limited to pixellogien. To create a subpixel boundary, linear
interpolation based on pixel intensity values is used. Bohedge, a pixel-length line segment is considered.
Each line segment runs from the centre of one of the pixelsded by the edge to the centre of the other
pixel bounded by the edge. One pixel is a background pixel,care is a foreground pixel. A vertex of the
subpixel boundary is generated along each line segmentvditex is positioned at a distangefrom the
centre of the foreground pixel using the following formula:

p—F T (A1)
I —IB

whereig is the intensity value of the foreground pixgl,is the intensity value of the background pixel, and
it is the threshold value.

Figure A.4: An example of subpixel segmentation. The original pixebtation boundary is shown in green. The subpixel boundary
is shown in red. Each vertex of the subpixel boundary lies pixel-length line segment associated with each edge ofrilaeel
boundary. These line segments (shown in blue) are perpgadio and share centre points with the associated origihges.

The resultant subpixel boundary is the same as a marchiragesjboundary. The marching squares algo-
rithm considers pixel-sized squares centred at each porelec. The corners of the squares (which lie on
pixel centres) are classified as foreground or backgrousddan the intensity threshoig. The 2 = 16
possible classifications of the square determine how thedsy enters and exits the square, i.e., which
square sides the boundary crosses. The square sides ar@eufuio the pixel-length line segments consid-
ered above.
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A.4 Experiments

To test the performance of subpixel segmentation, imagedampling was used. This was done because in-
tensity noise in the images is high, and at full resolutidensity noise dominates spatial quantisation noise.
Downsampling uses the mean intensity valueof n groups of pixels to create a lower resolution image.

Averaging the intensity values has the effect of reducingrisity noise, but increasing spatial quantisation

noise.

(a) 64x 64 binning (b) 32x 32 binning

(c) 16x 16 binning (d) 8x 8 binning

Figure A.5: Subpixel segmentation of an image of a garnet with varieusls of downsampling. The subpixel boundary is shown
in colour.

Figure A.5 shows examples ofx n pixel binning of a garnet image for various valuesof

Pixel binning was applied to 246 image sets of garnets cagtwith the six-camera setup. Bin dimensions
of 1x 1 (i.e., no binning) through to 20 20 were used. Boundaries were then extracted using both pixe
resolution and subpixel boundary extraction methods (fiked intensity thresholds determined by the
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calibration procedure). At full resolution, thet€ implementation of the subpixel boundary extraction takes
approximately 1.5 ms per image on a 3.2 GHz Pentium 4 machine.

After extraction, the boundaries were scaled up by a factar o facilitate direct comparison between
different degrees of downsampling, and so that unalter@dpated calibration parameters could be used.
Figure A.6 shows a plot of the internal ET error for the silbtte sets at different resolution levels using
pixel resolution boundaries and using subpixel boundari€se plot shows that with no downsampling

= piel resolulion bowndaries
subgixel baundasies *

Lh

Intermal ET Errar [pixels)
FJ [ E
- -
o
T AEpE
T . -
+ R
* TR
T &
ey
e R . ¢ .

ﬁﬁ&b 3 L i v
123 4588 B 1091 1213141518 17181920
Pixels per row for n=<n pixal binning

Figure A.6: Plot of internal ET error versusfor n x n pixel binning of 246 silhouette sets of garnets.

(1 x 1 binning), subpixel boundary extraction offers no greaecuracy than pixel resolution boundary
extraction. This is because intensity noise dominatesamgiantisation noise. With 2 binning the
ET errordecreases This is because the averaging effect that reduces pixehsity noise outweighs the
increased spatial quantisation noise. This suggestsgivat) the current lighting, it would be beneficial to
run the cameras of the current six-camera setup<r2dinning mode (the Dragonfly cameras used with the
current setup can be configured to run in this mode). Thisiatfioates that there is scope for improvement
in boundary accuracy if the signal to noise ratio of the insaigamproved, by using brighter backlights for
instance.

The plot illustrates that subpixel boundary extractiondaiees significantly more accurate boundaries (in
terms of ET error) than pixel resolution boundaries wheriapguantisation errors are the major source of
error.
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Appendix B

An Analytical Expression for a Jacobian
Matrix

This appendix records the derivation of an analytical esgize for the Jacobian matrix that is used for
ET-based pose optimisation with an orthographic imagingeh¢as described in Chapter 7).

The Jacobian matrix is used by the Levenberg-Marquardt odetth create a local linear approximation to
the cost function
f(v)=e (B.1)

In this casey = (q1,0, 03, Ga. %, Y, )" iS @ seven parameter vector representing a pose. The didenta
part of the pose is represented by a (possibly non-unit)equiain (g, 02, 03, d4). To determine the rotation,
the quaternion is unitised. The, y-, andz-components of the translational part of the pose is reptede
by X, yt andz. The error vectoe stores the individual residual values:

e = (AXoa1e1, AYoa1s1, AXia1p1, AYia1s1 - - - AXoamBn AYoamsn AXiamen AY1amen) - (B.2)

Each residual value is identified by subscripts. The firsicetgs to which of the two outer tangencies the
reprojection error corresponds (0 or 1). Subsequent sipbsdndicate which image from Set A and which
image from Set B correspond to the residual value.
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The Jacobian matri¥ is as follows:

0Bxompr  00Xomp1  O0Xoaip1 O8%oair OOXomier 90Xomp1 9AXoaip1

0qs g 003 0t % oVt 0z
0AyYopier  9AYoaisr  OAYomer  9AYoaimr  O0AYomisr  OAVoaier  9AYoaisi
0q: og 003 0t % oWt 0z
0BDximpr  0Bxamp1  0Dxap1 08xiaien O8xgaier 9Bximp1 9AXaiB1
0qs g 003 0t % oWt 0z
0Ayiaer  0Ayimer  9Ayiaer O0Ayiaier O0Ayiaier 9Ayimer 9Ayiaier
0q: g2 0g3 004 0x; oyt 0z
J= : : : : : : : (B.3)
0MXoamBn  9D%0amBn  9DXoamBn  9%oamBn  9AXoamBn  9AX0oamBn  9AX0AmBn
0qs oo 003 0t % oWt 0z
0AYoamBn  9AYoamBn  0AYoamBn  9AYoamBn  OAYoamBn  9AYoamBn  9AYoAmBn
0q: g2 0g3 004 0x; oyt 0z
0AXiamBn  9BX1amBn  9X1amBn  9AX1amBn  9AX1amBn  9AX1amBn  9AX1amBn
0qs oo 003 0t % oWt 0z
O0AyiamBn  0AyiamBn  0AyiamBn  OAyiamBn  0Ayiamen  0AyiamBn  0Ayiamen
0q: g2 0g3 004 0x; oyt 0z

The Jacobian matrix has as many rows as there are elemengsaimd as many columns as there are elements
in v. Since there are reprojection errors in #a@ndy-directions for each of two outer tangencies, there are
2 x 2 =4 reprojection errors for each silhouette pair. Note thatrésidual values are computed in only one
image of the pair. Since we are using an orthographic piiojgcthe corresponding residuals computed in
the opposite image are identical.

If Set A containansilhouettes and Set B containsilhouettes, then there amenpairings across sets. There
are thus mnreprojection errors corresponding to a pose estimate.

The partial derivatives that are the elementd afe computed using the chain rule. For example

0AX 00X 6r11 0AX al’lg 0AX 6r13 0AX Oty 0AX 6r21 0AX 6r22 0AX 6r23 6£< &

oox _ OB | 08Xohz | 08XOny | 08X Ok | OOXOTa1 | 08X Of2z | 00X OT23 . (B4
oy dryy 0oy orip 00y oriz 0y Otx 0qy drp1 0y drpz 00y 0rp3 00y oty dqy (B.4)

The Matlab Symbolic Math Toolbox was used as an aid in comgutie following partial derivatives:

0AX . r232p2x 0AX . r232p2y

0AX I’232
1 122 2 (B.5) M1y (o221t (142 =
ri1  re3c+rig f2 r23°+ri3

B.6 —_— =
(B.6) Oty r232+r132

(B.7)

A (P1y —r21 P2x — 22 P2y —ty) r23

F13 r23%+r132
) r§3r13 (plx —I11P2x—T12P2y — tx) — r%3r23 (ply — 21 P2x — 22 P2y — ty) (B.8)
(r232 + r132)2
9AX r13 P2« 23 0AX  ri3payr23 0AX risra3
ra1 [23°+Tr13 r22  rz3“+ris y r23“+ri3
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0AX _ T3 (P1y — 21 P2x — 22 P2y —ty) — 2r23 (Pax — 11 Pax — 12 P2y — tx)

F23 r23%+r13?
" r33 (P1x— 11 P2x — 12 P2y —tx) — 13135 (P1y — 21 Pox — 22 P2y — ty) (B.12)
5 )
(r232 + r132)
oAy ro3Paxr13 oAy ro3Payri3 oAy roafi3
—_—2 4o Fer 2o B.13 — = B.14 —_— = B.15
oryy r23? +r13? (8.13) orip r2a® +r13? (8.14) Oty r23+r132 (8.15)
0Ay (13— rfar23) (Pax—r11Pax — 12 Py — tx) — 2r13r53 (Pay — a1 Pox— 22 P2y —ty) (B.16)
or13 (rag?+ r132)2
By ris’pax (B.17) Wy i3’y (B.18) vy  ng (8.19)
Orp;  raz?+r13? ' 0oy ra3?+r13? ' oty ra3?+ry3? '
oy _ 3 (P1x—r11 P2x — 12 P2y —tx)
Orp3 r2a +r13?
5 r3sr13 (Pix— 11 P2x — M2 P2y —tx) — 24723 (P1y — F21 P2x — 22 P2y —ty) (B.20)

(ra? +1132)°

A candidate rigid transform from View 2 of Set B to View 1 of Sets derived from its parameter vector
and the poses of Views 1 and 2 with respect to the world referéniames of Sets A and B.

A 4 x 4 matrix representing a rigid transform is derived from taegmeter vectov. The first four elements
of v represent a quaternion. The normalised (unit) quater@ien(gy, gy, 0z, Gw)" represents a rotation:

Ox Q1
Yol ! o (B.21)
% | R+ +@ra| B
Ow Oa

A rotation matrixRg_.a is formed from the unit quaternion:

1—-200— 202 20x0y — 200w 20Cz + 20}y Chw
Re—a=| 20x0y+20,0w 1—20%—20% 20y0;—20xqw |- (B.22)
20x0z — 20yGw  20y0z+20x0w 11— ZQ>2< - 2%2/

A rigid transformMg_,a that transforms Set B’s world reference frame to Set A's diogfference frame is

215



formed fromRg_,o and the remaining elements of the parameter vector:

Rg_, tg_
MBHA:< BOA 81A>, (B.23)

wheretg .a = (%, %1,%)".

The 4x 4 matrix Mwa_.c1 that represents the transform from Set A's world referemamé to Camera 1's
reference frame can be written as

Ma11 Ma12 Ma1z Maig

Ma21 Ma22 Ma23 Ma24

Mwa-c1 = (B.24)

Ma31 Ma3z2 Ma3zz Mazg
Mag1 Mag2 Magz Maga

The 4x 4 matrixMc,_wg that represents the transform from Camera 2's referencettB’'Sworld reference

frame can be written as
Mg11 Me12 MB13 MBig

Mg21 Mg22 Mg23 Mg24

Mcows = (B.25)

Mg31 Me32 Me33 Mg3g
Mg41 Me42 Me4a3z NMeag

The transform from Camera 1's reference frame to Cameraefsance frame is then is computed as fol-
lows:

Mco—.c1 = (Mwa-c1) (Mwe-wa) (Mc2—wa)- (B.26)

This representation of pose is required for computing fjeption errors in the image planes of silhouettes
in Set A (sincev represents a transformation from Set B to Set A).

It is useful to define

riaa fioa Fiza fxa a1 12 &3 Ay
roan Tooa Toza tya A1 A2 A3z A
Mc2c1 = = , (B.27)
rs3ia raoa rsza fza az1 agz2 agz azg
0 0 0 1 1 2 3 s

so that partial derivatives of more than one element of treepuoatrices may be specified with a single
equation.

It is also useful to define
W= g1 + 0% + 03 + g4?, (B.28)

since the expressiom 2 + gp2 + gz + 4 occurs frequently.
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The remaining equations required for populating the elemefl follow. (These were computed with the

aid of the Matlab Symbolic Toolbox.)

Oaij _
o
2
(mAil( quQ1+4Q3 Q1)+mA|2< %74%\2274(}3@;(}1) +mAi3( %74Q$VQ3+4Q2\?VQQ1)>mBlj
+(mAi1< 2, Q2+4Q3\?VA;Q1)+mAi2< 40I1+4(112 4% Q1) +mAi3( Q233Q1+2%_4Q1 %))msz

+(mAi1( q\; 4th20|3 4qzq4q1)+mAi2 (74(312\(/1;(11 2q a0 q4)+mAi3( 4q1+4q2+4q e ))mst

(B.29)

2 2
(mAil (74%+4q 4% q2>+mA. (74qbvt1|22 +2@74q3q2q2) - mas (74q1q§q272q7v3+4qiv§4>)mmj
+(mAi1( qwz 2q1 q3q2q2)+mAi2( 0 QZ+4QC\%NC|2) +mAi3( q_vj_4qivq3 4Q1\?VA;QZ))WB2J_

3
+(mAi1( Q1\(11Va(12+2q e q4)+mAi2( %74q233+4q1\7v4q2)+mAi3( qiqu 4q qviz))m%j
(B.30)

oz
2 3 2

(mAil <4qz 2(1374$+4q%)+m (74Q1QZZQB+2%74C|3 ;14) +mAi3( 4qlq3 +qu+40|zq40|3)>
W w W

2
+ (mAil (_4q1q22q3 2% +4q?N§|4) + Mai2 ( qtvqg 4q3 +40'3 ) + Majz (

(mAil( qt\(lla +2$74Q2Q4Q3)+mAi2( Q2Q3 Jr2(12 Q1\(/1VA;Q3)+mAi3(

Q20I3 +2% _4Q10I4q )) ez,

0? Q3 L4 %))mst
(B.31)

93 _
004
<mAi1< %° W B q4)+mA (74(11\?\/22(]4 4Q30|4 +2q3)
a3 Q4)+mAi3 (_4(112\(/1\,32(214 Q1C14 N m))mszj
4

e

(B.32)

010394 Q20I4
(4958 2

2
+(mAi1( quzq4+4q 304 2q3)+mAi2( 012 q4+4

w2
+(mAi1 (74q1\<l1;q474qz\/;14 +20|z>+mAi2 (74Q2332Q4+ qtsm 2(11) +mAi3< 0 Q4+4Q2 q
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orija _ Orija _ 0rija
- = =0 (B.33)
0% OVt 0z

( Otya/0%  Otya/0y; Otya/0z ) _ ( Ma11 Maiz2  Ma13 ) (B.34)

Otya/0x;  Otya/Oyr  Otya/0z Mao1  Mazz  Mazz

The individual elements af (see Equation B.3) are computed using the above equatigethtr with the
chain rule as shown in the example of Equation B.4.
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Appendix C

Polyhedral Models of Stone Data Sets

This appendix shows pictures of the polyhedral models afegaised in this thesis. The polyhedral models
are ordered so that similar shapes are nearby. This is a&chigsing the following approach. Each link
between a stone and its four-neighbours is assigned a cestllmn the EMD between caliper diameter
distributions of the polyhedron. A low-cost combinatiorc@mputed by randomly selecting pairs of stones,
and swapping them if the swap results in a cost reduction. nulsited annealing [51] approach is used
so that there is also a slight probability that swaps will beried out if the swap increases the cost. The
probability is controlled by a cooling schedule so that thabpbility is reduced as the algorithm progresses.
This approach allows the algorithm to escape local minima.

The polyhedra have their principal axes aligned withxhe- andz-axes, and are viewed from the (1, 1, 1)
viewing direction. This helps in visualising the shape of flaclongated stones in which a large part of the
particle may or may not be visible when viewed from an undjmstdirection.
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Figure C.3: Refined visual hulls of a portion of the data set consistihi4@6 naturally-occurring (uncut) gemstones. Each visual
hull is formed from 60 views of the stone obtained by mergifguns of 6-view silhouette sets. The 6-view silhouette setie
captured using the six-camera setup described in ChagfEn® other stones from the data set are illustrated on p&fearitl 224.)
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hull is formed from 60 views of the stone obtained by mergifguns of 6-view silhouette sets. The 6-view silhouette sete
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